Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 31(29): 42445-42460, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38872040

RESUMO

In the current study, the Cu phytoremediation ability of two ornamental plants, Chrysanthemum indicum L. and Tagetes erecta L., was tracked concerning the growth and physiological responses. Plants were subjected to varying concentrations of Cu (0, 100, 200, and 400 mg/kg) under the pot experiment for 8 weeks. The results showed that the measured growth and physiological characteristics declined in T. erecta shoots and roots at all tested treatments compared with the control. However, in C. indicum at 100 mg/kg, shoot biomass, shoot total soluble protein, and leaves number remained equal to that of the control and then reduced by rising Cu concentrations, compared with the control. Also, results indicated that in C. indicum, after 56 days of exposure to Cu, the chlorophyll pigments content markedly increased and reached a maximum level at 100 mg/kg dose and gradually declined with enhancing Cu concentrations, compared with the control. Other measured growth and physiological parameters decreased in both tissues of C. indicum in response to Cu usage in the growth medium. The carotenoid content of T. erecta decreased in all studied Cu levels in comparison to the control, but in C. indicum remained unaffected up to 200 mg/kg Cu in comparison to the control and then enhanced with increasing Cu level. The augmentation of antioxidant enzyme activity in two species, especially in roots, reflected the incident of Cu stress as demonstrated by elevated MDA and ion leakage levels. Data concerning copper accumulation in tissues, TF, and BAF showed T. erecta is a weak Cu accumulator and seems not to be an appropriate candidate for Cu phytoremediation. However, the Cu content in shoots and roots of C. indicum increased significantly with an increment in applied Cu level. Also, C. indicum accumulated higher Cu concentrations in the roots than in shoots and exhibited TF < 1, 0.1 < BAF root < 1, and can be considered as a Cu excluder by the phytostabilization mechanism.


Assuntos
Biodegradação Ambiental , Clorofila , Chrysanthemum , Cobre , Tagetes , Chrysanthemum/metabolismo , Chrysanthemum/crescimento & desenvolvimento , Tagetes/metabolismo , Clorofila/metabolismo , Carotenoides/metabolismo , Raízes de Plantas/metabolismo
2.
Sci Total Environ ; 935: 173413, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-38788956

RESUMO

Chromium pollution, particularly hexavalent chromium [Cr(VI)], may threaten the environment and human health. This study investigated the potential of Tagetes erecta L. (Aztec marigold) for phytoremediation of soil contaminated with Cr(VI), and focused on the effects of varying concentrations of Cr(VI) on both the physicochemical properties of soil and microbiome of Tagetes erecta L. We observed that Tagetes erecta L. showed tolerance to Cr(VI) stress and maintained normal growth under these conditions, as indicated by bioconcentration factors of 0.33-0.53 in shoots and 0.39-0.70 in roots. Meanwhile, the structure and diversity of bacterial communities were significantly affected by Cr(VI) pollution. Specifically, Cr(VI) had a more significant effect on the microbial community structure in the endophytic of Tagetes erecta L. than in the rhizosphere (p < 0.05). The genera Devosia and Methylobacillus were positively correlated with Cr(VI) concentrations. Biomarkers such as Bacilli and Pseudonocardia were identified under the different Cr(VI)-contaminated treatments using LEfSe. In addition, the interaction and stability of the endophytic microbiome were enhanced under Cr(VI) stress. This study explored the interactions between heavy metals, microorganisms, and plants, providing valuable insights for developing in situ bioremediation of Cr(VI)-contaminated soils.


Assuntos
Biodegradação Ambiental , Cromo , Microbiota , Microbiologia do Solo , Poluentes do Solo , Tagetes , Cromo/metabolismo , Tagetes/metabolismo , Poluentes do Solo/metabolismo , Rizosfera
3.
Phytomedicine ; 126: 155442, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38394730

RESUMO

BACKGROUND: The pursuit for safe and efficacious skin-whitening agents has prompted a dedicated exploration of plant-derived compounds. Notably, Tagetes erecta L. flowers have been used as a medicinal extract and possessed in vitro mushroom tyrosinase activity. However, whether polyphenol-enriched fraction extracted from T. erecta L. flowers (TE) regulates melanogenesis within cellular and animal models has not yet been investigated. PURPOSE: This study aimed to investigate the effect of TE as a prospective inhibitor of melanogenesis. METHODS: Through advanced UPLC-QTof/MS analysis, the components of TE were analyzed. Anti-melanogenic effects of TE were evaluated in α-melanocyte-stimulating hormone (α-MSH)-stimulated B16F10 melanoma cells by measuring cell viability assay, extracellular and intracellular melanin biosynthesis, cyclic adenosine monophosphate (cAMP) production, and melanogenesis-related gene and protein expression. Zebrafish larvae were employed for in vivo studies, assessing both heart rate and melanogenesis. Furthermore, molecular docking analyses were employed to predict the interaction between TE components and the melanocortin 1 receptor (MC1R). Direct binding activity of TE components to MC1R was compared with [Nle4, d-Phe7]-MSH (NDP-MSH). RESULTS: TE was found to contain significant phenolic compounds such as patulitrin, quercetagetin, kaempferol, patuletin, and isorhamnetin. This study revealed that TE effectively inhibits melanin biosynthesis in both in vitro and in vivo models. This inhibition was attributed to interference of TE with the cAMP-cAMP response element-binding protein (CREB)-microphthalmia-associated transcription factor (MITF)-tyrosinase pathway, which plays a pivotal role in regulating melanogenesis. Importantly, TE exhibited the remarkable ability to curtail α-MSH-induced melanogenesis in zebrafish larvae without impacting heart rates. Molecular docking analyses predicted that the components of TE possibly interact with the melanocortin 1 receptor, suggesting their role as potential inhibitors of melanin biosynthesis. However, through the direct binding activity compared with NDP-MSH, any TE components did not directly bind to MC1R, suggesting that TE inhibits α-MSH-induced melanogenesis by inhibiting the cAMP-mediated intracellular signaling pathway. The assessment of anti-melanogenic activity, conducted both in vitro and in vivo, revealed that patulitrin and patuletin exhibited significant inhibitory effects on melanin formation, highlighting their potency as major contributors. DISCUSSION: This investigation demonstrated the considerable potential of TE as a natural remedy endowed with remarkable anti-melanogenic properties. The demonstrated capacity of TE to attenuate melanin production by modulating the cAMP-CREB-MITF-tyrosinase pathway underscores its central role in management of disorders associated with excessive pigmentation. Importantly, the implications of these findings extend to the cosmetics industry, where TE emerges as a prospective and valuable ingredient for the formulation of skin-whitening products. The elucidated interactions between TE components and MC1R not only provide insight into a potential mechanism of action but also elevate the significance of this study. In summary, this study not only contributes to our comprehension of pigmentation-related conditions but also firmly establishes TE as a secure and natural strategy for the regulation of melanin production. The innovative aspects of TE propel it into the forefront of potential interventions, marking a noteworthy advancement in the pursuit of effective and safe solutions for pigmentation disorders.


Assuntos
Melanoma Experimental , Tagetes , Animais , Melaninas , Monofenol Mono-Oxigenase/metabolismo , alfa-MSH/farmacologia , alfa-MSH/metabolismo , Peixe-Zebra/metabolismo , Tagetes/metabolismo , Melanogênese , Polifenóis/farmacologia , Receptor Tipo 1 de Melanocortina/metabolismo , Simulação de Acoplamento Molecular , Linhagem Celular Tumoral , Fator de Transcrição Associado à Microftalmia/metabolismo , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/metabolismo
4.
Int J Mol Sci ; 24(24)2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38139287

RESUMO

Tagetes erecta and Ocimum basilicum are medicinal plants that exhibit anti-inflammatory effects against various diseases. However, their individual and combined effects on osteoarthritis (OA) are unknown. Herein, we aimed to demonstrate the effects of T. erecta, O. basilicum, and their mixture, WGA-M001, on OA pathogenesis. The administration of total extracts of T. erecta and O. basilicum reduced cartilage degradation and inflammation without causing cytotoxicity. Although WGA-M001 contained lower concentrations of the individual extracts, it strongly inhibited the expression of pathogenic factors. In vivo OA studies also supported that WGA-M001 had protective effects against cartilage destruction at lower doses than those of T. erecta and O. basilicum. Moreover, its effects were stronger than those observed using Boswellia and Perna canaliculus. WGA-M001 effectively inhibited the interleukin (IL)-1ß-induced nuclear factor kappa-light-chain-enhancer of the activated B cell (NF-κB) pathway and ERK phosphorylation. Furthermore, RNA-sequence analysis also showed that WGA-M001 decreased the expression of genes related to the IL-1ß-induced NF-κB and ERK signaling pathways. Therefore, WGA-M001 is more effective than the single total extracts of T. erecta and O. basilicum in attenuating OA progression by regulating ERK and NF-κB signaling. Our results open new possibilities for WGA-M001 as a potential therapeutic agent for OA treatment.


Assuntos
Ocimum basilicum , Osteoartrite , Tagetes , NF-kappa B/metabolismo , Tagetes/metabolismo , Condrócitos/metabolismo , Cartilagem/metabolismo , Osteoartrite/patologia
5.
Phytochemistry ; 215: 113860, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37714249

RESUMO

Tagetes erecta L. (marigold), a common landscaping flower widely cultivated in America, Africa, Asia and Europe, is the fundamental source of carotenoids (especially lutein) in food and pharmaceutical industry. Carotenoids are well-known to possess various healthy and beneficial biological activities such as eye protection, anti-aging, and anti-inflammatory. In our exploitation of carotenoid-derived products from T. erecta, nine previously undescribed compounds including seven megastigmane-type norsesquiterpenoids (1-7), one carotenoid-derived sesquiterpenoid (8), and one natural 3-hydroxyl-α-ionylideneacetic acid derivative (9), along with twelve known compounds (10-21), were afforded from the 95% ethanol extract of the petals of T. erecta. Their planar chemical structures and the absolute configurations were established by analysis of the extensive spectroscopic data including HRESI-MS, 1D/2D NMR and the simulation of ECD. Further, a plausible biosynthesis pathway for compounds 1-20 is proposed.


Assuntos
Tagetes , Tagetes/química , Tagetes/metabolismo , Carotenoides/análise , Luteína/análise , Flores/química , Anti-Inflamatórios
6.
Environ Sci Pollut Res Int ; 30(15): 43403-43418, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36658313

RESUMO

Contamination of land and aquatic ecosystems with heavy metals (HMs) is a global issue having the persistent potential to damage the quality of food and water. In the present study, Tagetes erecta L. plants were used to assess their potential to uptake HMs from wastewater. Plants were grown in soil for 20 days and then transplanted in hydroponic system containing Hoagland nutrient solution. After more than 15 days of growth, plants were then subjected to wastewater from tannery and surgical industries in different concentrations ranging from 25 to 100% in combination of citric acid (5 and 10 mM). After 6 weeks of treatment, plants were collected and segmented into roots, stem, and leaves for characterizing the morphological properties including plant height, roots length, fresh and dry mass of roots, stem, and leaves. For evaluation of the effect of wastewater on the plants, photosynthetic pigments; soluble proteins; reactive oxygen species (ROS); antioxidant enzymes SOD, POD, CAT, and APX; and metal accumulation were analyzed. Application of industrial wastewater revealed a significant effect on plant morphology under wastewater treatments. Overall growth and physiological attributes of plant decreased, and metal accumulation enhanced with increasing concentration of wastewater. Similarly, the production of ROS and antioxidant enzymes were also increased. Chlorophyll, protein content, and enzyme production enhanced with CA (5 and 10 mM) mediation; however, ROS production and EL were reduced. Metals analysis showed that the maximum accumulation of Pb was in roots, while Cr and Ni in the stem which further increased under CA mediation. Overall, the metal accumulation ability was in the order of Pb > Ni > Cr under CA.


Assuntos
Metais Pesados , Poluentes do Solo , Tagetes , Águas Residuárias , Antioxidantes/metabolismo , Tagetes/metabolismo , Cromo/análise , Espécies Reativas de Oxigênio , Ácido Cítrico , Ecossistema , Chumbo/análise , Metais Pesados/análise , Poluentes do Solo/análise
7.
Sci Rep ; 12(1): 17577, 2022 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-36266400

RESUMO

The use of degradable chelating agents to facilitate phytoextraction is a promising low-cost method for the remediation of heavy metal-contaminated soils. However, there are few studies on how plants and soils respond to the chelating agents. In this study, the responses of French marigold (Tagetes patula L.) and soil cadmium (Cd) to the chelator tetrasodium glutamate (GLDA) was investigated in a 180 d field trial. Five GLDA treatments (0, 292.5, 585, 1170, and 2340 kg hm-2) were carried out in a Cd-contaminated soil (0.47 mg kg-1) under French marigold plantation. The results showed that the application of GLDA promoted the transformation of other forms of Cd in soil to exchangeable state, and the exchangeable Cd and Fe-Mn oxide bound state increased by 42.13% and 32.97% (p < 0.05), respectively. The cell wall Cd accumulations significantly increased 9.39% (p < 0.05) and the percentages of soluble fractions increased by 460.33% (p < 0.05). Furthermore, increases occurred in soil pH, as well as DOC and DTPA-Cd contents with increasing the total amount of GLDA. The composite application of GLDA (2340 kg hm-2) with French marigold reduced the total soil Cd content by 7.59% compared with the soil background. Altogether, results of this study suggested that the application of GLDA can effectively activate soil Cd and enhance the capability of French marigold for the remediation of Cd-contaminated soils.


Assuntos
Isópodes , Metais Pesados , Poluentes do Solo , Tagetes , Animais , Cádmio/metabolismo , Solo/química , Quelantes/farmacologia , Quelantes/química , Tagetes/metabolismo , Poluentes do Solo/metabolismo , Ácido Glutâmico , Biodegradação Ambiental , Metais Pesados/análise , Isópodes/metabolismo , Ácido Pentético , Óxidos
8.
Transgenic Res ; 31(6): 625-635, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36006545

RESUMO

Pyrethrins are widely accepted as natural insecticides and offers several advantages of synthetic compounds, i.e., rapidity of action, bioactivity against a wide range of insects, comparatively lesser costs and the like. A significant source of pyrethrin is Chrysanthemum cinerariaefolium; cultivated in restricted areas, as a result; natural pyrethrins are not produced in a large amount that would meet the ongoing global market demand. However, increasing its content and harnessing the desired molecule did not attract much attention. To enhance the production of pyrethrins in Tagetes erecta, the Chrysanthemyl diphosphate synthase (CDS) gene was overexpressed under the promoter CaMV35S. Hypocotyls were used as explant for transformation, and direct regeneration was achieved on MS medium with 1.5 mg L-1 BAP and 5.0 mg L-1 GA3. Putative transgenics were screened on 10 mgL-1 hygromycin. After successful regeneration, screening and rooting process, the transgenic plants were raised inside the glass house and PCR amplification of CDS and HYG-II was used to confirm the transformation. Biochemical analysis using HPLC demonstrated the expression levels of the pyrethrin, which was approx. twenty-six fold higher than the non-transformed Tagetes plant.


Assuntos
Chrysanthemum cinerariifolium , Inseticidas , Piretrinas , Tagetes , Piretrinas/química , Piretrinas/metabolismo , Tagetes/genética , Tagetes/metabolismo , Difosfatos/metabolismo , Chrysanthemum cinerariifolium/genética , Chrysanthemum cinerariifolium/metabolismo , Inseticidas/metabolismo
9.
Brain Res ; 1784: 147845, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35219720

RESUMO

Essential oils (EO) are plant extracts widely used for various pharmacological applications and their antioxidant and anti-inflammatory effects have received a lot of attention because they hold the potential to reduce oxidative stress, and neuroinflammation, alterations involved in the pathophysiology of major depressive disorder. This study examined the benefits of administration of flower EO of the Tagetes minuta (10 and 50 mg/kg, intragastric route) in attenuating behavioral, neurochemical, and neuroendocrine changes in animal models of depressive-like behavior induced by acute restraint stress and lipopolysaccharide (0.83 mg/kg, intraperitoneally). We demonstrated that the treatment of mice with flower EO of the T. minuta reversed the depressive-like behavior induced by stress or inflammatory challenge in mice. This effect is most likely due to the reversal of oxidative stress in the hippocampus of mice, the decrease in plasma corticosterone levels, and restoration of the mRNA levels of brain-derived neurotrophic factor, phosphatidylinositol-3-kinase, protein kinase B, and extracellular signal-regulated kinase 2. As an outcome, flower EO of the T. minuta has promising antidepressant properties and could be considered for new therapeutic strategies for major depressive disorder.


Assuntos
Transtorno Depressivo Maior , Óleos Voláteis , Tagetes , Animais , Comportamento Animal , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Depressão/tratamento farmacológico , Depressão/metabolismo , Transtorno Depressivo Maior/metabolismo , Modelos Animais de Doenças , Flores/metabolismo , Hipocampo/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Camundongos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Óleos Voláteis/metabolismo , Óleos Voláteis/farmacologia , Óleos Voláteis/uso terapêutico , Estresse Oxidativo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Tagetes/metabolismo
10.
Genes (Basel) ; 12(12)2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34946960

RESUMO

Members of AP1/FUL subfamily genes play an essential role in the regulation of floral meristem transition, floral organ identity, and fruit ripping. At present, there have been insufficient studies to explain the function of the AP1/FUL-like subfamily genes in Asteraceae. Here, we cloned two euAP1 clade genes TeAP1-1 and TeAP1-2, and three euFUL clade genes TeFUL1, TeFUL2, and TeFUL3 from marigold (Tagetes erecta L.). Expression profile analysis demonstrated that TeAP1-1 and TeAP1-2 were mainly expressed in receptacles, sepals, petals, and ovules. TeFUL1 and TeFUL3 were expressed in flower buds, stems, and leaves, as well as reproductive tissues, while TeFUL2 was mainly expressed in flower buds and vegetative tissues. Overexpression of TeAP1-2 or TeFUL2 in Arabidopsis resulted in early flowering, implying that these two genes might regulate the floral transition. Yeast two-hybrid analysis indicated that TeAP1/FUL proteins only interacted with TeSEP proteins to form heterodimers and that TeFUL2 could also form a homodimer. In general, TeAP1-1 and TeAP1-2 might play a conserved role in regulating sepal and petal identity, similar to the functions of MADS-box class A genes, while TeFUL genes might display divergent functions. This study provides a theoretical basis for the study of AP1/FUL-like genes in Asteraceae species.


Assuntos
Clonagem Molecular/métodos , Perfilação da Expressão Gênica/métodos , Proteínas de Domínio MADS/genética , Tagetes/crescimento & desenvolvimento , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Evolução Molecular , Flores/genética , Regulação da Expressão Gênica de Plantas , Filogenia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Tagetes/genética , Tagetes/metabolismo , Técnicas do Sistema de Duplo-Híbrido
11.
Plant Sci ; 309: 110938, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34134845

RESUMO

Marigold (Tagetes erecta), as one member of Asteraceae family, bears a typical capitulum with two morphologically distinct florets. The SEPALLATA genes are involved in regulating the floral meristem determinacy, organ identity, fruit maturation, seed formation, and plant architecture. Here, five SEP-like genes were cloned and identified from marigold. Sequence alignment and phylogenetic analysis demonstrated that TeSEP3-1, TeSEP3-2, and TeSEP3-3 proteins were grouped into SEP3 clade, and TeSEP1 and TeSEP4 proteins were clustered into SEP1/2/4 clade. Quantitative real-time PCR analysis revealed that TeSEP1 and TeSEP3-3 were broadly expressed in floral organs, and that TeSEP3-2 and TeSEP4 were mainly expressed in pappus and corollas, while TeSEP3-1 was mainly expressed in two inner whorls. Ectopic expression of TeSEP1, TeSEP3-2, TeSEP3-3, and TeSEP4 in arabidopsis and tobacco resulted in early flowering. However, overexpression of TeSEP3-1 in arabidopsis and tobacco caused no visible phenotypic changes. Notably, overexpression of TeSEP4 in tobacco decreased the number of petals and stamens. Overexpression of TeSEP1 in tobacco led to longer sepals and simpler inflorescence architecture. The comprehensive pairwise interaction analysis suggested that TeSEP proteins had a broad interaction with class A, C, D, E proteins to form dimers. The yeast three-hybrid analysis suggested that in ternary complexes, class B proteins interacted with TeSEP3 by forming heterodimer TePI-TeAP3-2. The regulatory network analysis of MADS-box genes in marigold further indicated that TeSEP proteins played a "glue" role in regulating floral organ development, implying functional conservation and divergence of MADS box genes in regulating two-type floret developments. This study provides an insight into the formation mechanism of floral organs of two-type florets, thus broadening our knowledge of the genetic basis of flower evolution.


Assuntos
Arabidopsis/genética , Tagetes/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Flores/genética , Flores/crescimento & desenvolvimento , Flores/metabolismo , RNA de Plantas/genética , Tagetes/crescimento & desenvolvimento , Tagetes/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
12.
PLoS One ; 16(2): e0246685, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33561161

RESUMO

According to the 'novel weapons hypothesis', invasive success depends on harmful plant biochemicals, including allelopathic antimicrobial roots exudate that directly inhibit plant growth and soil microbial activity. However, the combination of direct and soil-mediated impacts of invasive plants via allelopathy remains poorly understood. Here, we addressed the allelopathic effects of an invasive plant species (Rhus typhina) on a cultivated plant (Tagetes erecta), soil properties and microbial communities. We grew T. erecta on soil samples at increasing concentrations of R. typhina root extracts and measured both plant growth and soil physiological profile with community-level physiological profiles (CLPP) using Biolog Eco-plates incubation. We found that R. typhina root extracts inhibit both plant growth and soil microbial activity. Plant height, Root length, soil organic carbon (SOC), total nitrogen (TN) and AWCD were significantly decreased with increasing root extract concentration, and plant above-ground biomass (AGB), below-ground biomass (BGB) and total biomass (TB) were significantly decreased at 10 mg·mL-1 of root extracts. In particular, root extracts significantly reduced the carbon source utilization of carbohydrates, carboxylic acids and polymers, but enhanced phenolic acid. Redundancy analysis shows that soil pH, TN, SOC and EC were the major driving factors of soil microbial activity. Our results indicate that strong allelopathic impact of root extracts on plant growth and soil microbial activity by mimicking roots exudate, providing novel insights into the role of plant-soil microbe interactions in mediating invasion success.


Assuntos
Alelopatia/fisiologia , Desenvolvimento Vegetal/fisiologia , Solo/química , Biomassa , Carbono/metabolismo , Espécies Introduzidas/tendências , Microbiota/fisiologia , Nitrogênio/metabolismo , Raízes de Plantas/fisiologia , Plantas/metabolismo , Plantas/microbiologia , Rhus/metabolismo , Rhus/toxicidade , Microbiologia do Solo , Tagetes/crescimento & desenvolvimento , Tagetes/metabolismo
13.
Mol Cell Biochem ; 476(3): 1541-1554, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33394271

RESUMO

Protective effect of Tagetes erecta flowers essential oils was investigated on oxidative stress, immune response, inflammation, and apoptosis against N-methyl-N'nitro-N-nitroguanidine (MNNG) induced gastric cancer in rats. Essential oil were extracted from Tagetes erecta flowers and analyzed using gas chromatography-mass spectrometry (GC-MS). For observing a protective effect against MNNG induced gastric cancer, we divided rats into 4 groups (group A to D) having 10 rats in each group. Performed various experiments and measured a different parameters to investigate antioxidant activity, immune response, anti-inflammatory and anti-apoptotic activity. The levels of malondialdehyde were markedly increased in the presence of N-methyl-N'nitro-N-nitroguanidine, whereas, the antioxidant activities of superoxide dismutase, and catalase were lowered in the treated rats in contrast with the control. Intervention with TEEO to gastric cancer-induced rats upregulated the redox status and the activity of the immune system to decrease cancer risk. The proinflammatory cytokines (IL-6 and TNF-α) secretions that were induced by MNNG were markedly inhibited by TEEO. Administration of TEEO also significantly reduced terminal deoxynucleotidyl transferase dUTP nick end labeling positive gastric cancer cells, expression of mRNA of caspase-3, and Bax. Whereas, the expression of Bcl-2 was increased. Additionally, downregulation of nuclear factor E2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) and IκBα degradation and the nuclear factor-κB (NF-κB) p65 expression in tissues of the stomach of MNNG-induced-rats were markedly elevated due to TEEO. This suggested possession of TEEO with a protective shield against MNNG induced gastric cancer by the exertion of antioxidative stress, anti-apoptotic response, the anti-inflammatory response through Nrf2/HO-1, and NF-κB signaling pathways.


Assuntos
Flores , Heme Oxigenase (Desciclizante) , Inibidor de NF-kappaB alfa , Proteínas de Neoplasias , Proteínas de Transporte Nucleocitoplasmático , Neoplasias Gástricas , Tagetes , Animais , Masculino , Camundongos , Ratos , Antioxidantes/metabolismo , Apoptose , Catalase/metabolismo , Linhagem Celular Tumoral , Flores/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Guanidinas , Heme Oxigenase (Desciclizante)/metabolismo , Imunoglobulina A/química , Imunoglobulina G/química , Imunoglobulina M/química , Inflamação , Metilnitronitrosoguanidina/química , Proteínas de Neoplasias/metabolismo , Inibidor de NF-kappaB alfa/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Óleos Voláteis/química , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos Wistar , Transdução de Sinais , Neoplasias Gástricas/metabolismo , Tagetes/metabolismo , Fator 2 Relacionado a NF-E2
14.
Sci Rep ; 10(1): 16835, 2020 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-33033300

RESUMO

Marigold (Tagetes erecta L.) is an important ornamental plant with a wide variety of flower colors. Despite its economic value, few biochemical and molecular studies have explored the generation of flower color in this species. To study the mechanism underlying marigold petal color, we performed a metabolite analysis and de novo cDNA sequencing on the inbred line 'V-01' and its petal color mutant 'V-01M' at four flower developmental stages. A total of 49,217 unigenes were identified from 24 cDNA libraries. Based on our metabolites and transcriptomic analyses, we present an overview of carotenoid biosynthesis, degradation, and accumulation in marigold flowers. The carotenoid content of the yellow mutant 'V-01M' was higher than that of the orange inbred line 'V-01', and the abundances of the yellow compounds lutein, neoxanthin, violaxanthin, zeaxanthin, and antheraxanthin were significantly higher in the mutant. During flower development, the carotenoid biosynthesis genes were upregulated in both 'V-01' and 'V-01M', with no significant differences between the two lines. By contrast, the carotenoid degradation genes were dramatically downregulated in the yellow mutant 'V-01M'. We therefore speculate that the carotenoid degradation genes are the key factors regulating the carotenoid content of marigold flowers. Our research provides a large amount of transcriptomic data and insights into the marigold color metabolome.


Assuntos
Carotenoides/metabolismo , Cor , Flores/genética , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Genes de Plantas/fisiologia , Metaboloma , Tagetes/genética , Tagetes/metabolismo , Transcriptoma , Flores/crescimento & desenvolvimento , Expressão Gênica/genética , Perfilação da Expressão Gênica , Luteína/metabolismo , Tagetes/crescimento & desenvolvimento , Regulação para Cima , Xantofilas/metabolismo , Zeaxantinas/metabolismo
15.
J Agric Food Chem ; 68(30): 7880-7889, 2020 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-32520549

RESUMO

The aim of this study was to characterize carotenoids and flavonoids present in French marigold flowers (Tagetes patula "Durango Red") as well as to assess the effects of harvest dates and postharvest treatments on these compounds. Carotenoids and flavonoids were quantified using their respective standards or semiquantified using relevant related standards. Lutein and its derivatives largely dominated the flower carotenoids, while the flavonoids were diverse with patuletin leading the list. Of the different postharvest treatments, ensilage leads to the highest content of carotenoids (from 5.0 to 7.8 g kg-1 dw) and flavonoids (from 19 to 50 g kg-1 dw). The composition of individual flavonoids was greatly influenced by different postharvest treatments, while the influence of harvest dates was secondary. Ensilage and drying induced separate metabolic pathways leading to degradation of high-molecular glycosidic compounds, converting the compounds either to their aglycones or into the intermediate flavonoid glycosides. We conclude that according to the intended industrial application, different postharvest techniques can be employed to acquire desired flavonoids on a large scale.


Assuntos
Carotenoides/química , Flavonoides/química , Flores/química , Extratos Vegetais/química , Tagetes/química , Carotenoides/metabolismo , Flavonoides/metabolismo , Flores/crescimento & desenvolvimento , Flores/metabolismo , Luteína/química , Luteína/metabolismo , Extratos Vegetais/metabolismo , Tagetes/crescimento & desenvolvimento , Tagetes/metabolismo , Fatores de Tempo
16.
Biometals ; 33(2-3): 137-146, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32363469

RESUMO

More than 70% of vascular plant species live in symbiosis with arbuscular mycorrhizal (AM) fungi. In addition to other effects this symbiosis is known for its significance for plant nutrition including iron. Fungal iron mobilization from soil is commonly dependent on siderophores. This study reports on a search for such iron-chelators in root tissue of Tagetes patula nana var. plena colonized by Gigaspora margarita. The AM colonized plants and uninoculated controls were grown under strictly axenic conditions. HPLC analyses of aqueous extracts from plant roots have provided clear evidence for the presence of a rhizoferrin type siderophore, named glomuferrin, in root tissue of mycorrhizal seedlings. Results from HPLC analytical work are seconded by molecular biological data: A BLASTp search revealed that the AM fungal species Gigaspora rosea, Rhizophagus irregularis (formerly Glomus intraradices), Glomus cerebriformis and Diversispora epigea encode a non-ribosomal peptide synthetase (NRPS)-independent siderophore synthase (NIS), which is homologous to the rhizoferrin synthetase of Rhizopus delemar. Thus this study indicates that the biosynthesis of rhizoferrin type siderophores such as glomuferrin (= bis-imidorhizoferrin) may be widespread in the AM symbiosis.


Assuntos
Compostos Férricos/metabolismo , Fungos/metabolismo , Raízes de Plantas/química , Sideróforos/biossíntese , Tagetes/química , Cromatografia Líquida de Alta Pressão , Compostos Férricos/química , Compostos Férricos/isolamento & purificação , Raízes de Plantas/metabolismo , Sideróforos/química , Sideróforos/isolamento & purificação , Tagetes/metabolismo , Tagetes/microbiologia
17.
Life Sci ; 231: 116523, 2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31152811

RESUMO

Tagetes lucida Cav. is an ancient medicinal plant used to treat different ailments involving neurological diseases and pain. However, scientific studies to validate their medicinal properties as analgesic have not been described. The aim of this study was to evaluate the T. lucida antinociceptive response using pain models. Bioactive compounds and a possible mechanism of action were also explored. Dose-response effects of an ethanol crude extract were investigated in the writhing and formalin tests in mice and rats, respectively. The extract was fractionated to isolate active fractions and bioactive compounds (quercetagetin 7­O­ß­d­glucoside and 6,7­dimethoxycoumarin) using the formalin test. The antinociceptive effects were compared to the reference drugs (tramadol 10 mg/kg, diclofenac 50 mg/kg, and/or ketorolac 1 mg/kg, i.p.). The ethanol extract was explored in the presence of naloxone (3 mg/kg, i.p. a non-selective opioid receptor antagonist) and WAY100635 (0.5 mg/kg, s.c., a selective 5-HT1A receptor antagonist) to screen their participation as possible inhibitory mechanisms involved in the antinociceptive response of T. lucida. The ethanol crude extract, fractions, and pure compounds caused a significant antinociceptive response resembling the effect of the reference drugs. Both opioid and 5-HT1A receptors participated in the analgesic -like activity of the extract, which did not produce gastric damage. On the contrary, the gastric damage produced as an adverse effect of the analgesic ketorolac was prevented when combined with the extract. In conclusion, these preliminary data provide evidence and give support to the properties attributed to T. lucida in the traditional medicine to alleviate pain.


Assuntos
Dor/tratamento farmacológico , Extratos Vegetais/farmacologia , Tagetes/metabolismo , Analgésicos/farmacologia , Animais , Curcumina/análogos & derivados , Curcumina/farmacologia , Feminino , Flavonas/farmacologia , Masculino , Medicina Tradicional Chinesa , Camundongos , Modelos Animais , Naloxona/farmacologia , Antagonistas de Entorpecentes/uso terapêutico , Extratos Vegetais/isolamento & purificação , Folhas de Planta , Ratos , Ratos Wistar , Receptor 5-HT1A de Serotonina/efeitos dos fármacos
18.
J Chem Ecol ; 45(5-6): 525-533, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31134522

RESUMO

The development of techniques to non-destructively monitor allelochemical dynamics in soil using polydimethylsiloxane (PDMS) microtubing (silicone tubing microextraction, or STME) provides a means to test important ecological hypotheses regarding the roles of these compounds in plant-plant interactions. The objective of this study was to investigate the impact of intra- and interspecific competition on the exudation of thiophenes by marigolds (Tagetes patula L.). Marigolds were grown at a density of 1, 3 and 5 plants in pots (8.75 × 8.75 cm) containing two STME samplers. An additional treatment included one marigold surrounded by four velvetleaf (Abutilon theophrasti L.) plants. Marigold roots released two primary thiophenes, 3-buten-1-ynyl)-2,2'-bithienyl and α-terthienyl, which are readily absorbed by silicone microtubing. Thiophene exudation was monitored over the period 15-36 days after planting, at 2-5 day intervals. At the end of the study, root and soil samples were also analyzed for thiophene content. Thiophene production per plant increased over time, and thiophene release was strongly correlated with plant size. These results indicate that thiophene release in this study was passively controlled by resource availability. However, poor growth of velvetleaf plants competing with marigold suggests that thiophenes negatively influenced velvetleaf growth. This study, then, provides indirect evidence that thiophene exudation is insensitive to neighbor identity but differentially effective in inhibiting the growth of heterospecific neighbors.


Assuntos
Rizosfera , Tagetes/química , Biomassa , Cromatografia Líquida de Alta Pressão , Raízes de Plantas/química , Raízes de Plantas/metabolismo , Silicones/química , Solo/química , Microextração em Fase Sólida , Tagetes/metabolismo , Tiofenos/análise , Tiofenos/isolamento & purificação , Tiofenos/metabolismo
19.
Chem Biodivers ; 16(6): e1900092, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31002745

RESUMO

Investigation of yellow flower extract of Tagetes patula L. led to the identification of an aggregate of five phytoceramides. Among them, (2R)-2-hydroxy-N-[(2S,3S,4R,8E)-1,3,4-trihydroxyicos-8-en-2-yl]icosanamide, (2R)-2-hydroxy-N-[(2S,3S,4R,8E)-1,3,4-trihydroxyicos-8-en-2-yl]heneicosanamide, (2R)-2-hydroxy-N-[(2S,3S,4R,8E)-1,3,4-trihydroxyicos-8-en-2-yl]docosanamide, and (2R)-2-hydroxy-N-[(2S,3S,4R,8E)-1,3,4-trihydroxyicos-8-en-2-yl]tricosanamide were identified as new compounds and termed as tagetceramides, whereas (2R)-2-hydroxy-N-[(2S,3S,4R,8E)-1,3,4-trihydroxyicos-8-en-2-yl]tetracosanamide was a known ceramide. A steroid (ß-sitosterol glucoside) was also isolated from the subsequent fraction. The structures of these compounds were determined on the basis of spectroscopic analyses, as well as chemical method. Several other compounds were also identified by GC/MS analysis. The fractions and some commercial products, a ceramide HFA, ß-sitosterol, and stigmasterol were evaluated against an economically important cyst nematode, Heterodera zeae. Ceramide HFA showed 100 % mortality, whereas, ß-sitosterol and stigmasterol were 40-50 % active, at 1 % concentration after 24 h of exposure time, while ß-sitosterol glucoside revealed no activity against the nematode.


Assuntos
Antinematódeos/química , Ceramidas/química , Tagetes/química , Animais , Antinematódeos/isolamento & purificação , Antinematódeos/farmacologia , Ceramidas/isolamento & purificação , Ceramidas/farmacologia , Flores/química , Flores/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Conformação Molecular , Sitosteroides/química , Sitosteroides/isolamento & purificação , Sitosteroides/farmacologia , Estigmasterol/química , Estigmasterol/isolamento & purificação , Estigmasterol/farmacologia , Tagetes/metabolismo , Tylenchoidea/efeitos dos fármacos
20.
Environ Sci Pollut Res Int ; 26(9): 8737-8747, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30712201

RESUMO

In recent years, ornamental plants have come under investigation as phytoremediation agents. In addition to reducing contaminant concentrations in soil, such plants support local economies by serving social (e.g., religious) and decorative purposes. Greenhouse studies investigated the phytostabilization potential of soil cadmium (Cd) by five cultivars of marigold (Tagetes erecta), a common ornamental flower in Asia. The effects of organic (cattle manure and pig manure) and inorganic (leonardite and Osmocote®) amendments in supporting plant growth and enhancing Cd uptake were also examined. Marigold cultivars Babuda and Sunshine grown in soil supplemented with pig manure produced the greatest biomass and experienced greatest Cd accumulation and flower production. In all treatments, plant parts accumulated Cd in the following order: root > shoot ≈ flower. Furthermore, Babuda and Sunshine cultivars had a high phytostabilization potential as evidenced by translocation factors < 1 and bioconcentration factors > 1 for roots. It is proposed that Babuda and Sunshine marigold cultivars be applied toward Cd phytostabilization while enhancing local economies as an ornamental species.


Assuntos
Biodegradação Ambiental , Cádmio/química , Poluentes do Solo/química , Tagetes/metabolismo , Animais , Ásia , Biomassa , Bovinos , Esterco , Desenvolvimento Vegetal , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Solo , Suínos , Tagetes/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...