Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 12.634
Filtrar
1.
PLoS One ; 19(5): e0301041, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38701088

RESUMO

OBJECTIVE: To evaluate the safety and performance of an implantable near-infrared (NIR) spectroscopy sensor for multi-metabolite monitoring of glucose, ketones, lactate, and ethanol. RESEARCH DESIGN AND METHODS: This is an early feasibility study (GLOW, NCT04782934) including 7 participants (4 with type 1 diabetes (T1D), 3 healthy volunteers) in whom the YANG NIR spectroscopy sensor (Indigo) was implanted for 28 days. Metabolic challenges were used to vary glucose levels (40-400 mg/dL, 2.2-22.2 mmol/L) and/or induce increases in ketones (ketone drink, up to 3.5 mM), lactate (exercise bike, up to 13 mM) and ethanol (4-8 alcoholic beverages, 40-80g). NIR spectra for glucose, ketones, lactate, and ethanol levels analyzed with partial least squares regression were compared with blood values for glucose (Biosen EKF), ketones and lactate (GlucoMen LX Plus), and breath ethanol levels (ACE II Breathalyzer). The effect of potential confounders on glucose measurements (paracetamol, aspartame, acetylsalicylic acid, ibuprofen, sorbitol, caffeine, fructose, vitamin C) was investigated in T1D participants. RESULTS: The implanted YANG sensor was safe and well tolerated and did not cause any infectious or wound healing complications. Six out 7 sensors remained fully operational over the entire study period. Glucose measurements were sufficiently accurate (overall mean absolute (relative) difference MARD of 7.4%, MAD 8.8 mg/dl) without significant impact of confounders. MAD values were 0.12 mM for ketones, 0.16 mM for lactate, and 0.18 mM for ethanol. CONCLUSIONS: The first implantable multi-biomarker sensor was shown to be well tolerated and produce accurate measurements of glucose, ketones, lactate, and ethanol. TRIAL REGISTRATION: Clinical trial identifier: NCT04782934.


Assuntos
Etanol , Estudos de Viabilidade , Cetonas , Ácido Láctico , Espectroscopia de Luz Próxima ao Infravermelho , Humanos , Cetonas/análise , Masculino , Etanol/análise , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Adulto , Feminino , Ácido Láctico/análise , Ácido Láctico/sangue , Glicemia/análise , Pessoa de Meia-Idade , Diabetes Mellitus Tipo 1/sangue , Técnicas Biossensoriais/métodos , Técnicas Biossensoriais/instrumentação , Glucose/análise
2.
Opt Lett ; 49(10): 2821-2824, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38748170

RESUMO

Waveguide Bragg grating (WBG) blood glucose sensing, as a biological sensing technology with broad application prospects, plays an important role in the fields of health management and medical treatment. In this work, a polymer-based cascaded WBG is applied to glucose detection. We investigated photonic devices with two different grating structures cascaded-a crossed grating and a bilateral grating-and analyzed the effects of the crossed grating period, bilateral grating period, and number of grating periods on the sensing performance of the glucose sensor. Finally, the spectral reflectance characteristics, response time, and sensing specificity of the cascaded WBG were evaluated. The experimental results showed that the glucose sensor has a sensitivity of 175 nm/RIU in a glucose concentration range of 0-2 mg/ml and has the advantages of high integration, a narrow bandwidth, and low cost.


Assuntos
Glicemia , Polímeros , Polímeros/química , Glicemia/análise , Técnicas Biossensoriais/instrumentação
3.
J Agric Food Chem ; 72(19): 11259-11267, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38691423

RESUMO

Peanut allergen monitoring is currently an effective strategy to avoid allergic diseases, while food matrix interference is a critical challenge during detection. Here, we developed an antifouling surface plasmon resonance sensor (SPR) with stratified zwitterionic peptides, which provides both excellent antifouling and sensing properties. The antifouling performance was measured by the SPR, which showed that stratified peptide coatings showed much better protein resistance, reaching ultralow adsorption levels (<5 ng/cm2). Atomic force microscopy was used to further analyze the antifouling mechanism from a mechanical perspective, which demonstrated lower adsorption forces on hybrid peptide coatings, confirming the better antifouling performance of stratified surfaces. Moreover, the recognition of peanut allergens in biscuits was performed using an SPR with high efficiency and appropriate recovery results (98.2-112%), which verified the feasibility of this assay. Therefore, the fabrication of antifouling sensors with stratified zwitterionic peptides provides an efficient strategy for food safety inspection.


Assuntos
Alérgenos , Arachis , Peptídeos , Ressonância de Plasmônio de Superfície , Ressonância de Plasmônio de Superfície/métodos , Arachis/química , Arachis/imunologia , Peptídeos/química , Peptídeos/imunologia , Alérgenos/análise , Alérgenos/imunologia , Alérgenos/química , Incrustação Biológica/prevenção & controle , Contaminação de Alimentos/análise , Proteínas de Plantas/imunologia , Proteínas de Plantas/química , Proteínas de Plantas/análise , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Adsorção
4.
J Nanobiotechnology ; 22(1): 239, 2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38735951

RESUMO

Widespread distribution of porcine epidemic diarrhea virus (PEDV) has led to catastrophic losses to the global pig farming industry. As a result, there is an urgent need for rapid, sensitive and accurate tests for PEDV to enable timely and effective interventions. In the present study, we develop and validate a floating gate carbon nanotubes field-effect transistor (FG CNT-FET)-based portable immunosensor for rapid identification of PEDV in a sensitive and accurate manner. To improve the affinity, a unique PEDV spike protein-specific monoclonal antibody is prepared by purification, and subsequently modified on FG CNT-FET sensor to recognize PEDV. The developed FET biosensor enables highly sensitive detection (LoD: 8.1 fg/mL and 100.14 TCID50/mL for recombinant spike proteins and PEDV, respectively), as well as satisfactory specificity. Notably, an integrated portable platform consisting of a pluggable FG CNT-FET chip and a portable device can discriminate PEDV positive from negative samples and even identify PEDV and porcine deltacoronavirus within 1 min with 100% accuracy. The portable sensing platform offers the capability to quickly, sensitively and accurately identify PEDV, which further points to a possibility of point of care (POC) applications of large-scale surveillance in pig breeding facilities.


Assuntos
Técnicas Biossensoriais , Nanotubos de Carbono , Vírus da Diarreia Epidêmica Suína , Vírus da Diarreia Epidêmica Suína/isolamento & purificação , Animais , Suínos , Técnicas Biossensoriais/métodos , Técnicas Biossensoriais/instrumentação , Nanotubos de Carbono/química , Limite de Detecção , Imunoensaio/métodos , Imunoensaio/instrumentação , Anticorpos Monoclonais/imunologia , Transistores Eletrônicos , Doenças dos Suínos/diagnóstico , Doenças dos Suínos/virologia , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/análise , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/virologia , Anticorpos Antivirais/imunologia , Desenho de Equipamento
5.
Artigo em Inglês | MEDLINE | ID: mdl-38723798

RESUMO

Wearable and implantable sensing of biomechanical signals such as pressure, strain, shear, and vibration can enable a multitude of human-integrated applications, including on-skin monitoring of vital signs, motion tracking, monitoring of internal organ condition, restoration of lost/impaired mechanoreception, among many others. The mechanical conformability of such sensors to the human skin and tissue is critical to enhancing their biocompatibility and sensing accuracy. As such, in the recent decade, significant efforts have been made in the development of soft mechanical sensors. To satisfy the requirements of different wearable and implantable applications, such sensors have been imparted with various additional properties to make them better suited for the varied contexts of human-integrated applications. In this review, focusing on the four major types of soft mechanical sensors for pressure, strain, shear, and vibration, we discussed the recent material and device design innovations for achieving several important properties, including flexibility and stretchability, bioresorbability and biodegradability, self-healing properties, breathability, transparency, wireless communication capabilities, and high-density integration. We then went on to discuss the current research state of the use of such novel soft mechanical sensors in wearable and implantable applications, based on which future research needs were further discussed. This article is categorized under: Diagnostic Tools > Biosensing Diagnostic Tools > Diagnostic Nanodevices Implantable Materials and Surgical Technologies > Nanomaterials and Implants.


Assuntos
Próteses e Implantes , Dispositivos Eletrônicos Vestíveis , Humanos , Desenho de Equipamento , Técnicas Biossensoriais/instrumentação , Monitorização Fisiológica/instrumentação
6.
Biosens Bioelectron ; 257: 116345, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38692247

RESUMO

Nitrite (NO2-) is present in a variety of foods, but the excessive intake of NO2- can indirectly lead to carcinogenic, teratogenic, mutagenicity and other risks to the human body. Therefore, the detection of NO2- is crucial for maintaining human health. In this study, an integrated array sensor for NO2- detection is developed based on molybdenum single atom material (IMSMo-SAC) using high-resolution electrohydrodynamic (EHD) printing technology. The sensor comprises three components: a printed electrode array, multichannels designed on polydimethylsiloxane (PDMS) and an electronic signal process device with bluetooth. By utilizing Mo-SAC to facilitate electron transfer during the redox reaction, rapid and efficient detection of NO2- can be achieved. The sensor has a wide linear range of 0.1 µM-107.8 mM, a low detection limit of 33 nM and a high sensitivity of 0.637 mA-1mM-1 cm-2. Furthermore, employing this portable array sensor allows simultaneously measurements of NO2- concentrations in six different foods samples with acceptable recovery rates. This array sensor holds great potential for detecting of small molecules in various fields.


Assuntos
Técnicas Biossensoriais , Desenho de Equipamento , Análise de Alimentos , Limite de Detecção , Molibdênio , Nitritos , Molibdênio/química , Técnicas Biossensoriais/instrumentação , Nitritos/análise , Análise de Alimentos/instrumentação , Humanos , Dimetilpolisiloxanos/química , Eletrodos , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Contaminação de Alimentos/análise
7.
Sensors (Basel) ; 24(9)2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38732893

RESUMO

An abnormal level of dopamine (DA), a kind of neurotransmitter, correlates with a series of diseases, including Parkinson's disease, Willis-Ekbom disease, attention deficit hyperactivity disorder, and schizophrenia. Hence, it is imperative to achieve a precise, rapid detection method in clinical medicine. In this study, we synthesized nanocomposite carbon aerogels (CAs) doped with iron and iron carbide, based on algae residue-derived biomass materials, using Fe(NO3)3 as the iron source. The modified glassy carbon electrode (GCE) for DA detection, denoted as CAs-Fe/GCE, was prepared through surface modification with this composite material. X-ray photoelectron spectroscopy and X-ray diffraction characterization confirmed the successful doping of iron into the as-prepared CAs. Additionally, the electrochemical behavior of DA on the modified electrode surface was investigated and the results demonstrate that the addition of the CAs-Fe promoted the electron transfer rate, thereby enhancing their sensing performance. The fabricated electrochemical DA biosensor exhibits an accurate detection of DA in the concentration within the range of 0.01~200 µM, with a detection limit of 0.0033 µM. Furthermore, the proposed biosensor is validated in real samples, showing its high applicability for the detection of DA in beverages.


Assuntos
Técnicas Biossensoriais , Carbono , Dopamina , Técnicas Eletroquímicas , Eletrodos , Ferro , Técnicas Biossensoriais/métodos , Técnicas Biossensoriais/instrumentação , Dopamina/análise , Dopamina/química , Carbono/química , Ferro/química , Técnicas Eletroquímicas/métodos , Géis/química , Limite de Detecção , Espectroscopia Fotoeletrônica , Nanocompostos/química
8.
Sensors (Basel) ; 24(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38732977

RESUMO

Label-free measurement and analysis of single bacterial cells are essential for food safety monitoring and microbial disease diagnosis. We report a microwave flow cytometric sensor with a microstrip sensing device with reduced channel height for bacterial cell measurement. Escherichia coli B and Escherichia coli K-12 were measured with the sensor at frequencies between 500 MHz and 8 GHz. The results show microwave properties of E. coli cells are frequency-dependent. A LightGBM model was developed to classify cell types at a high accuracy of 0.96 at 1 GHz. Thus, the sensor provides a promising label-free method to rapidly detect and differentiate bacterial cells. Nevertheless, the method needs to be further developed by comprehensively measuring different types of cells and demonstrating accurate cell classification with improved machine-learning techniques.


Assuntos
Escherichia coli , Citometria de Fluxo , Micro-Ondas , Citometria de Fluxo/métodos , Escherichia coli/isolamento & purificação , Técnicas Biossensoriais/métodos , Técnicas Biossensoriais/instrumentação
9.
Sensors (Basel) ; 24(9)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38733011

RESUMO

Demand is strong for sensitive, reliable, and cost-effective diagnostic tools for cancer detection. Accordingly, bead-based biosensors have emerged in recent years as promising diagnostic platforms based on wide-ranging cancer biomarkers owing to the versatility, high sensitivity, and flexibility to perform the multiplexing of beads. This comprehensive review highlights recent trends and innovations in the development of bead-based biosensors for cancer-biomarker detection. We introduce various types of bead-based biosensors such as optical, electrochemical, and magnetic biosensors, along with their respective advantages and limitations. Moreover, the review summarizes the latest advancements, including fabrication techniques, signal-amplification strategies, and integration with microfluidics and nanotechnology. Additionally, the challenges and future perspectives in the field of bead-based biosensors for cancer-biomarker detection are discussed. Understanding these innovations in bead-based biosensors can greatly contribute to improvements in cancer diagnostics, thereby facilitating early detection and personalized treatments.


Assuntos
Biomarcadores Tumorais , Técnicas Biossensoriais , Neoplasias , Técnicas Biossensoriais/métodos , Técnicas Biossensoriais/instrumentação , Humanos , Neoplasias/diagnóstico , Biomarcadores Tumorais/análise , Técnicas Eletroquímicas/métodos , Nanotecnologia/tendências , Nanotecnologia/métodos , Nanotecnologia/instrumentação , Microfluídica/métodos , Microfluídica/instrumentação , Microfluídica/tendências
10.
Sensors (Basel) ; 24(9)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38733009

RESUMO

Recent advancements in polymer-assisted layer-by-layer (LbL) fabrication have revolutionized the development of wearable sensors for health monitoring. LbL self-assembly has emerged as a powerful and versatile technique for creating conformal, flexible, and multi-functional films on various substrates, making it particularly suitable for fabricating wearable sensors. The incorporation of polymers, both natural and synthetic, has played a crucial role in enhancing the performance, stability, and biocompatibility of these sensors. This review provides a comprehensive overview of the principles of LbL self-assembly, the role of polymers in sensor fabrication, and the various types of LbL-fabricated wearable sensors for physical, chemical, and biological sensing. The applications of these sensors in continuous health monitoring, disease diagnosis, and management are discussed in detail, highlighting their potential to revolutionize personalized healthcare. Despite significant progress, challenges related to long-term stability, biocompatibility, data acquisition, and large-scale manufacturing are still to be addressed, providing insights into future research directions. With continued advancements in polymer-assisted LbL fabrication and related fields, wearable sensors are poised to improve the quality of life for individuals worldwide.


Assuntos
Técnicas Biossensoriais , Polímeros , Dispositivos Eletrônicos Vestíveis , Polímeros/química , Humanos , Monitorização Fisiológica/instrumentação , Monitorização Fisiológica/métodos , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos
11.
Biosensors (Basel) ; 14(4)2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38667200

RESUMO

Organic electrochemical transistors appear as an alternative for relatively low-cost, easy-to-operate biosensors due to their intrinsic amplification. Herein, we present the fabrication, characterization, and validation of an immuno-detection system based on commercial sensors using gold electrodes where no additional surface treatment is performed on the gate electrode. The steady-state response of these sensors has been studied by analyzing different semiconductor organic channels in order to optimize the biomolecular detection process and its the application to monitoring human IgG levels due to SARS-CoV-2 infections. Detection levels of up to tens of µgmL-1 with sensitivities up to 13.75% [µg/mL]-1, concentration ranges of medical relevance in seroprevalence studies, have been achieved.


Assuntos
Técnicas Biossensoriais , COVID-19 , Técnicas Eletroquímicas , Imunoglobulina G , SARS-CoV-2 , Transistores Eletrônicos , Humanos , Técnicas Biossensoriais/instrumentação , Imunoglobulina G/sangue , SARS-CoV-2/imunologia , SARS-CoV-2/isolamento & purificação , COVID-19/diagnóstico , COVID-19/sangue , Ouro/química , Eletrodos , Anticorpos Antivirais , Imunoensaio
12.
Sensors (Basel) ; 24(8)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38676201

RESUMO

This paper presents an enhanced version of our previously developed bio-optical transceiver, presenting a significant advancement in nanosensor technology. Using self-assembled polymers, this nanodevice is capable of electron detection while maintaining biocompatibility, an essential feature for in vivo medical biosensors. This enhancement finds significance in the field of infectious disease control, particularly in the early detection of respiratory viruses, including high-threat pathogens such as SARS-CoV-2. The proposed system harnesses bioluminescence by converting electric signaling to visible blue light, effectively opening the path of linking nano-sized mechanisms to larger-scale systems, thereby pushing the boundaries of in vivo biomedical sensing. The performance evaluation of our technology is analytical and is based on the use of Markov chains, through which we assess the bit error probability. The calculated improvements indicate that this technology qualifies as a forerunner in terms of supporting the communication needs of smaller, safer, and more efficient manufactured sensor technologies for in vivo medical applications.


Assuntos
Técnicas Biossensoriais , COVID-19 , SARS-CoV-2 , Técnicas Biossensoriais/métodos , Técnicas Biossensoriais/instrumentação , SARS-CoV-2/isolamento & purificação , COVID-19/diagnóstico , COVID-19/virologia , Humanos , Desenho de Equipamento , Polímeros/química , Cadeias de Markov
13.
Biosens Bioelectron ; 257: 116171, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38636317

RESUMO

The COVID-19 pandemic has highlighted the need for rapid and sensitive detection of SARS-CoV-2. Here, we report an ultrasensitive SARS-CoV-2 immunosensor by integration of an AlGaN/GaN high-electron-mobility transistor (HEMT) and anti-SARS-CoV-2 spike protein antibody. The AlGaN/GaN HEMT immunosensor has demonstrated the capability to detect SARS-CoV-2 spike proteins at an impressively low concentration of 10-22 M. The sensor was also applied to pseudoviruses and SARS-CoV-2 ΔN virions that display the Spike proteins with a single virion particle sensitivity. These features validate the potential of AlGaN/GaN HEMT biosensors for point of care tests targeting SARS-CoV-2. This research not only provides the first HEMT biosensing platform for ultrasensitive and label-free detection of SARS-CoV-2.


Assuntos
Técnicas Biossensoriais , COVID-19 , Gálio , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Transistores Eletrônicos , Vírion , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/imunologia , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/análise , Humanos , COVID-19/diagnóstico , COVID-19/virologia , Gálio/química , Vírion/isolamento & purificação , Vírion/química , Limite de Detecção , Compostos de Alumínio/química , Desenho de Equipamento , Imunoensaio/instrumentação , Imunoensaio/métodos , Anticorpos Imobilizados/química , Anticorpos Antivirais
14.
Biosens Bioelectron ; 257: 116299, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38636318

RESUMO

Skin-interfaced microfluidic patch has become a reliable device for sweat collection and analysis. However, the intractable problems of emptying the microchannel for reuse, and the channel's volumetric capacity limited by the size of the patch, directly hinder the practical application of sweat sensors. Herein, we report an adaptively resettable microfluidic sweat patch (Art-Sweat patch) capable of continuously monitoring both sweat rate (0.2-4.0 µL min-1) and total ionic charge concentration (10-200 mmol L-1). We develop a platform with a vertical and horizontal microchannel combined strategy, enabling repeatedly filling sweat and emptying the microchannel for autonomously resetting and detecting. The variation in the emptied volume is designed to be adaptively identified by the sensor, resulting in enhanced stability and an enlarged volumetric capacity of over 300 µL. By integrating with self-designed wireless transmission modules, the proposed Art-Sweat patch shows product-level wearability and high performance in monitoring variations in regional sweat rate and concentration for hydration status assessment.


Assuntos
Técnicas Biossensoriais , Eletrólitos , Suor , Suor/química , Humanos , Técnicas Biossensoriais/instrumentação , Eletrólitos/química , Dispositivos Eletrônicos Vestíveis , Desenho de Equipamento , Dispositivos Lab-On-A-Chip , Técnicas Analíticas Microfluídicas/instrumentação
15.
Anal Methods ; 16(17): 2625-2634, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38639065

RESUMO

Additive manufacturing (3D-printing), in particular fused filament fabrication, presents a potential paradigm shift in the way electrochemical based biosensing platforms are produced, giving rise to a new generation of personalized and on-demand biosensors. The use of additive manufactured biosensors is unparalleled giving rise to unique customization, facile miniaturization, ease of use, economical but yet, still providing sensitive and selective approaches towards the target analyte. In this mini review, we focus on the use of fused filament fabrication additive manufacturing technology alongside different biosensing approaches that exclusively use antibodies, enzymes and associated biosensing materials (mediators) providing an up-to-date overview with future considerations to expand the additive manufacturing biosensors field.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Técnicas Biossensoriais/métodos , Técnicas Biossensoriais/instrumentação , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Humanos , Impressão Tridimensional , Desenho de Equipamento
16.
Biosens Bioelectron ; 257: 116296, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38643550

RESUMO

Breathing is an important physiological activity of human body, which not only reflects the state of human movement, but also is one of the important health indicators. Breathing can change the concentration of water molecules, so monitoring humidity has gradually become a hot topic in modern research. In this study, a humidity sensing composite film with high sensitivity and short response time was made by using the mixture of graphene oxide (GO) and bacterial cellulose (BC) with simple dry film-forming method. L-ascorbic acid was used as reducing agent to reduce GO and improve the conductivity of GO/BC composite film (BG). The influence of different BC contents and the different reduction degree on the resistance change rate of composite film was investigated in details. The maximum resistance change rate of partially reduced BG humidity sensitive composite film reached up to 94%, and the response and recovery time were 13 s and 47 s respectively. Furthermore, the sensor shows obvious resistance change in noncontact sensing test and different breathing states. This kind of humidity sensitive film with fast response and high sensitivity has great potential in human health monitoring and noncontact sensing, and is of great significance in promoting health detection and intelligent life.


Assuntos
Técnicas Biossensoriais , Celulose , Grafite , Umidade , Grafite/química , Celulose/química , Humanos , Técnicas Biossensoriais/instrumentação , Bactérias/isolamento & purificação , Ácido Ascórbico/química , Ácido Ascórbico/análise
17.
Biosens Bioelectron ; 257: 116302, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38648705

RESUMO

This review article focuses on the recent printing technological progress in healthcare, underscoring the significant potential of implantable devices across diverse applications. Printing technologies have widespread use in developing health monitoring devices, diagnostic systems, and surgical devices. Recent years have witnessed remarkable progress in fabricating low-profile implantable devices, driven by advancements in printing technologies and nanomaterials. The importance of implantable biosensors and bioelectronics is highlighted, specifically exploring printing tools using bio-printable inks for practical applications, including a detailed examination of fabrication processes and essential parameters. This review also justifies the need for mechanical and electrical compatibility between bioelectronics and biological tissues. In addition to technological aspects, this article delves into the importance of appropriate packaging methods to enhance implantable devices' performance, compatibility, and longevity, which are made possible by integrating cutting-edge printing technology. Collectively, we aim to shed light on the holistic landscape of implantable biosensors and bioelectronics, showcasing their evolving role in advancing healthcare through innovative printing technologies.


Assuntos
Técnicas Biossensoriais , Próteses e Implantes , Técnicas Biossensoriais/instrumentação , Humanos , Eletrônica/instrumentação , Impressão Tridimensional , Desenho de Equipamento , Nanoestruturas/química , Atenção à Saúde/tendências
18.
Lab Chip ; 24(10): 2712-2720, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38655620

RESUMO

A colorimetric biosensor was elaboratively designed for fast, sensitive and multiplex bacterial detection on a single microfluidic chip using immune magnetic nanobeads for specific bacterial separation, immune gold@platinum palladium nanoparticles for specific bacterial labeling, a finger-actuated mixer for efficient immunoreaction and two coaxial rotatable magnetic fields for magnetic nanobead capture (outer one) and magnet-actuated valve control (inner one). First, preloaded bacteria, nanobeads and nanozymes were mixed through a finger actuator to form nanobead-bacteria-nanozyme conjugates, which were captured by the outer magnetic field. After the inner magnetic field was rotated to successively wash the conjugates and push the H2O2-TMB substrate for resuspending these conjugates, colorless TMB was catalyzed into blue TMBox products, followed by color analysis using ImageJ software for bacterial determination. This simple biosensor enabled multiplex Salmonella detection as low as 9 CFU per sample in 45 min.


Assuntos
Técnicas Biossensoriais , Dispositivos Lab-On-A-Chip , Salmonella , Técnicas Biossensoriais/instrumentação , Salmonella/isolamento & purificação , Colorimetria/instrumentação , Ouro/química , Técnicas Analíticas Microfluídicas/instrumentação , Paládio/química , Nanopartículas Metálicas/química , Platina/química
19.
Food Chem ; 448: 139127, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38608399

RESUMO

To address the food safety issues caused by toxins, we established a fluorescent copper nanocluster biosensor based on magnetic aptamer for the visual and quantitative detection of ZEN. Specifically, we utilized the docking-aided rational tailoring (DART) strategy to analyze intermolecular force and interaction sites between zearalenone (ZEN) and the aptamer, and optimize the long-chain aptamer step by step to enhance the binding affinity by 3.4 times. The magnetic bead-modified aptamer underwent conformational changes when competing with complementary sequences to bind with ZEN. Then, the released complementary sequences will be amplified in template-free mode with the presence of the terminal deoxynucleotidyl transferase (TdT), and generating T-rich sequences as the core sequences for the luminescence of copper nanoclusters. The luminescence could be visualized and quantitatively detected through ultraviolet irradiation. The proposed label-free aptasensor exhibited high sensitivity and specificity, with a low limit of detection (LOD) of 0.1 ng/mL.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Cobre , Zearalenona , Zearalenona/análise , Zearalenona/química , Cobre/química , Técnicas Biossensoriais/instrumentação , Aptâmeros de Nucleotídeos/química , Contaminação de Alimentos/análise , Limite de Detecção , Simulação de Acoplamento Molecular , Nanopartículas Metálicas/química , Fluorescência
20.
Biosens Bioelectron ; 256: 116283, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38608495

RESUMO

Due to the toxicity of mercury and its harmful effects on human health, it is essential to establish a low-cost, highly sensitive and highly specific monitoring method with a wide detection range, ideally with a simple visual readout. In this study, a whole-cell biosensor with adjustable detection limits was developed for the detection of mercury ions in water samples, allowing controllable threshold detection with an expanded detection range. Gene circuits were constructed by combining the toehold switch system with lactose operon, mercury-ion-specific operon, and inducible red fluorescent protein gene. Using MATLAB for design and selection, a total of eleven dual-input single-output sensing logic circuits were obtained based on the basic logic of gene circuit construction. Then, biosensor DTS-3 was selected based on its fluorescence response at different isopropyl ß-D-Thiogalactoside (IPTG) concentrations, exhibiting the controllable detection threshold. At 5-20 µM IPTG, DTS-3 can achieve variable threshold detection in the range of 0.005-0.0075, 0.06-0.08, 1-2, and 4-6 µM mercury ion concentrations, respectively. Specificity experiments demonstrated that DTS-3 exhibits good specificity, not showing fluorescence response changes compared with other metal ions. Furthermore spiked sample experiments demonstrated its good resistance to interference, allowing it to distinguish mercury ion concentrations as low as 7.5 nM by the naked eye and 5 nM using a microplate reader. This study confirms the feasibility and performance of biosensor with controllable detection threshold, providing a new detection method and new ideas for expanding the detection range of biosensors while ensuring rapid and convenient measurements without compromising sensitivity.


Assuntos
Técnicas Biossensoriais , Mercúrio , Técnicas Biossensoriais/métodos , Técnicas Biossensoriais/instrumentação , Mercúrio/análise , Limite de Detecção , Poluentes Químicos da Água/análise , Desenho de Equipamento , Redes Reguladoras de Genes , Humanos , Escherichia coli/genética , Escherichia coli/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...