Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 340
Filtrar
1.
PLoS Genet ; 20(4): e1011224, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38662776

RESUMO

Cell adhesion requires linkage of transmembrane receptors to the cytoskeleton through intermediary linker proteins. Integrin-based adhesion to the extracellular matrix (ECM) involves large adhesion complexes that contain multiple cytoskeletal adapters that connect to the actin cytoskeleton. Many of these adapters, including the essential cytoskeletal linker Talin, have been shown to contain multiple actin-binding sites (ABSs) within a single protein. To investigate the possible role of having such a variety of ways of linking integrins to the cytoskeleton, we generated mutations in multiple actin binding sites in Drosophila talin. Using this approach, we have been able to show that different actin-binding sites in talin have both unique and complementary roles in integrin-mediated adhesion. Specifically, mutations in either the C-terminal ABS3 or the centrally located ABS2 result in lethality showing that they have unique and non-redundant function in some contexts. On the other hand, flies simultaneously expressing both the ABS2 and ABS3 mutants exhibit a milder phenotype than either mutant by itself, suggesting overlap in function in other contexts. Detailed phenotypic analysis of ABS mutants elucidated the unique roles of the talin ABSs during embryonic development as well as provided support for the hypothesis that talin acts as a dimer in in vivo contexts. Overall, our work highlights how the ability of adhesion complexes to link to the cytoskeleton in multiple ways provides redundancy, and consequently robustness, but also allows a capacity for functional specialization.


Assuntos
Actinas , Adesão Celular , Proteínas de Drosophila , Drosophila melanogaster , Matriz Extracelular , Integrinas , Talina , Talina/metabolismo , Talina/genética , Animais , Adesão Celular/genética , Sítios de Ligação , Matriz Extracelular/metabolismo , Actinas/metabolismo , Actinas/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Integrinas/metabolismo , Integrinas/genética , Mutação , Ligação Proteica , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/genética , Citoesqueleto/metabolismo , Citoesqueleto/genética
2.
Reprod Biomed Online ; 48(3): 103646, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38290387

RESUMO

RESEARCH QUESTION: What is the relationship between ATG8 and integrin α4ß1, Talin-1, and Treg cell differentiation, and the effects on endometriosis (EMS)? DESIGN: First, the correlation between the ATG8, Talin-1, integrin α4ß1, and differentiation of Treg cells and EMS was examined in clinical samples. Human peripheral blood mononuclear cells (PBMC) and endometrial stromal cells were extracted and identified, oe-ATG8 and oe-integrin α4ß1 were transfected to overexpress ATG8 and integrin α4ß1, and Tregs cell differentiation and endometrial stromal cells (ESC) function were detected. In addition, the molecular mechanism by which ATG8 inhibited EMS disease progression at the molecular and animal levels was investigated. RESULTS: ATG8 expression was negatively correlated with positive proportion of Tregs cells (P = 0.0463). The expression of Talin-1 and integrin-α4ß1 (both P < 0.0001) in PBMC decreased significantly after oe-ATG8 transfection, whereas the Treg cells' positive rate significantly increased (P = 0.0003). The ESC proliferation, adhesion, migration, and invasion (all P < 0.0001) declined after co-culture with Treg cells that underwent oe-ATG8 transfection. The expression of Talin-1 (P = 0.0025) and integrin-α4ß1 (P = 0.0002) in PBMC increased significantly after oe-integrin α4ß1 and oe-ATG8 transfection. In addition, this transfection reversed the corresponding regulation of oe-ATG8 transfection. Finally, animal experiments in vivo confirmed that ATG8 inhibited EMS disease progression. CONCLUSION: The ATG8 regulated Treg cell differentiation and inhibited EMS formation by influencing the interaction between integrin α4ß1 and Talin-1.


Assuntos
Endometriose , Integrina alfa4beta1 , Animais , Feminino , Humanos , Integrina alfa4beta1/metabolismo , Linfócitos T Reguladores , Talina/genética , Talina/metabolismo , Leucócitos Mononucleares/metabolismo , Diferenciação Celular , Progressão da Doença , Adesão Celular
3.
J Exp Clin Cancer Res ; 43(1): 27, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38254102

RESUMO

BACKGROUND: Peritoneal metastasis, which accounts for 85% of all epithelial ovarian carcinoma (EOC) metastases, is a multistep process that requires the establishment of adhesive interactions between cancer cells and the peritoneal membrane. Interrelations between EOC and the mesothelial stroma are critical to facilitate the metastatic process. No data is available so far on the impact of histone acetylation/deacetylation, a potentially relevant mechanism governing EOC metastasis, on mesothelial cells (MCs)-mediated adhesion. METHODS: Static adhesion and peritoneal clearance experiments were performed pretreating mesenchymal-like MCs and platinum-sensitive/resistant EOC cell lines with MS-275-a Histone deacetylase (HDAC)1-3 pharmacological inhibitor currently used in combination trials. Results were acquired by confocal microscopy and were analyzed with an automated Opera software. The role of HDAC1/2 was validated by genetic silencing. The role of α4-, α5-α1 Integrins and Fibronectin-1 was validated using specific monoclonal antibodies. Quantitative proteomic analysis was performed on primary MCs pretreated with MS-275. Decellularized matrices were generated from either MS-275-exposed or untreated cells to study Fibronectin-1 extracellular secretion. The effect of MS-275 on ß1 integrin activity was assessed using specific monoclonal antibodies. The role of Talin-1 in MCs/EOC adhesion was analyzed by genetic silencing. Talin-1 ectopic expression was validated as a rescue tool from MS-275-induced phenotype. The in vivo effect of MS-275-induced MC remodeling was validated in a mouse model of peritoneal EOC dissemination. RESULTS: Treatment of MCs with non-cytotoxic concentrations of MS-275 caused a consistent reduction of EOC adhesion. Proteomic analysis revealed several pathways altered upon MC treatment with MS-275, including ECM deposition/remodeling, adhesion receptors and actin cytoskeleton regulators. HDAC1/2 inhibition hampered actin cytoskeleton polymerization by downregulating actin regulators including Talin-1, impairing ß1 integrin activation, and leading to abnormal extracellular secretion and distribution of Fibronectin-1. Talin-1 ectopic expression rescued EOC adhesion to MS-275-treated MCs. In an experimental mouse model of metastatic EOC, MS-275 limited tumor invasion, Fibronectin-1 secretion and the sub-mesothelial accumulation of MC-derived carcinoma-associated fibroblasts. CONCLUSION: Our study unveils a direct impact of HDAC-1/2 in the regulation of MC/EOC adhesion and highlights the regulation of MC plasticity by epigenetic inhibition as a potential target for therapeutic intervention in EOC peritoneal metastasis.


Assuntos
Benzamidas , Carcinoma Epitelial do Ovário , Adesão Celular , Histona Desacetilase 1 , Histona Desacetilase 2 , Neoplasias Ovarianas , Neoplasias Peritoneais , Animais , Feminino , Humanos , Camundongos , Citoesqueleto de Actina/metabolismo , Anticorpos Monoclonais , Carcinoma Epitelial do Ovário/metabolismo , Epitélio , Proteínas da Matriz Extracelular/metabolismo , Fibronectinas , Histona Desacetilase 1/metabolismo , Integrina alfa5 , Integrina beta1/genética , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Neoplasias Peritoneais/genética , Neoplasias Peritoneais/metabolismo , Proteômica , Piridinas , Talina/genética , Talina/metabolismo , Histona Desacetilase 2/metabolismo , Adesão Celular/genética
4.
Physiol Rep ; 12(1): e15897, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38163671

RESUMO

SLK controls the cytoskeleton, cell adhesion, and migration. Podocyte-specific deletion of SLK in mice leads to podocyte injury as mice age and exacerbates injury in experimental focal segment glomerulosclerosis (FSGS; adriamycin nephrosis). We hypothesized that adhesion proteins may be substrates of SLK. In adriamycin nephrosis, podocyte ultrastructural injury was exaggerated by SLK deletion. Analysis of a protein kinase phosphorylation site dataset showed that podocyte adhesion proteins-paxillin, vinculin, and talin-1 may be potential SLK substrates. In cultured podocytes, deletion of SLK increased adhesion to collagen. Analysis of paxillin, vinculin, and talin-1 showed that SLK deletion reduced focal adhesion complexes (FACs) containing these proteins mainly in adriamycin-induced injury; there was no change in FAC turnover (focal adhesion kinase Y397 phosphorylation). In podocytes, paxillin S250 showed basal phosphorylation that was slightly enhanced by SLK; however, SLK did not phosphorylate talin-1. In adriamycin nephrosis, SLK deletion did not alter glomerular expression/localization of talin-1 and vinculin, but increased focal adhesion kinase phosphorylation modestly. Therefore, SLK decreases podocyte adhesion, but FAC proteins in podocytes are not major substrates of SLK in health and disease.


Assuntos
Nefrose , Podócitos , Camundongos , Animais , Podócitos/metabolismo , Paxilina/metabolismo , Vinculina/metabolismo , Talina/genética , Talina/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Doxorrubicina/toxicidade , Proteínas Serina-Treonina Quinases/metabolismo
5.
Sci Rep ; 13(1): 22368, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-38102166

RESUMO

The intestinal immune response is crucial in maintaining a healthy gut, but the enhanced migration of macrophages in response to pathogens is a major contributor to disease pathogenesis. Integrins are ubiquitously expressed cellular receptors that are highly involved in immune cell adhesion to endothelial cells while in the circulation and help facilitate extravasation into tissues. Here we show that specific deletion of the Tln1 gene encoding the protein talin-1, an integrin-activating scaffold protein, from cells of the myeloid lineage using the Lyz2-cre driver mouse reduces epithelial damage, attenuates colitis, downregulates the expression of macrophage markers, decreases the number of differentiated colonic mucosal macrophages, and diminishes the presence of CD68-positive cells in the colonic mucosa of mice infected with the enteric pathogen Citrobacter rodentium. Bone marrow-derived macrophages lacking expression of Tln1 did not exhibit a cell-autonomous phenotype; there was no impaired proinflammatory gene expression, nitric oxide production, phagocytic ability, or surface expression of CD11b, CD86, or major histocompatibility complex II in response to C. rodentium. Thus, we demonstrate that talin-1 plays a role in the manifestation of infectious colitis by increasing mucosal macrophages, with an effect that is independent of macrophage activation.


Assuntos
Colite , Infecções por Enterobacteriaceae , Animais , Camundongos , Citrobacter rodentium , Colite/genética , Colite/prevenção & controle , Colo/patologia , Células Endoteliais/metabolismo , Infecções por Enterobacteriaceae/metabolismo , Inflamação/patologia , Mucosa Intestinal/metabolismo , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Talina/genética , Talina/metabolismo
6.
Cell Death Dis ; 14(10): 709, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37903776

RESUMO

Insufficient pancreatic ß-cell mass and reduced insulin expression are key events in the pathogenesis of diabetes mellitus (DM). Here we demonstrate the high expression of Talin-1 in ß-cells and that deficiency of Talin-1 reduces ß-cell proliferation, which leads to reduced ß-cell mass and insulin expression, thus causing glucose intolerance without affecting peripheral insulin sensitivity in mice. High-fat diet fed exerbates these phenotypes. Mechanistically, Talin-1 interacts with the E3 ligase smad ubiquitination regulatory factor 1 (Smurf1), which prohibits ubiquitination of the signal transducer and activator of transcription 3 (Stat3) mediated by Smurf1, and ablation of Talin-1 enhances Smurf1-mediated ubiquitination of Stat3, leading to decreased ß-cell proliferation and mass. Furthermore, haploinsufficiency of Talin-1 and Stat3 genes, but not that of either gene, in ß-cell in mice significantly impairs glucose tolerance and insulin expression, indicating that both factors indeed function in the same genetic pathway. Finally, inducible deletion Talin-1 in ß-cell causes glucose intolerance in adult mice. Collectively, our findings reveal that Talin-1 functions as a crucial regulator of ß-cell mass, and highlight its potential as a therapeutic target for DM patients.


Assuntos
Intolerância à Glucose , Talina , Adulto , Animais , Humanos , Camundongos , Proliferação de Células , Insulina/metabolismo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Talina/genética , Talina/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
7.
Cell Mol Biol Lett ; 28(1): 56, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37460977

RESUMO

BACKGROUND: Focal adhesions (FAs) are integrin-containing, multi-protein structures that link intracellular actin to the extracellular matrix and trigger multiple signaling pathways that control cell proliferation, differentiation, survival and motility. Microtubules (MTs) are stabilized in the vicinity of FAs through interaction with the components of the cortical microtubule stabilizing complex (CMSC). KANK (KN motif and ankyrin repeat domains) family proteins within the CMSC, KANK1 or KANK2, bind talin within FAs and thus mediate actin-MT crosstalk. We previously identified in MDA-MB-435S cells, which preferentially use integrin αVß5 for adhesion, KANK2 as a key molecule enabling the actin-MT crosstalk. KANK2 knockdown also resulted in increased sensitivity to MT poisons, paclitaxel (PTX) and vincristine and reduced migration. Here, we aimed to analyze whether KANK1 has a similar role and to distinguish which talin isoform binds KANK2. METHODS: The cell model consisted of human melanoma cell line MDA-MB-435S and stably transfected clone with decreased expression of integrin αV (3αV). For transient knockdown of talin1, talin2, KANK1 or KANK2 we used gene-specific siRNAs transfection. Using previously standardized protocol we isolated integrin adhesion complexes. SDS-PAGE and Western blot was used for protein expression analysis. The immunofluorescence analysis and live cell imaging was done using confocal microscopy. Cell migration was analyzed with Transwell Cell Culture Inserts. Statistical analysis using GraphPad Software consisted of either one-way analysis of variance (ANOVA), unpaired Student's t-test or two-way ANOVA analysis. RESULTS: We show that KANK1 is not a part of the CMSC associated with integrin αVß5 FAs and its knockdown did not affect the velocity of MT growth or cell sensitivity to PTX. The talin2 knockdown mimicked KANK2 knockdown i.e. led to the perturbation of actin-MT crosstalk, which is indicated by the increased velocity of MT growth and increased sensitivity to PTX and also reduced migration. CONCLUSION: We conclude that KANK2 functionally interacts with talin2 and that the mechanism of increased sensitivity to PTX involves changes in microtubule dynamics. These data elucidate a cell-type-specific role of talin2 and KANK2 isoforms and we propose that talin2 and KANK2 are therefore potential therapeutic targets for improved cancer therapy.


Assuntos
Melanoma , Talina , Humanos , Actinas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Movimento Celular , Proteínas do Citoesqueleto/genética , Integrinas/metabolismo , Microtúbulos/metabolismo , Paclitaxel/farmacologia , Isoformas de Proteínas/metabolismo , Talina/genética , Talina/química , Talina/metabolismo , Linhagem Celular Tumoral/metabolismo
8.
Open Biol ; 13(6): 230058, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37339751

RESUMO

Adhesion between cells and the extracellular matrix is mediated by heterodimeric (αß) integrin receptors that are intracellularly linked to the contractile actomyosin machinery. One of the proteins that control this link is talin, which organizes cytosolic signalling proteins into discrete complexes on ß-integrin tails referred to as focal adhesions (FAs). The adapter protein KANK1 binds to talin in the region of FAs known as the adhesion belt. Here, we adapted a non-covalent crystallographic chaperone to resolve the talin-KANK1 complex. This structure revealed that the talin binding KN region of KANK1 contains a novel motif where a ß-hairpin stabilizes the α-helical region, explaining both its specific interaction with talin R7 and high affinity. Single point mutants in KANK1 identified from the structure abolished the interaction and enabled us to examine KANK1 enrichment in the adhesion belt. Strikingly, in cells expressing a constitutively active form of vinculin that keeps the FA structure intact even in the presence of myosin inhibitors, KANK1 localizes throughout the entire FA structure even when actomyosin tension is released. We propose a model whereby actomyosin forces on talin eliminate KANK1 from talin binding in the centre of FAs while retaining it at the adhesion periphery.


Assuntos
Actinas , Adesões Focais , Actinas/metabolismo , Talina/genética , Talina/análise , Talina/química , Actomiosina/metabolismo , Adesão Celular , Citoesqueleto/metabolismo , Vinculina/genética , Vinculina/análise , Vinculina/metabolismo , Integrinas/metabolismo , Microtúbulos/metabolismo
9.
J Cell Sci ; 136(8)2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-37083041

RESUMO

Focal adhesions are composed of transmembrane integrins, linking the extracellular matrix to the actomyosin cytoskeleton, via cytoplasmic proteins. Adhesion depends on the activation of integrins. Talin and kindlin proteins are intracellular activators of integrins that bind to ß-integrin cytoplasmic tails. Integrin activation and clustering through extracellular ligands guide the organization of adhesion complexes. However, the roles of talin and kindlin in this process are poorly understood. To determine the contribution of talin, kindlin, lipids and actomyosin in integrin clustering, we used a biomimetic in vitro system, made of giant unilamellar vesicles, containing transmembrane integrins (herein αIIbß3), with purified talin (talin-1), kindlin (kindlin-2, also known as FERMT2) and actomyosin. Here, we show that talin and kindlin individually have the ability to cluster integrins. Talin and kindlin synergize to induce the formation of larger integrin clusters containing the three proteins. Comparison of protein density reveals that kindlin increases talin and integrin density, whereas talin does not affect kindlin and integrin density. Finally, kindlin increases integrin-talin-actomyosin coupling. Our study unambiguously demonstrates how kindlin and talin cooperate to induce integrin clustering, which is a major parameter for cell adhesion.


Assuntos
Integrinas , Talina , Integrinas/metabolismo , Talina/genética , Talina/metabolismo , Actomiosina , Proteínas de Membrana/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Adesão Celular
10.
Arterioscler Thromb Vasc Biol ; 43(6): 1015-1030, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37051931

RESUMO

BACKGROUND: AGK (acylglycerol kinase) was first identified as a mitochondrial transmembrane protein that exhibits a lipid kinase function. Recent studies have established that AGK promotes cancer growth and metastasis, enhances glycolytic metabolism and function fitness of CD8+ T cells, or regulates megakaryocyte differentiation. However, the role of AGK in platelet activation and arterial thrombosis remains to be elaborated. METHODS: We performed hematologic analysis using automated hematology analyzer and investigated platelets morphology by transmission electron microscope. We explored the role of AGK in platelet activation and arterial thrombosis utilizing transgenic mice, platelet functional experiments in vitro, and thrombosis models in vivo. We revealed the regulation effect of AGK on Talin-1 by coimmunoprecipitation, mass spectrometry, immunofluorescence, and Western blot. We tested the role of AGK on lipid synthesis of phosphatidic acid/lysophosphatidic acid and thrombin generation by specific Elisa kits. RESULTS: In this study, we found that AGK depletion or AGK mutation had no effect on the platelet average volumes, the platelet microstructures, or the expression levels of the major platelet membrane receptors. However, AGK deficiency or AGK mutation conspicuously decreased multiple aspects of platelet activation, including agonists-induced platelet aggregation, granules secretion, JON/A binding, spreading on Fg (fibrinogen), and clot retraction. AGK deficiency or AGK mutation also obviously delayed arterial thrombus formation but had no effect on tail bleeding time and platelet procoagulant function. Mechanistic investigation revealed that AGK may promote Talin-1Ser425 phosphorylation and affect the αIIbß3-mediated bidirectional signaling pathway. However, AGK does not affect lipid synthesis of phosphatidic acid/lysophosphatidic acid in platelets. CONCLUSIONS: AGK, through its kinase activity, potentiates platelet activation and arterial thrombosis by promoting Talin-1 Ser425 phosphorylation and affecting the αIIbß3-mediated bidirectional signaling pathway.


Assuntos
Talina , Trombose , Animais , Camundongos , Plaquetas/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Camundongos Transgênicos , Ácidos Fosfatídicos/metabolismo , Ácidos Fosfatídicos/farmacologia , Ativação Plaquetária , Agregação Plaquetária , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Transdução de Sinais , Talina/genética , Talina/metabolismo , Talina/farmacologia , Trombose/patologia
11.
BMC Cancer ; 23(1): 302, 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37013489

RESUMO

BACKGROUND: Talin-1 as a component of multi-protein adhesion complexes plays a role in tumor formation and migration in various malignancies. This study investigated Talin-1 in protein levels as a potential prognosis biomarker in skin tumors. METHODS: Talin-1 was evaluated in 106 skin cancer (33 melanomas and 73 non-melanomas skin cancer (NMSC)) and 11 normal skin formalin-fixed paraffin-embedded (FFPE) tissue samples using immunohistochemical technique on tissue microarrays (TMAs). The association between the expression of Talin-1 and clinicopathological parameters, as well as survival outcomes, were assessed. RESULTS: Our findings from data minings through bioinformatics tools indicated dysregulation of Talin-1 in mRNA levels for skin cancer samples. In addition, there was a statistically significant difference in Talin-1 expression in terms of intensity of staining, percentage of positive tumor cells, and H-score in melanoma tissues compared to NMSC (P = 0.001, P < 0.001, and P < 0.001, respectively). Moreover, high cytoplasmic expression of Talin-1 was found to be associated with significantly advanced stages (P = 0.024), lymphovascular invasion (P = 0.023), and recurrence (P = 0.006) in melanoma cancer tissues. Our results on NMSC showed a statistically significant association between high intensity of staining and the poor differentiation (P = 0.044). No significant associations were observed between Talin-1 expression levels and survival outcomes of melanoma and NMSC patients. CONCLUSION: Our observations showed that higher expression of Talin1 in protein level may be significantly associated with more aggressive tumor behavior and advanced disease in patients with skin cancer. However, further studies are required to find the mechanism of action of Talin-1 in skin cancers.


Assuntos
Melanoma , Neoplasias Cutâneas , Humanos , Talina/genética , Neoplasias Cutâneas/patologia , Melanoma/patologia , Processos Neoplásicos , Prognóstico , Melanoma Maligno Cutâneo
12.
J Cell Biol ; 222(5)2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36880935

RESUMO

Talin-1 is the core mechanosensitive adapter protein linking integrins to the cytoskeleton. The TLN1 gene is comprised of 57 exons that encode the 2,541 amino acid TLN1 protein. TLN1 was previously considered to be expressed as a single isoform. However, through differential pre-mRNA splicing analysis, we discovered a cancer-enriched, non-annotated 51-nucleotide exon in TLN1 between exons 17 and 18, which we refer to as exon 17b. TLN1 is comprised of an N-terminal FERM domain, linked to 13 force-dependent switch domains, R1-R13. Inclusion of exon 17b introduces an in-frame insertion of 17 amino acids immediately after Gln665 in the region between R1 and R2 which lowers the force required to open the R1-R2 switches potentially altering downstream mechanotransduction. Biochemical analysis of this isoform revealed enhanced vinculin binding, and cells expressing this variant show altered adhesion dynamics and motility. Finally, we showed that the TGF-ß/SMAD3 signaling pathway regulates this isoform switch. Future studies will need to consider the balance of these two TLN1 isoforms.


Assuntos
Neoplasias , Talina , Humanos , Talina/genética , Mecanotransdução Celular , Éxons/genética , Proteínas Adaptadoras de Transdução de Sinal
13.
J Mol Recognit ; 36(6): e3012, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36987702

RESUMO

Vinculin is an integral component of integrin adhesions, where it functions as a molecular clutch coupling intracellular contraction to the extracellular matrix. Quantitating its contribution to the reinforcement of newly forming adhesions, however, requires ultrasensitive cell force assays covering short time and low force ranges. Here, we have combined atomic force microscopy-based single-cell force spectroscopy (SCFS) and optical tweezers force spectroscopy to investigate the role of vinculin in reinforcement of individual nascent adhesions during the first 5 min of cell contact with fibronectin or vitronectin. At minimal adhesion times (5-10 s), mouse embryonic fibroblast (MEF) wildtype (wt) and vinculin knock-out (vin(-/-) ) cells develop comparable adhesion forces on the scale of several individual integrin-ligand bonds, confirming that vinculin is dispensable for adhesion initiation. In contrast, after 60 to 120 s, adhesion strength and traction reinforce quickly in wt cells, while remaining low in vin(-/-) cells. Re-expression of full-length vinculin or a constitutively active vinculin mutant (vinT12) in MEF vin(-/-) cells restored adhesion and traction with the same efficiency, while vinculin with a mutated talin-binding head region (vinA50I) or missing the actin-binding tail-domain (vin880) was ineffective. Integrating total internal reflection fluorescence imaging into the SCFS setup furthermore enabled us to correlate vinculin-green fluorescent protein (GFP) recruitment to nascent adhesion sites with the built-up of vinculin-dependent adhesion forces directly. Vinculin recruitment and cell adhesion reinforcement followed synchronous biphasic patterns, suggesting vinculin recruitment, but not activation, as the rate-limiting step for adhesion reinforcement. Combining sensitive SCFS with fluorescence microscopy thus provides insight into the temporal sequence of vinculin-dependent mechanical reinforcement in nascent integrin adhesions.


Assuntos
Fibroblastos , Adesões Focais , Animais , Camundongos , Adesão Celular/fisiologia , Fibroblastos/metabolismo , Adesões Focais/metabolismo , Integrinas/metabolismo , Talina/genética , Talina/química , Talina/metabolismo , Vinculina/genética , Vinculina/química , Vinculina/metabolismo
14.
Gut Microbes ; 15(1): 2192623, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36951501

RESUMO

Pathogenic enteric Escherichia coli present a significant burden to global health. Food-borne enteropathogenic E. coli (EPEC) and Shiga toxin-producing E. coli (STEC) utilize attaching and effacing (A/E) lesions and actin-dense pedestal formation to colonize the gastrointestinal tract. Talin-1 is a large structural protein that links the actin cytoskeleton to the extracellular matrix though direct influence on integrins. Here we show that mice lacking talin-1 in intestinal epithelial cells (Tln1Δepi) have heightened susceptibility to colonic disease caused by the A/E murine pathogen Citrobacter rodentium. Tln1Δepi mice exhibit decreased survival, and increased colonization, colon weight, and histologic colitis compared to littermate Tln1fl/fl controls. These findings were associated with decreased actin polymerization and increased infiltration of innate myeloperoxidase-expressing immune cells, confirmed as neutrophils by flow cytometry, but more bacterial dissemination deep into colonic crypts. Further evaluation of the immune population recruited to the mucosa in response to C. rodentium revealed that loss of Tln1 in colonic epithelial cells (CECs) results in impaired recruitment and activation of T cells. C. rodentium infection-induced colonic mucosal hyperplasia was exacerbated in Tln1Δepi mice compared to littermate controls. We demonstrate that this is associated with decreased CEC apoptosis and crowding of proliferating cells in the base of the glands. Taken together, talin-1 expression by CECs is important in the regulation of both epithelial renewal and the inflammatory T cell response in the setting of colitis caused by C. rodentium, suggesting that this protein functions in CECs to limit, rather than contribute to the pathogenesis of this enteric infection.


Assuntos
Colite , Infecções por Enterobacteriaceae , Microbioma Gastrointestinal , Animais , Camundongos , Citrobacter rodentium , Talina/genética , Escherichia coli/metabolismo , Actinas/metabolismo , Linfócitos T/metabolismo , Colite/microbiologia , Colo/microbiologia , Mucosa Intestinal/metabolismo , Infecções por Enterobacteriaceae/microbiologia , Camundongos Endogâmicos C57BL
15.
Cell Death Dis ; 14(1): 73, 2023 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-36717550

RESUMO

Dissemination of high-grade serous ovarian cancer (HG-SOC) in the omentum and intercalation into a mesothelial cell (MC) monolayer depends on functional α5ß1 integrin (Intα5ß1) activity. Although the binding of Intα5ß1 to fibronectin drives these processes, other molecular mechanisms linked to integrin inside-out signaling might support metastatic dissemination. Here, we report a novel interactive signaling that contributes to Intα5ß1 activation and accelerates tumor cells toward invasive disease, involving the protein ß-arrestin1 (ß-arr1) and the activation of the endothelin A receptor (ETAR) by endothelin-1 (ET-1). As demonstrated in primary HG-SOC cells and SOC cell lines, ET-1 increased Intß1 and downstream FAK/paxillin activation. Mechanistically, ß-arr1 directly interacts with talin1 and Intß1, promoting talin1 phosphorylation and its recruitment to Intß1, thus fueling integrin inside-out activation. In 3D spheroids and organotypic models mimicking the omentum, ETAR/ß-arr1-driven Intα5ß1 signaling promotes the survival of cell clusters, with mesothelium-intercalation capacity and invasive behavior. The treatment with the antagonist of ETAR, Ambrisentan (AMB), and of Intα5ß1, ATN161, inhibits ET-1-driven Intα5ß1 activity in vitro, and tumor cell adhesion and spreading to intraperitoneal organs and Intß1 activity in vivo. As a prognostic factor, high EDNRA/ITGB1 expression correlates with poor HG-SOC clinical outcomes. These findings highlight a new role of ETAR/ß-arr1 operating an inside-out integrin activation to modulate the metastatic process and suggest that in the new integrin-targeting programs might be considered that ETAR/ß-arr1 regulates Intα5ß1 functional pathway.


Assuntos
Integrina alfa5beta1 , Neoplasias Ovarianas , Receptor de Endotelina A , Talina , beta-Arrestina 1 , Feminino , Humanos , beta-Arrestina 1/genética , beta-Arrestina 1/metabolismo , Carcinoma Epitelial do Ovário/genética , Linhagem Celular Tumoral , Endotelina-1/metabolismo , Neoplasias Ovarianas/metabolismo , Receptor de Endotelina A/genética , Receptor de Endotelina A/metabolismo , Integrina alfa5beta1/metabolismo , Talina/genética , Talina/metabolismo
16.
J Cell Biol ; 222(1)2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36250940

RESUMO

Integrin endocytosis is essential for many fundamental cellular processes. Whether and how the internalization impacts cellular mechanics remains elusive. Whereas previous studies reported the contribution of the integrin activator, talin, in force development, the involvement of inhibitors is less documented. We identified ICAP-1 as an integrin inhibitor involved in mechanotransduction by co-working with NME2 to control clathrin-mediated endocytosis of integrins at the edge of focal adhesions (FA). Loss of ICAP-1 enables ß3-integrin-mediated force generation independently of ß1 integrin. ß3-integrin-mediated forces were associated with a decrease in ß3 integrin dynamics stemming from their reduced diffusion within adhesion sites and slow turnover of FA. The decrease in ß3 integrin dynamics correlated with a defect in integrin endocytosis. ICAP-1 acts as an adaptor for clathrin-dependent endocytosis of integrins. ICAP-1 controls integrin endocytosis by interacting with NME2, a key regulator of dynamin-dependent clathrin-coated pits fission. Control of clathrin-mediated integrin endocytosis by an inhibitor is an unprecedented mechanism to tune forces at FA.


Assuntos
Clatrina , Endocitose , Adesões Focais , Integrina beta1 , Integrina beta3 , Clatrina/metabolismo , Endocitose/fisiologia , Integrina beta1/genética , Mecanotransdução Celular , Talina/genética
17.
Front Immunol ; 13: 951280, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36238292

RESUMO

Activation of the integrin phagocytic receptors CR3 (αMß2, CD11b/CD18) and CR4 (αXß2, CD11c/CD18) requires Rap1 activation and RIAM function. RIAM controls integrin activation by recruiting Talin to ß2 subunits, enabling the Talin-Vinculin interaction, which in term bridges integrins to the actin-cytoskeleton. RIAM also recruits VASP to phagocytic cups and facilitates VASP phosphorylation and function promoting particle internalization. Using a CRISPR-Cas9 knockout approach, we have analyzed the requirement for RIAM, VASP and Vinculin expression in neutrophilic-HL-60 cells. All knockout cells displayed abolished phagocytosis that was accompanied by a significant and specific reduction in ITGAM (αM), ITGAX (αX) and ITGB2 (ß2) mRNA, as revealed by RT-qPCR. RIAM, VASP and Vinculin KOs presented reduced cellular F-actin content that correlated with αM expression, as treatment with the actin filament polymerizing and stabilizing drug jasplakinolide, partially restored αM expression. In general, the expression of αX was less responsive to jasplakinolide treatment than αM, indicating that regulatory mechanisms independent of F-actin content may be involved. The Serum Response Factor (SRF) was investigated as the potential transcription factor controlling αMß2 expression, since its coactivator MRTF-A requires actin polymerization to induce transcription. Immunofluorescent MRTF-A localization in parental cells was primarily nuclear, while in knockouts it exhibited a diffuse cytoplasmic pattern. Localization of FHL-2 (SRF corepressor) was mainly sub-membranous in parental HL-60 cells, but in knockouts the localization was disperse in the cytoplasm and the nucleus, suggesting RIAM, VASP and Vinculin are required to maintain FHL-2 close to cytoplasmic membranes, reducing its nuclear localization and inhibiting its corepressor activity. Finally, reexpression of VASP in the VASP knockout resulted in a complete reversion of the phenotype, as knock-ins restored αM expression. Taken together, our results suggest that RIAM, VASP and Vinculin, are necessary for the correct expression of αMß2 and αXß2 during neutrophilic differentiation in the human promyelocytic HL-60 cell line, and strongly point to an involvement of these proteins in the acquisition of a phagocytic phenotype.


Assuntos
Actinas , Talina , Proteínas Adaptadoras de Transdução de Sinal , Moléculas de Adesão Celular , Proteínas Correpressoras , Células HL-60 , Humanos , Integrina alfaXbeta2 , Integrinas/metabolismo , Antígeno de Macrófago 1 , Proteínas de Membrana , Proteínas dos Microfilamentos , Neutrófilos/metabolismo , Fosfoproteínas , RNA Mensageiro , Fator de Resposta Sérica , Talina/genética , Talina/metabolismo , Vinculina/genética , Vinculina/metabolismo
18.
Cancer Biomark ; 35(3): 269-292, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36245369

RESUMO

METHODS: Talin-1 protein was demonstrated as a potential prognostic marker in renal cell carcinoma (RCC) using bioinformatics analysis. We, therefore, examined the protein expression levels and prognostic significance of Talin-1 with a clinical follow-up in a total of 269 tissue specimens from three important subtypes of RCC and 30 adjacent normal samples using immunohistochemistry. Then, we used combined analysis with B7-H3 to investigate higher prognostic values. RESULTS: The results showed that high membranous and cytoplasmic expression of Talin-1 was significantly associated with advanced nucleolar grade, microvascular invasion, histological tumor necrosis, and invasion to Gerota's fascia in clear cell RCC (ccRCC). In addition, high membranous and cytoplasmic expression of Talin-1 was found to be associated with significantly poorer disease-specific survival (DSS) and progression-free survival (PFS). Moreover, increased cytoplasmic expression of Talin-1High/B7-H3High compared to the other phenotypes was associated with tumor aggressiveness and progression of the disease, and predicted a worse clinical outcome, which may be an effective biomarker to identify ccRCC patients at high risk of recurrence and metastasis. CONCLUSIONS: Collectively, these observations indicate that Talin-1 is an important molecule involved in the spread and progression of ccRCC when expressed particularly in the cytoplasm and may serve as a novel prognostic biomarker in this subtype. Furthermore, a combined analysis of Talin-1/B7-H3 indicated an effective biomarker to predict the progression of disease and prognosis in ccRCC.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Biomarcadores Tumorais/genética , Carcinoma de Células Renais/metabolismo , Neoplasias Renais/metabolismo , Prognóstico , Talina/genética
19.
Anticancer Res ; 42(10): 4715-4725, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36192016

RESUMO

BACKGROUND/AIM: Liver cancer is the third-most lethal cancer worldwide. Abnormal expression of microRNAs (miRNAs) modulates gene expression to exert oncogenic or tumor-suppressive effects in liver cancer. However, the biological role of miR-1303 in the progression of liver cancer and its regulatory mechanism has not been elucidated. MATERIALS AND METHODS: The expression levels of miR-1303 were measured in liver-cancer tissues of patients and cell lines by RT-qPCR. Huh-7 and HepG2 liver-cancer cells were co-transfected by TLN1 and miR-1303 constructs. Cell viability was measured by the CCk-8 assay and colony-formation assay. Flow cytometry was used to measure cell apoptosis. Cell migration and invasion were determined by wound-healing and transwell-chamber assays. RT-PCR and western-blotting were used to determine miR-1303 inhibitor-associated marker expression, such as Bax, cleaved-caspase-3 and cleaved-caspase-9. RESULTS: miR-1303 expression was strongly up-regulated in liver-cancer tissues and cells. Knockdown of miR-1303 attenuated cell proliferation, migration and invasion, and induced apoptosis in liver-cancer cells. Talin 1 (TLN1) and miR-1303 expression were negatively correlated, possibly by miR-1303 targeting the TLN1 gene. TLN1 expression enhanced the efficacy of an miR-1303 inhibitor to reduce liver-cancer cell proliferation and invasion. CONCLUSION: miR-1303 plays an important role in liver cancer, which is inhibited by TLN1 expression.


Assuntos
Neoplasias Hepáticas , MicroRNAs , Talina , Apoptose/genética , Caspase 3/metabolismo , Caspase 9/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Invasividade Neoplásica/genética , Talina/genética , Talina/metabolismo , Proteína X Associada a bcl-2/metabolismo
20.
Development ; 149(23)2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36314606

RESUMO

The assembly of a mature vascular network involves coordinated endothelial cell (EC) shape changes, including the process of EC elongation. How EC elongation is dynamically regulated in vivo is not fully understood. Here, we have generated a zebrafish mutant that is deficient for the integrin adaptor protein Talin 1 (Tln1). Using a new focal adhesion (FA) marker line expressing endothelial Vinculinb-eGFP, we demonstrate that EC FAs function dynamically and are lost in our tln1 mutants, allowing us to uncouple the primary roles of FAs in EC morphogenesis from the secondary effects that occur due to systemic vessel failure or loss of blood flow. Tln1 loss led to compromised F-actin rearrangements, perturbed EC elongation and disrupted cell-cell junction linearisation in vessel remodelling. Finally, chemical induction of actin polymerisation restored actin dynamics and EC elongation during vascular morphogenesis. Together, we identify that FAs are essential for EC elongation and junction linearisation in flow-pressured vessels and that they influence actin polymerisation in cellular morphogenesis. These observations can explain the severely compromised vessel beds and vascular leakage observed in mutant models that lack integrin signalling. This article has an associated 'The people behind the papers' interview.


Assuntos
Adesões Focais , Talina , Animais , Adesões Focais/metabolismo , Talina/genética , Talina/metabolismo , Actinas/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Células Endoteliais/metabolismo , Integrinas/genética , Integrinas/metabolismo , Adesão Celular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...