Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 482
Filtrar
1.
J Biomed Opt ; 29(Suppl 1): S11529, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38650979

RESUMO

Significance: Compressed sensing (CS) uses special measurement designs combined with powerful mathematical algorithms to reduce the amount of data to be collected while maintaining image quality. This is relevant to almost any imaging modality, and in this paper we focus on CS in photoacoustic projection imaging (PAPI) with integrating line detectors (ILDs). Aim: Our previous research involved rather general CS measurements, where each ILD can contribute to any measurement. In the real world, however, the design of CS measurements is subject to practical constraints. In this research, we aim at a CS-PAPI system where each measurement involves only a subset of ILDs, and which can be implemented in a cost-effective manner. Approach: We extend the existing PAPI with a self-developed CS unit. The system provides structured CS matrices for which the existing recovery theory cannot be applied directly. A random search strategy is applied to select the CS measurement matrix within this class for which we obtain exact sparse recovery. Results: We implement a CS PAPI system for a compression factor of 4:3, where specific measurements are made on separate groups of 16 ILDs. We algorithmically design optimal CS measurements that have proven sparse CS capabilities. Numerical experiments are used to support our results. Conclusions: CS with proven sparse recovery capabilities can be integrated into PAPI, and numerical results support this setup. Future work will focus on applying it to experimental data and utilizing data-driven approaches to enhance the compression factor and generalize the signal class.


Assuntos
Algoritmos , Desenho de Equipamento , Processamento de Imagem Assistida por Computador , Técnicas Fotoacústicas , Técnicas Fotoacústicas/métodos , Técnicas Fotoacústicas/instrumentação , Processamento de Imagem Assistida por Computador/métodos , Compressão de Dados/métodos , Imagens de Fantasmas
2.
IEEE Trans Biomed Eng ; 70(8): 2279-2288, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37022249

RESUMO

Thromboembolism in blood vessels can lead to stroke or heart attack and even sudden death unless brought under control. Sonothrombolysis enhanced by ultrasound contrast agents has shown promising outcome on effective treatment of thromboembolism. Intravascular sonothrombolysis was also reported recently with a potential for effective and safe treatment of deep thrombosis. Despite the promising treatment results, the treatment efficiency for clinical application may not be optimized due to the lack of imaging guidance and clot characterization during the thrombolysis procedure. In this paper, a miniaturized transducer was designed to have an 8-layer PZT-5A stacked with an aperture size of 1.4 × 1.4 mm2 and assembled in a customized two-lumen 10-Fr catheter for intravascular sonothrombolysis. The treatment process was monitored with internal-illumination photoacoustic tomography (II-PAT), a hybrid imaging modality that combines the rich contrast of optical absorption and the deep penetration of ultrasound detection. With intravascular light delivery using a thin optical fiber integrated with the intravascular catheter, II-PAT overcomes the penetration depth limited by strong optical attenuation of tissue. In-vitro PAT-guided sonothrombolysis experiments were carried out with synthetic blood clots embedded in tissue phantom. Clot position, shape, stiffness, and oxygenation level can be estimated by II-PAT at clinically relevant depth of ten centimeters. Our findings have demonstrated the feasibility of the proposed PAT-guided intravascular sonothrombolysis with real-time feedback during the treatment process.


Assuntos
Técnicas Fotoacústicas , Trombose , Trombose/diagnóstico por imagem , Transdutores , Técnicas Fotoacústicas/instrumentação , Técnicas Fotoacústicas/métodos , Luz , Humanos
3.
Opt Express ; 30(2): 2933-2948, 2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-35209424

RESUMO

Maintaining a high spatial resolution in photoacoustic microscopy (PAM) of deep tissues is difficult due to large aberration in an objective lens with high numerical aperture and photoacoustic wave attenuation. To address the issue, we integrate transmission-type adaptive optics (AO) in high-resolution PAM with a low-frequency ultrasound transducer (UT), which increases the photoacoustic wave detection efficiency. AO improves lateral resolution and depth discrimination in PAM, even for low-frequency ultrasound waves by focusing a beam spot in deep tissues. Using the proposed PAM, we increased the lateral resolution and depth discrimination for blood vessels in mouse ears.


Assuntos
Vasos Sanguíneos/diagnóstico por imagem , Orelha/irrigação sanguínea , Microscopia Acústica/instrumentação , Óptica e Fotônica , Técnicas Fotoacústicas/instrumentação , Transdutores , Animais , Desenho de Equipamento , Camundongos
4.
Curr Med Sci ; 41(6): 1151-1157, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34907474

RESUMO

OBJECTIVE: This paper proposes a new photoacoustic computed tomography (PACT) imaging system employing dual ultrasonic transducers with different frequencies. When imaging complex biological tissues, photoacoustic (PA) signals with multiple frequencies are produced simultaneously; however, due to the limited bandwidth of a single-frequency transducer, the received PA signals with specific frequencies may be missing, leading to a low imaging quality. METHODS: In contrast to our previous work, the proposed system has a compact volume as well as specific selection of the detection center frequency of the transducer, which can provide a comprehensive range for the detection of PA signals. In this study, a series of numerical simulation and phantom experiments were performed to validate the efficacy of the developed PACT system. RESULTS: The images generated by our system combined the advantages of both high resolution and ideal brightness/contrast. CONCLUSION: The interchangeability of transducers with different frequencies provides potential for clinical deployment under the circumstance where a single frequency transducer cannot perform well.


Assuntos
Aumento da Imagem/instrumentação , Técnicas Fotoacústicas/instrumentação , Tomografia/instrumentação , Transdutores , Desenho de Equipamento , Humanos , Imagens de Fantasmas
5.
Appl Opt ; 60(31): 9651-9658, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34807146

RESUMO

A supercontinuum (SC) light source enables multispectral photoacoustic imaging at excitation wavelengths in the visible-to-near-infrared range. However, for such a broad optical wavelength range, chromatic aberration is non-negligible. We developed a multispectral optical-resolution photoacoustic microscopy (MS-OR-PAM) setup with a nanosecond pulsed SC light source and a reflective objective lens to avoid chromatic aberration. Chromatic aberrations generated by reflective and conventional objective lenses were compared, and the images acquired using the reflective objective were not affected by chromatic aberration. Hence, MS-OR-PAM with the reflective objective was used to distinguish red blood cells from melanoma cells via spectral subtraction processing.


Assuntos
Eritrócitos/citologia , Processamento de Imagem Assistida por Computador/métodos , Luz , Melanoma Experimental/diagnóstico por imagem , Técnicas Fotoacústicas/instrumentação , Animais , Desenho de Equipamento , Camundongos , Dispositivos Ópticos , Análise Espectral
6.
Opt Express ; 29(15): 24338-24348, 2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34614681

RESUMO

An improved method of remote optical absorption spectroscopy and hyperspectral optical absorption imaging is described which takes advantage of the photoacoustic remote sensing detection architecture. A wide collection of photoacoustic excitation wavelengths ranging from 210 nm to 1550 nm was provided by a nanosecond tunable source allowing access to various salient endogenous chromophores such as DNA, hemeproteins, and lipids. Sensitivity of the device was demonstrated by characterizing the infrared absorption spectrum of water. Meanwhile, the efficacy of the technique was explored by recovering cell nuclei and oxygen saturation from a live chicken embryo model and by recovering adipocytes from freshly resected murine adipose tissue. This represents a continued investigation into the characteristics of the hyperspectral photoacoustic remote sensing technique which may represent an effective means of non-destructive endogenous contrast characterization and visualization.


Assuntos
Membrana Corioalantoide/química , DNA/análise , Hemoglobinas/análise , Lipídeos/análise , Microscopia/métodos , Técnicas Fotoacústicas/instrumentação , Tecnologia de Sensoriamento Remoto/instrumentação , Animais , Embrião de Galinha , Luz , Saturação de Oxigênio , Análise Espectral
7.
Comput Math Methods Med ; 2021: 6622255, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34707684

RESUMO

Photoacoustic imaging (PAI) is a new nonionizing, noninvasive biomedical imaging technology that has been employed to reconstruct the light absorption characteristics of biological tissues. The latest developments in compressed sensing (CS) technology have shown that it is possible to accurately reconstruct PAI images from sparse data, which can greatly reduce scanning time. This study focuses on the comparative analysis of different CS-based total variation regularization reconstruction algorithms, aimed at finding a method suitable for PAI image reconstruction. The performance of four total variation regularization algorithms is evaluated through the reconstruction experiment of sparse numerical simulation signal and agar phantom signal data. The evaluation parameters include the signal-to-noise ratio and normalized mean absolute error of the PAI image and the CPU time. The comparative results demonstrate that the TVAL3 algorithm can well balance the quality and efficiency of the reconstruction. The results of this study can provide some useful guidance for the development of the PAI sparse reconstruction algorithm.


Assuntos
Algoritmos , Diagnóstico por Imagem/métodos , Processamento de Imagem Assistida por Computador/estatística & dados numéricos , Técnicas Fotoacústicas/estatística & dados numéricos , Biologia Computacional , Simulação por Computador , Diagnóstico por Imagem/estatística & dados numéricos , Humanos , Imagens de Fantasmas , Técnicas Fotoacústicas/instrumentação , Razão Sinal-Ruído
8.
Proc Natl Acad Sci U S A ; 118(36)2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34480005

RESUMO

The development of high-performance photoacoustic (PA) probes that can monitor disease biomarkers in deep tissue has the potential to replace invasive medical procedures such as a biopsy. However, such probes must be optimized for in vivo performance and exhibit an exceptional safety profile. In this study, we have developed PACu-1, a PA probe designed for biopsy-free assessment (BFA) of hepatic Cu via photoacoustic imaging. PACu-1 features a Cu(I)-responsive trigger appended to an aza-BODIPY dye platform that has been optimized for ratiometric sensing. Owing to its excellent performance, we were able to detect basal levels of Cu in healthy wild-type mice as well as elevated Cu in a Wilson's disease model and in a liver metastasis model. To showcase the potential impact of PACu-1 for BFA, we conducted two blind studies in which we were able to successfully identify Wilson's disease animals from healthy control mice in each instance.


Assuntos
Cobre/metabolismo , Degeneração Hepatolenticular/metabolismo , Neoplasias Hepáticas/secundário , Técnicas Fotoacústicas/instrumentação , Animais , Biópsia , Modelos Animais de Doenças , Degeneração Hepatolenticular/patologia , Camundongos , Camundongos Endogâmicos BALB C , Distribuição Tecidual
9.
Cancer Res ; 81(18): 4849-4860, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34185675

RESUMO

Thyroid cancer is one of the most common cancers, with a global increase in incidence rate for both genders. Ultrasound-guided fine-needle aspiration is the current gold standard to diagnose thyroid cancers, but the results are inaccurate, leading to repeated biopsies and unnecessary surgeries. To reduce the number of unnecessary biopsies, we explored the use of multiparametric photoacoustic (PA) analysis in combination with the American Thyroid Association (ATA) Guideline (ATAP). In this study, we performed in vivo multispectral PA imaging on thyroid nodules from 52 patients, comprising 23 papillary thyroid cancer (PTC) and 29 benign cases. From the multispectral PA data, we calculated hemoglobin oxygen saturation level in the nodule area, then classified the PTC and benign nodules with multiparametric analysis. Statistical analyses showed that this multiparametric analysis of multispectral PA responses could classify PTC nodules. Combining the photoacoustically indicated probability of PTC and the ATAP led to a new scoring method that achieved a sensitivity of 83% and a specificity of 93%. This study is the first multiparametric analysis of multispectral PA data of thyroid nodules with statistical significance. As a proof of concept, the results show that the proposed new ATAP scoring can help physicians examine thyroid nodules for fine-needle aspiration biopsy, thus reducing unnecessary biopsies. SIGNIFICANCE: This report highlights a novel photoacoustic scoring method for risk stratification of thyroid nodules, where malignancy of the nodules can be diagnosed with 83% sensitivity and 93% specificity.


Assuntos
Técnicas Fotoacústicas , Neoplasias da Glândula Tireoide/diagnóstico , Nódulo da Glândula Tireoide/diagnóstico , Biomarcadores , Tomada de Decisão Clínica , Diagnóstico Diferencial , Gerenciamento Clínico , Humanos , Processamento de Imagem Assistida por Computador , Saturação de Oxigênio , Técnicas Fotoacústicas/instrumentação , Técnicas Fotoacústicas/métodos , Curva ROC , Sensibilidade e Especificidade , Neoplasias da Glândula Tireoide/etiologia , Ultrassonografia/métodos , Ultrassonografia/normas , Fluxo de Trabalho
10.
Appl Opt ; 60(15): C55-C59, 2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-34143106

RESUMO

Molecular gases are highly relevant in healthcare, production control, safety, and environmental monitoring. They often appear in small concentrations. The measurement of trace gases has increasingly become a key technique in those domains. Quartz-enhanced photoacoustic spectroscopy (QEPAS) is a suitable method that can provide the required low detection limits in such applications at comparatively low cost and small size. For mobile implementation, the size of an entire sensor unit matters. In this paper, we present a QEPAS sensor that fits into a standard butterfly package, its characterization, and its application on CH4 and CO2.


Assuntos
Poluentes Atmosféricos/análise , Técnicas Biossensoriais/instrumentação , Dióxido de Carbono/análise , Metano/análise , Técnicas Fotoacústicas/instrumentação , Quartzo/química , Análise Espectral/métodos , Monitoramento Ambiental/métodos , Desenho de Equipamento
11.
Ann Biomed Eng ; 49(8): 1861-1873, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33909192

RESUMO

Functional photoacoustic imaging of the placenta could provide an innovative tool to diagnose preeclampsia, monitor fetal growth restriction, and determine the developmental impacts of gestational diabetes. However, transabdominal photoacoustic imaging is limited in imaging depth due to the tissue's scattering and absorption of light. The aim of this paper was to investigate the impact of geometry and wavelength on transabdominal light delivery. Our methods included the development of a multilayer model of the abdominal tissue and simulation of the light propagation using Monte Carlo methods. A bifurcated light source with varying incident angle of light, distance between light beams, and beam area was simulated to analyze the effect of light delivery geometry on the fluence distribution at depth. The impact of wavelength and the effects of variable thicknesses of adipose tissue and muscle were also studied. Our results showed that the beam area plays a major role in improving the delivery of light to deep tissue, in comparison to light incidence angle or distance between the bifurcated fibers. Longer wavelengths, with incident fluence at the maximum permissible exposure limit, also increases fluence within deeper tissue. We validated our simulations using a commercially available light delivery system and ex vivo human placental tissue. Additionally, we compared our optimized light delivery to a commercially available light delivery system, and conclude that our optimized geometry could improve imaging depth more than 1.6×, bringing the imaging depth to within the needed range for transabdominal imaging of the human placenta.


Assuntos
Simulação por Computador , Modelos Biológicos , Técnicas Fotoacústicas/instrumentação , Placenta/diagnóstico por imagem , Feminino , Humanos , Método de Monte Carlo , Imagens de Fantasmas , Gravidez
12.
Appl Opt ; 60(10): 2907-2911, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33798172

RESUMO

There is a great need for cost-efficient non-invasive medical diagnostic tools for analyzing humanly exhaled air. Compared to present day methods, photoacoustic spectroscopy (PAS) can provide a compact and portable (bedside), sensitive and inexpensive solution. We demonstrate a novel portable photoacoustic spectroscopic platform for isotopic measurements of methane (CH4). We identify and discriminate the 12CH4- and 13CH4 isotopologues and determine their mixing ratio. An Allan deviation analysis shows that the noise equivalent concentration for CH4 is 200 ppt (pmol/mol) at 100 s of integration time, corresponding to a normalized noise equivalent absorption coefficient of 5.1×10-9Wcm-1Hz-1/2, potentially making the PAS sensor a truly disruptive instrument for bedside monitoring using isotope tracers by providing real-time metabolism data to clinical personnel.


Assuntos
Testes Respiratórios/métodos , Isótopos de Carbono/química , Metano/análise , Técnicas Fotoacústicas/métodos , Técnicas Biossensoriais , Testes Respiratórios/instrumentação , Desenho de Equipamento , Expiração , Humanos , Técnicas Fotoacústicas/instrumentação , Espectrofotometria Infravermelho
13.
Toxicol Appl Pharmacol ; 418: 115480, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33689843

RESUMO

Drug-induced cardiotoxicity is a major barrier to drug development and a main cause of withdrawal of marketed drugs. Drugs can strongly alter the spontaneous functioning of the heart by interacting with the cardiac membrane ion channels. If these effects only surface during in vivo preclinical tests, clinical trials or worse after commercialization, the societal and economic burden will be significant and seriously hinder the efficient drug development process. Hence, cardiac safety pharmacology requires in vitro electrophysiological screening assays of all drug candidates to predict cardiotoxic effects before clinical trials. In the past 10 years, microelectrode array (MEA) technology began to be considered a valuable approach in pharmaceutical applications. However, an effective tool for high-throughput intracellular measurements, compatible with pharmaceutical standards, is not yet available. Here, we propose laser-induced optoacoustic poration combined with CMOS-MEA technology as a reliable and effective platform to detect cardiotoxicity. This approach enables the acquisition of high-quality action potential recordings from large numbers of cardiomyocytes within the same culture well, providing reliable data using single-well MEA devices and single cardiac syncytia per each drug. Thus, this technology could be applied in drug safety screening platforms reducing times and costs of cardiotoxicity assessments, while simultaneously improving the data reliability.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Arritmias Cardíacas/induzido quimicamente , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Lasers , Microeletrodos , Miócitos Cardíacos/efeitos dos fármacos , Técnicas Fotoacústicas/instrumentação , Testes de Toxicidade/instrumentação , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/fisiopatologia , Cardiotoxicidade , Redução de Custos , Análise Custo-Benefício , Frequência Cardíaca/efeitos dos fármacos , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Microeletrodos/economia , Miócitos Cardíacos/metabolismo , Técnicas Fotoacústicas/economia , Reprodutibilidade dos Testes , Medição de Risco , Fatores de Tempo , Testes de Toxicidade/economia , Fluxo de Trabalho
14.
Opt Lett ; 46(5): 1165-1168, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33649683

RESUMO

Wavefront shaping is becoming increasingly attractive as it promises to enable various biomedical applications by breaking through the optical diffusion limit that prevents light focusing at depths larger than ∼1mm in biological tissue. However, despite recent advancements in wavefront shaping technology, such as those exploiting non-invasive photoacoustic-guidance, in vivo demonstrations remain challenging mainly due to rapid tissue speckle decorrelation. In this work, we report a high-speed photoacoustic-guided wavefront shaping method with a relatively simple experimental setup, based on the characterization of a scattering medium with a real-valued intensity transmission matrix. We demonstrated light focusing through an optical diffuser by optimizing 4096 binary amplitude modulation modes of a digital micromirror device within ∼300ms, leading to a system runtime of 75 µs per input mode, which is 3 orders of magnitude smaller than the smallest runtime reported in literature so far using photoacoustic-guided wavefront shaping. Thus, our method is a solid step forward toward in vivo applications of wavefront shaping.


Assuntos
Luz , Técnicas Fotoacústicas/instrumentação , Espalhamento de Radiação
15.
Methods Mol Biol ; 2265: 203-212, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33704716

RESUMO

Early detection of cancer has been a goal of cancer research in general and melanoma research in particular (Birnbaum et al., Lancet Glob Health 6:e885-e893, 2018; Alendar et al., Bosnian J Basic Med Sci 9:77-80, 2009). Early detection of metastasis has been targeted as pivotal to increasing survival rates (Menezes et al., Adv Cancer Res 132:1-44, 2016). Melanoma, though curable in its early stages, has a dramatic decrease in survival rates once metastasis has occurred (Sharma et al., Biotechnol Adv 36:1063-1078, 2018). The transition to metastasis is not well understood and is an area of increasing interest. Metastasis is always premeditated by the shedding of circulating tumor cells (CTCs) from the primary tumor. The ability to isolate rare CTCs from the bloodstream has led to a host of new targets and therapies for cancer (Micalizzi et al., Genes Dev 31:1827-1840, 2017). Detection of CTCs also allows for disease progression to be tracked in real time while eliminating the need to wait for additional tumors to grow. Using a photoacoustic flowmeter, in which we induce ultrasonic responses from circulating melanoma cells (CMCs), we identify and quantify these cells in order to track disease progression. Additionally, these CMCs are captured and isolated allowing for future analysis such as RNA-Seq or microarray analysis.


Assuntos
Citometria de Fluxo/métodos , Melanoma/diagnóstico , Células Neoplásicas Circulantes , Técnicas Fotoacústicas/instrumentação , Técnicas Fotoacústicas/métodos , Reologia/instrumentação , Reologia/métodos , Neoplasias Cutâneas/diagnóstico , Progressão da Doença , Detecção Precoce de Câncer/métodos , Citometria de Fluxo/instrumentação , Biblioteca Gênica , Humanos , Imuno-Histoquímica/métodos , Melanoma/sangue , Melanoma/genética , Melanoma/patologia , Metástase Neoplásica/diagnóstico , Metástase Neoplásica/patologia , Células Neoplásicas Circulantes/patologia , Reação em Cadeia da Polimerase em Tempo Real , Neoplasias Cutâneas/sangue , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Ultrassonografia/métodos
16.
Nat Commun ; 12(1): 882, 2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33563996

RESUMO

Photoacoustic computed tomography (PACT) has generated increasing interest for uses in preclinical research and clinical translation. However, the imaging depth, speed, and quality of existing PACT systems have previously limited the potential applications of this technology. To overcome these issues, we developed a three-dimensional photoacoustic computed tomography (3D-PACT) system that features large imaging depth, scalable field of view with isotropic spatial resolution, high imaging speed, and superior image quality. 3D-PACT allows for multipurpose imaging to reveal detailed angiographic information in biological tissues ranging from the rodent brain to the human breast. In the rat brain, we visualize whole brain vasculatures and hemodynamics. In the human breast, an in vivo imaging depth of 4 cm is achieved by scanning the breast within a single breath hold of 10 s. Here, we introduce the 3D-PACT system to provide a unique tool for preclinical research and an appealing prototype for clinical translation.


Assuntos
Imageamento Tridimensional/métodos , Técnicas Fotoacústicas/métodos , Tomografia Computadorizada por Raios X/métodos , Angiografia , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Mama/irrigação sanguínea , Mama/diagnóstico por imagem , Desenho de Equipamento , Feminino , Neuroimagem Funcional , Humanos , Imageamento Tridimensional/instrumentação , Técnicas Fotoacústicas/instrumentação , Ratos , Tomografia Computadorizada por Raios X/instrumentação
17.
Nat Commun ; 12(1): 960, 2021 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-33574252

RESUMO

Nitric oxide (NO) is an important signaling molecule overexpressed in many diseases, thus the development of NO-activatable probes is of vital significance for monitoring related diseases. However, sensitive photoacoustic (PA) probes for detecting NO-associated complicated diseases (e.g., encephalitis), have yet to be developed. Herein, we report a NO-activated PA probe for in vivo detection of encephalitis by tuning the molecular geometry and energy transformation processes. A strong donor-acceptor structure with increased conjugation can be obtained after NO treatment, along with the active intramolecular motion, significantly boosting "turn-on" near-infrared PA property. The molecular probe exhibits high specificity and sensitivity towards NO over interfering reactive species. The probe is capable of detecting and differentiating encephalitis in different severities with high spatiotemporal resolution. This work will inspire more insights into the development of high-performing activatable PA probes for advanced diagnosis by making full use of intramolecular motion and energy transformation processes.


Assuntos
Técnicas Biossensoriais/métodos , Encefalite/diagnóstico , Encefalite/metabolismo , Óxido Nítrico/isolamento & purificação , Técnicas Fotoacústicas/métodos , Animais , Técnicas Biossensoriais/instrumentação , Modelos Animais de Doenças , Encefalite/patologia , Masculino , Camundongos , Imagem Molecular/métodos , Sondas Moleculares/química , Técnicas Fotoacústicas/instrumentação
18.
Opt Lett ; 46(2): 372-375, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33449032

RESUMO

Optical resolution photoacoustic microscopy (ORPAM) has demonstrated both high resolution and rich contrast imaging of optical chromophores in biologic tissues. To date, sensitivity remains a major challenge for ORPAM, which limits the capability of resolving biologic microvascular networks. In this study, we propose and evaluate a new ORPAM modality termed as optical resolution photoacoustic computed microscopy (ORPACM), through the combination of a two-dimensional laser-scanning system with a medical ultrasonographic platform. Apart from conventional ORPAMs, we record multiple photoacoustic (PA) signals using a 128-element ultrasonic transducer array for each pulse excitation. Then, we apply a reconstruction algorithm to recover one depth-resolved PA signal referred to as an A-line, which reveals more detailed information compared with conventional single-element transducer-based ORPAMs. In addition, we carried out both in vitro and in vivo experiments as well as quantitative analyses to show the advanced features of ORPACM.


Assuntos
Encéfalo/irrigação sanguínea , Microscopia Acústica/instrumentação , Microvasos/diagnóstico por imagem , Técnicas Fotoacústicas/instrumentação , Análise Espectral , Algoritmos , Animais , Processamento de Imagem Assistida por Computador/métodos , Camundongos , Camundongos Endogâmicos BALB C , Microscopia Acústica/métodos , Técnicas Fotoacústicas/métodos , Transdutores
19.
Nat Commun ; 12(1): 716, 2021 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-33514737

RESUMO

For over two decades photoacoustic imaging has been tested clinically, but successful human trials have been limited. To enable quantitative clinical spectroscopy, the fundamental issues of wavelength-dependent fluence variations and inter-wavelength motion must be overcome. Here we propose a real-time, spectroscopic photoacoustic/ultrasound (PAUS) imaging approach using a compact, 1-kHz rate wavelength-tunable laser. Instead of illuminating tissue over a large area, the fiber-optic delivery system surrounding an US array sequentially scans a narrow laser beam, with partial PA image reconstruction for each laser pulse. The final image is then formed by coherently summing partial images. This scheme enables (i) automatic compensation for wavelength-dependent fluence variations in spectroscopic PA imaging and (ii) motion correction of spectroscopic PA frames using US speckle tracking in real-time systems. The 50-Hz video rate PAUS system is demonstrated in vivo using a murine model of labelled drug delivery.


Assuntos
Sistemas Computacionais , Imagem Molecular/métodos , Técnicas Fotoacústicas/métodos , Análise Espectral/métodos , Animais , Desenho de Equipamento , Feminino , Processamento de Imagem Assistida por Computador , Lasers , Camundongos , Camundongos Nus , Modelos Animais , Imagem Molecular/instrumentação , Movimento (Física) , Fibras Ópticas , Imagens de Fantasmas , Técnicas Fotoacústicas/instrumentação , Análise Espectral/instrumentação , Ultrassonografia/instrumentação , Ultrassonografia/métodos
20.
Lasers Med Sci ; 36(1): 33-41, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32291606

RESUMO

The present work is devoted to the development of a new system for collecting and drying patient exhalation samples for a laser photo-acoustic gas analyzer for express analysis of exhaled air, as well as the possibility of ozone sterilization of the gas tract after use. It is proposed to collect the patient's exhalation in a disposable sterile plastic bag, place it in a low-temperature freezer chamber to freeze the water vapor, and then transfer part of the dried exhaled sample to the gas analyzer using a disposable syringe. It is proposed to use ozone purge for 10-15 min to sterilize the gas path. Experimentally, it is shown that the water vapor content in the exhalation samples decreased by ~ 20 times when the packet with samples was kept at a temperature of - 18 °C during 10 min. Cooling the exhalation sample in the packet to - 45 °Ð¡ and lower will allow reducing the water vapor content at least 200 times from the initial level. A new universal system for collecting and drying of patient exhalation samples for a medical laser photo-acoustic gas analyzer has been developed and tested. A gas path for a medical laser gas analyzer has been designed, which allows sterilization of the internal gas path surfaces using ozone purging.


Assuntos
Expiração , Lasers de Gás , Técnicas Fotoacústicas/instrumentação , Manejo de Espécimes/métodos , Humanos , Umidade , Ozônio/química , Vapor , Esterilização , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...