Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 194
Filtrar
1.
Mar Drugs ; 22(5)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38786597

RESUMO

Abnormal melanogenesis can lead to hyperpigmentation. Tyrosinase (TYR), a key rate-limiting enzyme in melanin production, is an important therapeutic target for these disorders. We investigated the TYR inhibitory activity of hydrolysates extracted from the muscle tissue of Takifugu flavidus (TFMH). We used computer-aided virtual screening to identify a novel peptide that potently inhibited melanin synthesis, simulated its binding mode to TYR, and evaluated functional efficacy in vitro and in vivo. TFMH inhibited the diphenolase activities of mTYR, reducing TYR substrate binding activity and effectively inhibiting melanin synthesis. TFMH indirectly reduced cAMP response element-binding protein phosphorylation in vitro by downregulating melanocortin 1 receptor expression, thereby inhibiting expression of the microphthalmia-associated transcription factor, further decreasing TYR, tyrosinase related protein 1, and dopachrome tautomerase expression and ultimately impeding melanin synthesis. In zebrafish, TFMH significantly reduced black spot formation. TFMH (200 µg/mL) decreased zebrafish TYR activity by 43% and melanin content by 52%. Molecular dynamics simulations over 100 ns revealed that the FGFRSP (T-6) peptide stably binds mushroom TYR via hydrogen bonds and ionic interactions. T-6 (400 µmol/L) reduced melanin content in B16F10 melanoma cells by 71% and TYR activity by 79%. In zebrafish, T-6 (200 µmol/L) inhibited melanin production by 64%. TFMH and T-6 exhibit good potential for the development of natural skin-whitening cosmetic products.


Assuntos
Melaninas , Melanoma Experimental , Monofenol Mono-Oxigenase , Takifugu , Peixe-Zebra , Animais , Melaninas/biossíntese , Takifugu/metabolismo , Monofenol Mono-Oxigenase/antagonistas & inibidores , Monofenol Mono-Oxigenase/metabolismo , Camundongos , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/metabolismo , Linhagem Celular Tumoral , Fator de Transcrição Associado à Microftalmia/metabolismo , Músculos/efeitos dos fármacos , Músculos/metabolismo , Oxirredutases Intramoleculares/metabolismo , Receptor Tipo 1 de Melanocortina/metabolismo , Simulação de Dinâmica Molecular , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo
2.
Int J Biol Macromol ; 269(Pt 2): 132167, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38729479

RESUMO

The Japanese puffer, Takifugu rubripes, is a commercially important fish species in China that is under serious threat from white spot disease (cyptocaryoniasis), which leads to heavy economic losses. We previously found that interleukin-1ß (IL-1ß), an important cytokine with a potential role in resistance against pathogens, was one of the most significantly differentially up-regulated proteins in the gills and spleen of T. rubripes infected by the protozoan parasite Cryptocaryon irritans. In this study, we assessed the potential function of T. rubripes IL-1ß (TrIL-1ß) in fish infected with C. irritans. Phylogenetic analysis indicated that the TrIL-1ß protein sequence was most closely related to that of Atlantic salmon (Salmo salar) (67.2 %). The incubation experiments revealed that TrIL-1ß may reduce trophont activity by destroying membranes. Immunofluorescence experiments showed that recombinant TrIL-1ß promoted the expression of endogenous IL-1ß, which penetrated and disrupted the cell membranes of trophonts. Transmission electron microscopy showed that the IL-1ß group had less tissue damage compared with control groups of fish. IL-1ß-small interfering RNA and IL-1ß overexpression experiments were performed in head kidney primary cells, and challenge experiments were performed in vitro. Quantitative RT-PCR results showed that TrIL-1ß regulated and activated MyD88/NF-κB and MyD88/MAPK/p38 signaling pathways during C. irritans infection. TrIL-1ß also promoted the differential expression of IgM, showing that it was involved in humoral immunity of T. rubripes. The cumulative mortality experiment show that TrIL-1ß could protect fish against C. irritans infection. These results enrich current knowledge about the molecular structure of TrIL-1ß. They also suggested that recombinant TrIL-1ß could be used as an adjuvant in a subunit vaccine against C. irritans infection, which is of profound importance for the prevention and control of parasitic diseases in T. rubripes.


Assuntos
Infecções por Cilióforos , Doenças dos Peixes , Interleucina-1beta , Takifugu , Animais , Takifugu/parasitologia , Takifugu/metabolismo , Takifugu/genética , Infecções por Cilióforos/parasitologia , Infecções por Cilióforos/imunologia , Infecções por Cilióforos/veterinária , Doenças dos Peixes/parasitologia , Doenças dos Peixes/imunologia , Interleucina-1beta/metabolismo , Interleucina-1beta/genética , Cilióforos/efeitos dos fármacos , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Proteínas de Peixes/imunologia , Filogenia
3.
Artigo em Inglês | MEDLINE | ID: mdl-38735624

RESUMO

During the development of teleost fish, the sole nutrient source is the egg yolk. The yolk consists mostly of proteins and lipids, with only trace amounts of carbohydrates such as glycogen and glucose. However, past evidence in some fishes showed transient increase in glucose during development, which may have supported the development of the embryos. Recently, we found in zebrafish that the yolk syncytial layer (YSL), an extraembryonic tissue surrounding the yolk, undergoes gluconeogenesis. However, in other teleost species, the knowledge on such gluconeogenic functions during early development is lacking. In this study, we used a marine fish, the grass puffer (Takifugu niphobles) and assessed possible gluconeogenic functions of their YSL, to understand the difference or shared features of gluconeogenesis between these species. A liquid chromatography (LC) / mass spectrometry (MS) analysis revealed that glucose and glycogen content significantly increased in the grass puffer during development. Subsequent real-time PCR results showed that most of the genes involved in gluconeogenesis increased in segmentation stages and/or during hatching. Among these genes, many were expressed in the YSL and liver, as shown by in situ hybridization analysis. In addition, glycogen immunostaining revealed that this carbohydrate source was accumulated in many tissues at segmentation stage but exclusively in the liver in hatched individuals. Taken together, these results suggest that developing grass puffer undergoes gluconeogenesis and glycogen synthesis during development, and that gluconeogenic activity is shared in YSL of zebrafish and grass puffer.


Assuntos
Gluconeogênese , Glucose , Glicogênio , Takifugu , Animais , Takifugu/metabolismo , Takifugu/crescimento & desenvolvimento , Takifugu/genética , Glicogênio/metabolismo , Glucose/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Fígado/metabolismo , Embrião não Mamífero/metabolismo
4.
Toxicon ; 246: 107777, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-38810888

RESUMO

Pufferfish saxitoxin- and tetrodotoxin (TTX)-binding protein (PSTBP) is considered to transfer TTX between tissues. The immunohistochemical distribution of PSTBP-homolog (PSTBPh) and TTX in the brain and pituitary of hatchery-reared juvenile tiger puffer Takifugu rubripes was investigated. PSTBPh was observed mainly in the pars intermedia of the pituitary. TTX was only detected in a TTX-fed fish in the neurohypophysis of the pituitary and in several other brain regions. The relationship between PSTBPh and TTX is discussed.


Assuntos
Encéfalo , Hipófise , Saxitoxina , Takifugu , Tetrodotoxina , Animais , Tetrodotoxina/metabolismo , Hipófise/metabolismo , Takifugu/metabolismo , Encéfalo/metabolismo , Proteínas de Peixes/metabolismo , Canais de Sódio
5.
Peptides ; 178: 171239, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38723948

RESUMO

Arginine vasotocin (AVT) is produced mainly in the hypothalamus and as a neurohypophyseal hormone peripherally regulates water-mineral balance in sub-mammals. In addition, AVT-containing neurons innervate several areas of the brain, and AVT also acts centrally as both an anorexigenic and anxiogenic factor in goldfish. However, it is unclear whether these central effects operate in fish in general. In the present study, therefore, we investigated AVT-like immunoreactivity in the brain of the tiger puffer, a cultured fish with a high market value in Japan and also a representative marine teleost species, focusing particularly on whether AVT affects food intake and psychomotor activity. AVT-like immunoreactivity was distributed higher in the ventral region of the telencephalon, the hypothalamus and midbrain. Intraperitoneal (IP) administration of AVT at 100 pmol g-1 body weight (BW) increased the immunoreactivity of phosphorylated ribosomal proteinS6 (RPS6), a neuronal activation marker, in the telencephalon and diencephalon, decreased food consumption and enhanced thigmotaxis. AVT-induced anorexigenic and anxiogenic actions were blocked by IP co-injection of a V1a receptor (V1aR) antagonist, Manning compound (MC) at 300 pmol g-1 BW. These results suggest that AVT acts as an anorexigenic and anxiogenic factor via the V1aR-signaling pathway in the tiger puffer brain.


Assuntos
Receptores de Vasopressinas , Transdução de Sinais , Vasotocina , Animais , Vasotocina/farmacologia , Vasotocina/metabolismo , Receptores de Vasopressinas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Takifugu/metabolismo , Injeções Intraperitoneais , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Ingestão de Alimentos/efeitos dos fármacos , Ansiedade/metabolismo , Ansiedade/induzido quimicamente , Telencéfalo/metabolismo , Telencéfalo/efeitos dos fármacos
6.
Mar Biotechnol (NY) ; 26(3): 500-510, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38630353

RESUMO

Tetrodotoxin (TTX), known as pufferfish toxin, is a potent neurotoxin blocking sodium channels in muscle and nerve tissues. TTX has been detected in various taxa other than pufferfish, including marine polyclad flatworms, suggesting that pufferfish toxin accumulates in fish bodies via food webs. The composition of TTX and its analogs in the flatworm Planocera multitentaculata was identical to those in wild grass puffer Takifugu alboplumbeus. Previously, Planocera sp. from Okinawa Island, Japan, were reported to possess high level of TTX, but no information was available on TTX analogs in this species. Here we identified TTX and analogs in the planocerid flatworm using high-resolution liquid chromatography-mass spectrometry, and compared the composition of TTX and analogs with those of another toxic and non-toxic planocerid species. We show that the composition of TTX and several analogs, such as 5,6,11-trideoxyTTX, dideoxyTTXs, deoxyTTXs, and 11-norTTX-6(S)-ol, of Planocera sp. was identical to those of toxic species, but not to its non-toxic counterpart. The difference in the toxin composition was reflected in the phylogenetic relationship based on the mitochondrial genome sequence. A toxification experiment using predatory fish and egg plates of P. multitentaculata demonstrated that the composition of TTX and analogs in wild T. alboplumbeus juveniles was reproduced in artificially toxified pufferfish. Additionally, feeding on the flatworm egg plates enhanced the signal intensities of all TTX compounds in Chelonodon patoca and that of deoxyTTXs in Yongeichthys criniger.


Assuntos
Tetrodotoxina , Animais , Tetrodotoxina/análise , Tetrodotoxina/metabolismo , Japão , Platelmintos/genética , Platelmintos/metabolismo , Tetraodontiformes , Takifugu/metabolismo , Takifugu/genética , Cromatografia Líquida , Espectrometria de Massas , Ilhas , População do Leste Asiático
7.
Mar Biotechnol (NY) ; 26(2): 288-305, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38446292

RESUMO

Takifugu rubripes (T. rubripes) is a valuable commercial fish, and Cryptocaryon irritans (C. irritans) has a significant impact on its aquaculture productivity. DNA methylation is one of the earliest discovered ways of gene epigenetic modification and also an important form of modification, as well as an essential type of alteration that regulates gene expression, including immune response. To further explore the anti-infection mechanism of T. rubripes in inhibiting this disease, we determined genome-wide DNA methylation profiles in the gill of T. rubripes using whole-genome bisulfite sequencing (WGBS) and combined with RNA sequence (RNA-seq). A total of 4659 differentially methylated genes (DMGs) in the gene body and 1546 DMGs in the promoter between the infection and control group were identified. And we identified 2501 differentially expressed genes (DEGs), including 1100 upregulated and 1401 downregulated genes. After enrichment analysis, we identified DMGs and DEGs of immune-related pathways including MAPK, Wnt, ErbB, and VEGF signaling pathways, as well as node genes prkcb, myca, tp53, and map2k2a. Based on the RNA-Seq results, we plotted a network graph to demonstrate the relationship between immune pathways and functional related genes, in addition to gene methylation and expression levels. At the same time, we predicted the CpG island and transcription factor of four immune-related key genes prkcb and mapped the gene structure. These unique discoveries could be helpful in the understanding of C. irritans pathogenesis, and the candidate genes screened may serve as optimum methylation-based biomarkers that can be utilized for the correct diagnosis and therapy T. rubripes in the development of the ability to resist C. irritans infection.


Assuntos
Cilióforos , Metilação de DNA , Doenças dos Peixes , Takifugu , Takifugu/genética , Takifugu/parasitologia , Takifugu/metabolismo , Animais , Doenças dos Peixes/parasitologia , Doenças dos Peixes/genética , Infecções por Cilióforos/veterinária , Infecções por Cilióforos/genética , Infecções por Cilióforos/parasitologia , Infecções por Cilióforos/imunologia , Brânquias/metabolismo , Brânquias/parasitologia , Epigênese Genética , Regulação da Expressão Gênica , Sequenciamento Completo do Genoma , Perfilação da Expressão Gênica
8.
Ecotoxicol Environ Saf ; 272: 116064, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38340599

RESUMO

Copper is an environmental pollutant, and copper in aquatic environments mainly comes from soil and water. It enters the environment through atmospheric deposition, sewage discharge, and industrial production, and enters aquatic organisms, causing toxicity. Takifugu rubripes (T. rubripes) is a marine fish with high economic value. Due to the toxic effects of heavy metals on aquatic organisms such as fish, it can affect the gut community and metabolites of fish. The gut is an important channel for fish to communicate with the outside world and a necessary pathway for the metabolism of nutrients and toxic substances in the fish body. Studies have shown that due to changes in global water emissions and the high sensitivity of aquatic organisms to the environment, copper may pose greater potential hazards to aquatic organisms. Copper poses a greater risk to aquatic species than other heavy metals and metal/metal like pollutants (such as cadmium, lead, mercury, arsenic, etc.) . In order to elucidate the effects of copper exposure on the gut of T. rubripes. In this study, we exposed T. rubripes to 0, 50, 100, or 500 µg/L of copper for three days, the effects of copper exposure on the gut microbiota structure and metabolites of the T. rubripes were investigated using 16 S rRNA gene and metabolomics techniques. The research results indicate that with the increase copper concentration, the intestinal tissue of T. rubripes undergoes significant damage. 16 S rRNA sequencing results show that copper exposure alters the structure and metabolites of intestinal microbiota. Copper exposure of 100 and 500 µg/L inhibited the colonization of the bacterial gut, disrupted the intestinal barrier, and made the fish susceptible to the pathogens. Liquid chromatography-mass spectrometry analysis showed that copper regulated the production of metabolites such as L-histidine, arachidonic acid, and L-glutamic acid, which are related to energy and immunity. Microbiome-metabolome correlation analysis showed that Subdoligranulum, Family_XIII_AD3011_group, and Clostridium_sensu_stricto_1 were the key bacteria for copper ion intervention, and they might up-regulate the levels of metabolites such as indole-3-acetic acid, 3-indoleacrylic acid, and 5-hydroxyindole in the tryptophan metabolism pathway. In summary, our research has demonstrated that copper exposure can cause pathological changes in the intestinal tissue of the T. rubripes. High concentrations of copper ions can affect the colonization of the T. rubripes microbiota in the intestine, damage the fish's immune system, and alter the structure and metabolites of the intestinal microbiota, this can lead to intestinal metabolic dysfunction. providing a reference for the evaluation of the biological toxicity effects of heavy metal elements in the marine environment. This study provides a reference for evaluating the biological toxicity effects of heavy metal elements in marine environments.


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Takifugu/metabolismo , Cobre/metabolismo , Bactérias , Água/metabolismo
9.
Sci Total Environ ; 913: 169743, 2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38163595

RESUMO

Petroleum hydrocarbon (PH) pollution threatens both wild and farmed marine fish. How this pollution affects the nutrient metabolism in fish and whether this effect can be recovered have not been well-known. The present study aimed to evaluate these effects with a feeding trial on tiger puffer, an important farmed species in Asia. In a 6-week feeding trial conducted in indoor flow-through water, fish were fed a control diet (C) or diets supplemented with diesel oil (0.02 % and 0.2 % of dry matter, named LD and HD, respectively). Following this feeding trial was a 4-week recovery period, during which all fish were fed a same normal commercial feed. At the end of the 6-week feeding trial, dietary PH significantly decreased the fish growth and lipid content. The PH significantly accumulated in fish tissues, in particular the liver, and caused damages in all tissues examined in terms of histology, anti-oxidation status, and serum biochemical changes. Dietary PH also changed the volatile flavor compound profile in the muscle. The hepatic transcriptome assay showed that the HD diet tended to inhibit the DNA replication, cell cycle and lipid synthesis, but to stimulate the transcription of genes related to liver protection/repair and lipid catabolism. The 4-week recovery period to some extent mitigated the damage caused by PH. After the recovery period, the inter-group differences in some parameters disappeared. However, the differences in lipid content, anti-oxidase activity, liver PH concentration, and histological structure still existed. In addition, differences in cellular chemical homeostasis and cytokine-cytokine receptor interaction at the transcriptional level can still be observed, indicated by the hepatic transcriptome assay. In conclusion, 6 weeks of dietary PH exposure significantly impaired the growth performance and health status of farmed tiger puffer, and a short-term recovery period (4 weeks) was not sufficient to completely mitigate this impairment.


Assuntos
Petróleo , Takifugu , Animais , Takifugu/metabolismo , Peixes , Hidrocarbonetos/metabolismo , Petróleo/metabolismo , Lipídeos , Fígado/metabolismo
10.
Fish Shellfish Immunol ; 144: 109283, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38092094

RESUMO

L-type lectins (LTLs) contain a carbohydrate recognition domain homologous to leguminous lectins, and have functions in selective protein trafficking, sorting and targeting in the secretory pathway of animals. In this study, a novel LTL, designated as ToERGIC-53, was cloned and identified from obscure puffer Takifugu obscurus. The open reading frame of ToERGIC-53 contained 1554 nucleotides encoding 517 amino acid residues. The deduced ToERGIC-53 protein consisted of a signal peptide, a leguminous lectin domain (LTLD), a coiled-coil region, and a transmembrane region. Quantitative real-time PCR showed that ToERGIC-53 was expressed in all examined tissues, with the highest expression level in the liver. The expression of ToERGIC-53 was significantly upregulated after infection with Vibrio harveyi and Staphylococcus aureus. Recombinant ToERGIC-53-LTLD (rToERGIC-53-LTLD) protein could not only agglutinate and bind to one Gram-positive bacterium (S. aureus) and three Gram-negative bacteria (V. harveyi, V. parahaemolyticus and Aeromonas hydrophila), but also bind to glycoconjugates on the surface of bacteria such as lipopolysaccharide, peptidoglycan, mannose and galactose. In addition, rToERGIC-53-LTLD inhibited the growth of bacteria in vitro. All these results suggested that ToERGIC-53 might be a pattern recognition receptor involved in antibacterial immune response of T. obscurus.


Assuntos
Infecções Bacterianas , Lectinas , Animais , Lectinas/genética , Takifugu/genética , Takifugu/metabolismo , Staphylococcus aureus/metabolismo , Receptores de Reconhecimento de Padrão/genética , Filogenia , Imunidade Inata/genética , Lectinas Tipo C/genética
11.
Artigo em Inglês | MEDLINE | ID: mdl-37976965

RESUMO

Family selection is an important method in fish aquaculture because growth is the most important economic trait. Fast-and slow-growing families of tiger puffer fish (Takifugu rubripes) have been established through family selection. The development of teleost fish is primarily controlled by the growth hormone (GH)-insulin-like growth factor 1 (IGF-1) axis that includes the hypothalamus-pituitary-liver. In this study, the molecular mechanisms underlying T. rubripes growth were analyzed by comparing transcriptomes from fast- and slow-growing families. The expressions of 214 lncRNAs were upregulated, and those of 226 were downregulated in the brain tissues of the fast-growing T. rubripes family compared to those of the slow-growing family. Differentially expressed lncRNAs centrally regulate mitogen-activated protein kinase (MAPK) and forkhead box O (FoxO) signaling pathways. Based on the results of lncRNA-gene network construction, we found that lncRNA3133.13, lncRNA23169.1, lncRNA23145.1, and lncRNA23141.3 regulated all four genes (igf1, mdm2, flt3, and cwf19l1). In addition, lncRNA7184.10 may be a negative regulator of rasgrp2 and a positive regulator of gadd45ga, foxo3b, and dusp5. These target genes are associated with the growth and development of organisms through the PI3K/AKT and MAPK/ERK pathways. Overall, transcriptomic analyses of fast- and slow-growing families of T. rubripes provided insights into the molecular mechanisms of teleost fish growth rates. Further, these analyses provide evidence for key genes related to growth regulation and the lncRNA expression regulatory network that will provide a framework for improving puffer fish germplasm resources.


Assuntos
RNA Longo não Codificante , Animais , RNA Longo não Codificante/genética , Takifugu/genética , Takifugu/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Perfilação da Expressão Gênica , Transcriptoma
12.
Toxicon ; 237: 107539, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38042308

RESUMO

Tetrodotoxin (TTX) is a potent neurotoxin that binds to voltage-gated sodium channels and blocks the passage of sodium ions. TTX is widely distributed in both terrestrial and marine organisms, and the toxic puffers are believed to accumulate TTX through the food chain. Although pufferfish was previously thought to be attracted by TTX, recent finding from electroolfactogram (EOG) studies have indicated that the olfactory epithelium of T. alboplumbeus responded to 5, 6, 11-trideoxyTTX (TDT), but not to TTX itself. In this study, we examined behavioral experiments for Takifugu rubripes to distinguish between TTX and TDT under static and flow-through conditions. Our data clearly suggested that T. rubripes juveniles were attracted to TDT, not TTX. Moreover, we determined that the minimum effective dose of TDT to attract the puffer was 1-2 nmol of TDT under static conditions and 50-60 nmol of TDT under flow-through conditions. Following the experiments under static conditions, numerous bite marks by the pufferfish were found solely on the agarose gel infused with TDT. Based on these finding, we hypothesize that the pufferfish are attracted to TDT derived from prey, leading them effectively become toxic.


Assuntos
Neurotoxinas , Takifugu , Animais , Takifugu/metabolismo , Tetrodotoxina/toxicidade , Tetrodotoxina/metabolismo , Neurotoxinas/metabolismo , Cadeia Alimentar
13.
Mar Drugs ; 21(10)2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37888457

RESUMO

An affinity chromatography filler of CNBr-activated Sepharose 4B-immobilized ACE was used to purify ACE-inhibitory peptides from Takifugu flavidus protein hydrolysate (<1 kDa). Twenty-four peptides with an average local confidence score (ALC) ≥ 80% from bounded components (eluted by 1 M NaCl) were identified by LC-MS/MS. Among them, a novel peptide, TLRFALHGME, with ACE-inhibitory activity (IC50 = 93.5 µmol·L-1) was selected. Molecular docking revealed that TLRFALHGME may interact with the active site of ACE through H-bond, hydrophobic, and electrostatic interactions. The total binding energy (ΔGbinding) of TLRFALHGME was estimated to be -82.7382 kJ·mol-1 by MD simulations, indicating the favorable binding of peptides with ACE. Furthermore, the binding affinity of TLRFALHGME to ACE was determined by surface plasmon resonance (SPR) with a Kd of 80.9 µmol, indicating that there was a direct molecular interaction between them. TLRFALHGME has great potential for the treatment of hypertension.


Assuntos
Inibidores da Enzima Conversora de Angiotensina , Takifugu , Animais , Inibidores da Enzima Conversora de Angiotensina/química , Takifugu/metabolismo , Cromatografia Líquida , Simulação de Acoplamento Molecular , Espectrometria de Massas em Tandem , Peptídeos/farmacologia , Cromatografia de Afinidade/métodos , Peptidil Dipeptidase A/química , Hidrolisados de Proteína/química , Angiotensinas
14.
Artigo em Inglês | MEDLINE | ID: mdl-37647835

RESUMO

In this study, we identified the differentially expressed proteins in gills stimulated by infected ciliates and analyzed the immune mechanisms of T. rubripes infected with the ciliate Cryptocaryon irritans. Through liquid chromatography analysis, a total of 144 proteins were identified with significant differences, of which 58 were upregulated and 86 were downregulated. Among phosphorylated proteins, we identified a total of 167 significantly different phosphorylated proteins, of which 44 were upregulated, 123 were downregulated, 60 were upregulated, and 208 were downregulated. We analyzed the data of proteomics and Phosphorylated proteome quantification protein omics to finally identify three phosphorylated proteins (RPS27, eNOS and CaM) and two phosphorylated protein kinases(CaMKII and MAPK1) as potential biomarkers for T. rubripes immune responses. We finally identified three phosphorylated proteins (RPS27, eNOS and CaM) and two phosphorylated protein kinases (CaMKII and MAPK1) as potential biomarkers of immune response of T. rubripes. Our research findings provide new insights into the immune mechanism of T. rubripes, which may serve as an effective indicator of C. irritans infection in T. rubripes.


Assuntos
Infecções por Cilióforos , Cilióforos , Animais , Takifugu/metabolismo , Proteômica , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Cilióforos/fisiologia , Biomarcadores/metabolismo
15.
Sci Total Environ ; 896: 165248, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37394067

RESUMO

Naphthalene, an environmental pollutant classified as a polycyclic aromatic hydrocarbon (PAH), can induce toxicity in fish and other aquatic organisms. Through our investigation, we determined how Takifugu obscurus juveniles were affected by naphthalene (0, 2 mg L-1) exposure in terms of oxidative stress biomarkers and Na+/K+-ATPase activity in various tissues (gill, liver, kidney and muscle) under dissimilar salinities (0, 10 psu). Results suggest that naphthalene exposure significantly affects the survival of T. obscurus juveniles and leads to significant changes in the levels of malondialdehyde, superoxide dismutase, catalase, glutathione, and Na+/K+-ATPase activity, which are indicative of oxidative stress and emphasized the risks associated with osmoregulatory function. The higher salinity affected on the noxious effects of naphthalene can be observed, resulting in decreased biomarker levels and increased Na+/K+-ATPase activity. Salinity levels affected the uptake of naphthalene and its impact on different tissues, with high salinity conditions having mitigating effects on oxidative stress and naphthalene uptake in the liver and kidney tissues. Increased Na+/K+-ATPase activity was observed in all tissues treated with 10 psu and 2 mg L-1 naphthalene. Our findings deepen the understanding of T. obscurus juveniles' physiological responses to naphthalene exposure, and highlight the potential mitigating effects of salinity. These insights can inform the development of appropriate conservation and management practices to protect aquatic organisms from susceptibility.


Assuntos
Osmorregulação , Takifugu , Animais , Takifugu/metabolismo , Salinidade , Estresse Oxidativo , Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/farmacologia , Naftalenos/metabolismo , Brânquias/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo
16.
Viruses ; 15(4)2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37112968

RESUMO

The nervous necrosis virus (NNV) of the BFNNV genotype is the causative agent of viral encephalopathy and retinopathy (VER) in cold water fishes. Similar to the RGNNV genotype, BFNNV is also considered a highly destructive virus. In the present study, the RNA2 of the BFNNV genotype was modified and expressed in the EPC cell line. The subcellular localization results showed that the capsid and N-terminal (1-414) were located in the nucleus, while the C-terminal (415-1014) of the capsid was located in the cytoplasm. Meanwhile, cell mortality obviously increased after expression of the capsid in EPC. EPC cells were transfected with pEGFP-CP and sampled at 12 h, 24 h and 48 h for transcriptome sequencing. There are 254, 2997 and 229 up-regulated genes and 387, 1611, and 649 down-regulated genes post-transfection, respectively. The ubiquitin-activating enzyme and ubiquitin-conjugating enzyme were up-regulated in the DEGs, indicating that cell death evoked by capsid transfection may be related to ubiquitination. The qPCR results showed that heat stock protein 70 (HSP70) is extremely up-regulated after expression of BFNNV capsid in EPC, and N-terminal is the key region to evoke the high expression. For further study, the immunoregulation of the capsid in fish pcDNA-3.1-CP was constructed and injected into the Takifugu rubripes muscle. pcDNA-3.1-CP can be detected in gills, muscle and head kidney, and lasted for more than 70 d post-injection. The transcripts of IgM and interferon inducible gene Mx were up-regulated after being immunized in different tissues, and immune factors, such as IFN-γ and C3, were also up-regulated in serum, while C4 was down-regulated one week after injection. It was suggested that pcDNA-3.1-CP can be a potential DNA vaccine in stimulating the immune system of T. rubripes; however, NNV challenge needs to be conducted in the following experiments.


Assuntos
Doenças dos Peixes , Nodaviridae , Infecções por Vírus de RNA , Animais , Takifugu/metabolismo , Capsídeo/metabolismo , Peixes , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Genótipo , Nodaviridae/genética
17.
Artigo em Inglês | MEDLINE | ID: mdl-36470397

RESUMO

Takifugu bimaculatus is a marine fish with high nutritional value. Its ovary contains tetrodotoxin (TTX) which is a severe neurotoxin that limits its edible value of it. To understand the mechanism of oogenesis and production of TTX in T. bimaculatus, an ovarian cell line named TBO from an adolescent ovary was established. TBO was composed of fibroblast-like cells that expressed the ovarian follicle cells marker gene Foxl2 and highly expressed TTX binding protein 2 (PSTBP2) but did not express the germ cells marker gene Vasa. Therefore, TBO seems to be mainly composed of follicle cells and possibly a small percentage of oocytes. Electroporation was used to successfully transfect the pEGFP-N1 and pNanog-N1 vectors into the TBO cell line with a high transfection efficiency. The morphological changes and survival rates of the exposed cells proved that this cell line was effective for exposure to conotoxins (CTXs), another group of toxins related to food safety. Furthermore, PSTBP2 was knocked out in TBO using CRISPR/Cas9 technology, showing that sgRNA2 could mutate PSTBP2. The results suggested that TBO will be more convenient, efficient, and rapid for reproduction and toxicology investigation, and gene editing. This study laid the groundwork for future research into the fish gonadal cell culture and food-related marine toxins. In conclusion, a cell line has been generated from T. bimaculatus, which might represent a valuable model for fish studies in the fields of toxicology and gene editing.


Assuntos
Edição de Genes , Takifugu , Animais , Feminino , Takifugu/genética , Takifugu/metabolismo , Ovário/metabolismo , Tetrodotoxina/análise , Tetrodotoxina/metabolismo , Linhagem Celular
18.
Curr Biol ; 32(22): 4881-4889.e5, 2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-36306789

RESUMO

Many organisms living along the coastlines synchronize their reproduction with the lunar cycle. At the time of spring tide, thousands of grass puffers (Takifugu alboplumbeus) aggregate and vigorously tremble their bodies at the water's edge to spawn. To understand the mechanisms underlying this spectacular semilunar beach spawning, we collected the hypothalamus and pituitary from male grass puffers every week for 2 months. RNA sequencing (RNA-seq) analysis identified 125 semilunar genes, including genes crucial for reproduction (e.g., gonadotropin-releasing hormone 1 [gnrh1], luteinizing hormone ß subunit [lhb]) and receptors for pheromone prostaglandin E (PGE). PGE2 is secreted into the seawater during the spawning, and its administration activates olfactory sensory neurons and triggers trembling behavior of surrounding individuals. These results suggest that PGE2 synchronizes lunar-regulated beach-spawning behavior in grass puffers. To further explore the mechanism that regulates the lunar-synchronized transcription of semilunar genes, we searched for semilunar transcription factors. Spatial transcriptomics and multiplex fluorescent in situ hybridization showed co-localization of the semilunar transcription factor CCAAT/enhancer-binding protein δ (cebpd) and gnrh1, and cebpd induced the promoter activity of gnrh1. Taken together, our study demonstrates semilunar genes that mediate lunar-synchronized beach-spawning behavior. VIDEO ABSTRACT.


Assuntos
Lua , Takifugu , Humanos , Animais , Masculino , Takifugu/genética , Takifugu/metabolismo , Hibridização in Situ Fluorescente , Reprodução/fisiologia , Prostaglandinas E/metabolismo , Prostaglandinas/metabolismo
19.
Ecotoxicol Environ Saf ; 244: 114050, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36063614

RESUMO

Exposure to ammonia can cause convulsions, coma, and death. In this study, we investigate the effects of ammonia exposure on immunoregulatory and neuroendocrine changes in Takifugu rubripes. Fish were sampled at 0, 12, 24, 48, and 96 h following exposure to different ammonia concentrations (0, 5, 50, 100, and 150 mg/L). Our results showed that exposure to ammonia significantly reduced the concentrations of C3, C4, IgM, and LZM whereas the heat shock protein 70 and 90 levels significantly increased. In addition, the transcription levels of Mn-SOD, CAT, GRx, and GR in the liver were significantly upregulated following exposure to low ammonia concertation, however, downregulated with increased exposure time. These findings suggest that ammonia poisoning causes oxidative damage and suppresses plasma immunity. Ammonia exposure also resulted in the elevation and depletion of the T3 and T4 levels, respectively. Furthermore, ammonia stress induced an increase in the corticotrophin-releasing hormone, adrenocorticotropic hormone, and cortisol levels, and a decrease in dopamine, noradrenaline, and 5-hydroxytryptamine levels in the brain, illustrating that ammonia poisoning can disrupt the endocrine and neurotransmitter systems. Our results provide insights into the mechanisms underlying the neurotoxic effects of ammonia exposure, which helps to assess the ecological and environmental health risks of this contaminant in marine fish.


Assuntos
Amônia , Takifugu , Hormônio Adrenocorticotrópico/metabolismo , Amônia/metabolismo , Animais , Encéfalo/metabolismo , Dopamina/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Hidrocortisona/metabolismo , Imunidade , Imunoglobulina M/metabolismo , Neurotransmissores/metabolismo , Norepinefrina/metabolismo , Serotonina/metabolismo , Superóxido Dismutase/metabolismo , Takifugu/metabolismo , Glândula Tireoide/metabolismo , Hormônios Tireóideos/metabolismo
20.
BMC Genomics ; 23(1): 553, 2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35922761

RESUMO

Tetrodotoxin (TTX) is a deadly neurotoxin and usually accumulates in large amounts in the ovaries but is non-toxic or low toxic in the testis of pufferfish. The molecular mechanism underlying sexual dimorphism accumulation of TTX in ovary and testis, and the relationship between TTX accumulation with sex related genes expression remain largely unknown. The present study investigated the effects of exogenous TTX treatment on Takifugu flavidus. The results demonstrated that exogenous TTX administration significantly incresed level of TTX concentration in kidney, cholecyst, skin, liver, heart, muscle, ovary and testis of the treatment group (TG) than that of the control group (CG). Transcriptome sequencing and analysis were performed to study differential expression profiles of mRNA and piRNA after TTX administration of the ovary and testis. The results showed that compared with female control group (FCG) and male control group (MCG), TTX administration resulted in 80 and 23 piRNAs, 126 and 223 genes up and down regulated expression in female TTX-treated group (FTG), meanwhile, 286 and 223 piRNAs, 2 and 443 genes up and down regulated expression in male TTX-treated group (MTG). The female dominant genes cyp19a1, gdf9 and foxl2 were found to be up-regulated in MTG. The cyp19a1, whose corresponding target piRNA uniq_554482 was identified as down-regulated in the MTG, indicating the gene expression feminization in testis after exogenous TTX administration. The KEGG enrichment analysis revealed that differentially expressed genes (DEGs) and piRNAs (DEpiRNAs) in MTG vs MCG group were more enriched in metabolism pathways, indicating that the testis produced more metabolic pathways in response to exogenous TTX, which might be a reason for the sexual dimorphism of TTX distribution in gonads. In addition, TdT-mediated dUTP-biotin nick end labeling staining showed that significant apoptosis was detected in the MTG testis, and the role of the cell apoptotic pathways was further confirmed. Overall, our research revealed that the response of the ovary and testis to TTX administration was largely different, the ovary is more tolerant whereas the testis is more sensitive to TTX. These data will deepen our understanding on the accumulation of TTX sexual dimorphism in Takifugu.


Assuntos
Takifugu , Testículo , Animais , Feminino , Feminização , Expressão Gênica , Perfilação da Expressão Gênica , Humanos , Masculino , RNA Interferente Pequeno/metabolismo , Takifugu/genética , Takifugu/metabolismo , Testículo/metabolismo , Tetrodotoxina/metabolismo , Tetrodotoxina/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...