Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 299(9): 105076, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37481208

RESUMO

The bacterial cell wall consists of a three-dimensional peptidoglycan layer, composed of peptides linked to the sugars N-acetylmuramic acid (MurNAc) and GlcNAc. Unlike other bacteria, the pathogenic Tannerella forsythia, a member of the red complex group of bacteria associated with the late stages of periodontitis, lacks biosynthetic pathways for MurNAc production and therefore obtains MurNAc from the environment. Sugar kinases play a crucial role in the MurNAc recycling process, activating the sugar molecules by phosphorylation. In this study, we present the first crystal structures of a MurNAc kinase, called murein sugar kinase (MurK), in its unbound state as well as in complexes with the ATP analog ß-γ-methylene adenosine triphosphate (AMP-PCP) and with MurNAc. We also determined the crystal structures of K1058, a paralogous MurNAc kinase of T. forsythia, in its unbound state and in complex with MurNAc. We identified the active site and residues crucial for MurNAc specificity as the less bulky side chains of S133, P134, and L135, which enlarge the binding cavity for the lactyl ether group, unlike the glutamate or histidine residues present in structural homologs. In establishing the apparent kinetic parameters for both enzymes, we showed a comparable affinity for MurNAc (Km 180 µM and 30 µM for MurK and K1058, respectively), with MurK being over two hundred times faster than K1058 (Vmax 80 and 0.34 µmol min-1 mg-1, respectively). These data might support a structure-guided approach to development of inhibitory MurNAc analogs for pathogen MurK enzymes.


Assuntos
Modelos Moleculares , Ácidos Murâmicos , Fosfotransferases , Tannerella forsythia , Ácidos Murâmicos/metabolismo , Peptidoglicano/metabolismo , Tannerella forsythia/enzimologia , Fosfotransferases/química , Fosfotransferases/metabolismo , Estrutura Terciária de Proteína , Cristalografia por Raios X , Domínio Catalítico , Ativação Enzimática
2.
Biomolecules ; 11(12)2021 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-34944439

RESUMO

Diverse members of the Bacteroidetes phylum have general protein O-glycosylation systems that are essential for processes such as host colonization and pathogenesis. Here, we analyzed the function of a putative fucosyltransferase (FucT) family that is widely encoded in Bacteroidetes protein O-glycosylation genetic loci. We studied the FucT orthologs of three Bacteroidetes species-Tannerella forsythia, Bacteroides fragilis, and Pedobacter heparinus. To identify the linkage created by the FucT of B. fragilis, we elucidated the full structure of its nine-sugar O-glycan and found that l-fucose is linked ß1,4 to glucose. Of the two fucose residues in the T. forsythia O-glycan, the fucose linked to the reducing-end galactose was shown by mutational analysis to be l-fucose. Despite the transfer of l-fucose to distinct hexose sugars in the B. fragilis and T. forsythia O-glycans, the FucT orthologs from B. fragilis, T. forsythia, and P. heparinus each cross-complement the B. fragilis ΔBF4306 and T. forsythia ΔTanf_01305 FucT mutants. In vitro enzymatic analyses showed relaxed acceptor specificity of the three enzymes, transferring l-fucose to various pNP-α-hexoses. Further, glycan structural analysis together with fucosidase assays indicated that the T. forsythia FucT links l-fucose α1,6 to galactose. Given the biological importance of fucosylated carbohydrates, these FucTs are promising candidates for synthetic glycobiology.


Assuntos
Bacteroides/crescimento & desenvolvimento , Fucosiltransferases/química , Fucosiltransferases/genética , Polissacarídeos/química , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bacteroides/enzimologia , Bacteroides fragilis/enzimologia , Bacteroides fragilis/crescimento & desenvolvimento , Configuração de Carboidratos , Evolução Molecular , Fucosiltransferases/metabolismo , Regulação Bacteriana da Expressão Gênica , Glicosilação , Modelos Moleculares , Pedobacter/enzimologia , Pedobacter/crescimento & desenvolvimento , Polissacarídeos/metabolismo , Tannerella forsythia/enzimologia , Tannerella forsythia/crescimento & desenvolvimento
3.
J Enzyme Inhib Med Chem ; 36(1): 1267-1281, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34210221

RESUMO

Mirolysin is a secretory protease of Tannerella forsythia, a member of the dysbiotic oral microbiota responsible for periodontitis. In this study, we show that mirolysin latency is achieved by a "cysteine-switch" mechanism exerted by Cys23 in the N-terminal profragment. Mutation of Cys23 shortened the time needed for activation of the zymogen from several days to 5 min. The mutation also decreased the thermal stability and autoproteolysis resistance of promirolysin. Mature mirolysin is a thermophilic enzyme and shows optimal activity at 65 °C. Through NMR-based fragment screening, we identified a small molecule (compound (cpd) 9) that blocks promirolysin maturation and functions as a competitive inhibitor (Ki = 3.2 µM), binding to the S1' subsite of the substrate-binding pocket. Cpd 9 shows superior specificity and does not interact with other T. forsythia proteases or Lys/Arg-specific proteases.


Assuntos
Peptídeo Hidrolases/metabolismo , Periodontite/microbiologia , Inibidores de Proteases/farmacologia , Tannerella forsythia/enzimologia , Proteínas de Bactérias/efeitos dos fármacos , Proteínas de Bactérias/metabolismo , Descoberta de Drogas , Eletroforese em Gel de Poliacrilamida , Estabilidade Enzimática , Humanos , Espectroscopia de Ressonância Magnética/métodos , Simulação de Acoplamento Molecular , Estrutura Molecular , Peptídeo Hidrolases/efeitos dos fármacos , Inibidores de Proteases/química , Tannerella forsythia/isolamento & purificação , Temperatura
4.
J Biol Chem ; 296: 100263, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33837744

RESUMO

The development of a targeted therapy would significantly improve the treatment of periodontitis and its associated diseases including Alzheimer's disease, rheumatoid arthritis, and cardiovascular diseases. Glutaminyl cyclases (QCs) from the oral pathogens Porphyromonas gingivalis, Tannerella forsythia, and Prevotella intermedia represent attractive target enzymes for small-molecule inhibitor development, as their action is likely to stabilize essential periplasmic and outer membrane proteins by N-terminal pyroglutamination. In contrast to other microbial QCs that utilize the so-called type I enzymes, these oral pathogens possess sequences corresponding to type II QCs, observed hitherto only in animals. However, whether differences between these bacteroidal QCs and animal QCs are sufficient to enable development of selective inhibitors is not clear. To learn more, we recombinantly expressed all three QCs. They exhibit comparable catalytic efficiencies and are inhibited by metal chelators. Crystal structures of the enzymes from P. gingivalis (PgQC) and T. forsythia (TfQC) reveal a tertiary structure composed of an eight-stranded ß-sheet surrounded by seven α-helices, typical of animal type II QCs. In each case, an active site Zn ion is tetrahedrally coordinated by conserved residues. Nevertheless, significant differences to mammalian enzymes are found around the active site of the bacteroidal enzymes. Application of a PgQC-selective inhibitor described here for the first time results in growth inhibition of two P. gingivalis clinical isolates in a dose-dependent manner. The insights gained by these studies will assist in the development of highly specific small-molecule bacteroidal QC inhibitors, paving the way for alternative therapies against periodontitis and associated diseases.


Assuntos
Aminoaciltransferases/química , Periodontite/microbiologia , Porphyromonas gingivalis/enzimologia , Prevotella intermedia/enzimologia , Aminoaciltransferases/antagonistas & inibidores , Aminoaciltransferases/genética , Aminoaciltransferases/ultraestrutura , Domínio Catalítico/efeitos dos fármacos , Cristalografia por Raios X , Humanos , Periodontite/tratamento farmacológico , Periodontite/genética , Porphyromonas gingivalis/patogenicidade , Prevotella intermedia/patogenicidade , Estrutura Terciária de Proteína/efeitos dos fármacos , Ácido Pirrolidonocarboxílico/química , Ácido Pirrolidonocarboxílico/metabolismo , Tannerella forsythia/enzimologia , Tannerella forsythia/patogenicidade
5.
Microbiology (Reading) ; 165(11): 1181-1197, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31517596

RESUMO

Key to onset and progression of periodontitis is a complex relationship between oral bacteria and the host. The organisms most associated with severe periodontitis are the periodontal pathogens of the red complex: Tannerella forsythia, Treponema denticola and Porphyromonas gingivalis. These organisms express sialidases, which cleave sialic acid from host glycoproteins, and contribute to disease through various mechanisms. Here, we expressed and purified recombinant P. gingivalis sialidase SiaPG (PG_0352) and characterized its activity on a number of substrates, including host sialoglycoproteins and highlighting the inability to cleave diacetylated sialic acids - a phenomenon overcome by the NanS sialate-esterase from T. forsythia. Indeed SiaPG required NanS to maximize sialic acid harvesting from heavily O-acetylated substrates such as bovine salivary mucin, hinting at the possibility of interspecies cooperation in sialic acid release from host sources by these members of the oral microbiota. Activity of SiaPG and P. gingivalis was inhibited using the commercially available chemotherapeutic zanamivir, indicating its potential as a virulence inhibitor, which also inhibited sialic acid release from mucin, and was capable of inhibiting biofilm formation of P. gingivalis on oral glycoprotein sources. Zanamivir also inhibited attachment and invasion of oral epithelial cells by P. gingivalis and other periodontal pathogens, both in monospecies but also in multispecies infection experiments, indicating potential to suppress host-pathogen interactions of a mixed microbial community. This study broadens our understanding of the multifarious roles of bacterial sialidases in virulence, and indicates that their inhibition with chemotherapeutics could be a promising strategy for periodontitis therapy.


Assuntos
Proteínas de Bactérias/metabolismo , Interações Hospedeiro-Patógeno , Neuraminidase/metabolismo , Porphyromonas gingivalis/enzimologia , Fatores de Virulência/metabolismo , Proteínas de Bactérias/genética , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Linhagem Celular , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Humanos , Interações Microbianas , Mucinas/metabolismo , Mutação , Neuraminidase/genética , Polissacarídeos/metabolismo , Porphyromonas gingivalis/efeitos dos fármacos , Porphyromonas gingivalis/crescimento & desenvolvimento , Porphyromonas gingivalis/patogenicidade , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sialoglicoproteínas/metabolismo , Tannerella forsythia/enzimologia , Fatores de Virulência/genética , Zanamivir/farmacologia
6.
Methods Mol Biol ; 1954: 269-278, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30864139

RESUMO

The characterization of a recombinant glycosidase can be done with commercially available substrates, which enable testing of enzyme functionality and determination of linkage specificity. Colorimetric assays with p-nitrophenyl substrates provide a relatively simple and fast way of screening conditions which could affect enzyme activity (buffer, pH, ion dependence, temperature). These substrates are useful for the determination of activity optima and the characterization of basic activity parameters. However, testing for linkage specificity should be performed on more complex sugars presenting a range of different glycosidic bonds and might need more sophisticated methods of analysis. This protocol provides comprehensive instructions on how to perform an initial characterization of your glycosidase using a recombinant α-L-fucosidase as an example.


Assuntos
Colorimetria/métodos , Ensaios Enzimáticos/métodos , Tannerella forsythia/enzimologia , alfa-L-Fucosidase/metabolismo , Infecções por Bactérias Gram-Negativas/microbiologia , Humanos , Concentração de Íons de Hidrogênio , Cinética , Nitrofenóis/metabolismo , Proteínas Recombinantes/metabolismo , Especificidade por Substrato
7.
Mol Oral Microbiol ; 33(6): 407-419, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30171738

RESUMO

In this study, we characterized a serine protease from Tannerella forsythia that degrades gelatin, type I, and III collagen. Tannerella forsythia is associated with periodontitis progression and severity. The primary goal of this research was to understand the mechanisms by which T. forsythia contributes to periodontitis progression. One of our previous metatranscriptomic analysis revealed that during periodontitis progression T. forsythia highly expressed the bfor_1659 ORF. The N-terminal end is homologous to dipeptidyl aminopeptidase IV (DPP IV). DPP IV is a serine protease that cleaves X-Pro or X-Ala dipeptide from the N-terminal end of proteins. Collagen type I is rich in X-Pro and X-Ala sequences, and it is the primary constituent of the periodontium. This work assessed the collagenolytic and gelatinolytic properties of BFOR_1659. To that end, the complete BFOR_1659 and its domains were purified as His-tagged recombinant proteins, and their collagenolytic activity was tested on collagen-like substrates, collagen type I and III combined, and on the extracellular matrix (ECM) formed on human gingival fibroblasts culture HGF-1. BFOR_1659 was only found in T. forsythia supernatants, highlighting its potential role on the pathogenicity of T. forsythia. We also found that BFOR_1659 efficiently degrades all tested substrates but the individual domains were inactive. Given that BFOR_1659 is highly expressed in the periodontal pocket, its clinical relevance is suggested to periodontitis progression.


Assuntos
Colágeno Tipo III/metabolismo , Colágeno Tipo I/metabolismo , Dipeptidil Peptidase 4/metabolismo , Tannerella forsythia/enzimologia , Linhagem Celular , Fibroblastos/metabolismo , Gengiva/metabolismo , Humanos , Bolsa Periodontal/microbiologia
8.
Mol Oral Microbiol ; 33(3): 240-248, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29498485

RESUMO

Porphyromonas gingivalis and Tannerella forsythia secrete proteases, gingipains and KLIKK-proteases. In addition, T. forsythia produces a serpin (miropin) with broad inhibitory spectrum. The aim of this pilot study was to determine the level of expression of miropin and individual proteases in vivo in periodontal and peri-implant health and disease conditions. Biofilm and gingival crevicular fluid (GCF)/ peri-implant sulcular fluid (PISF) samples were taken from healthy tooth and implant sites (n = 10), gingivitis and mucositis sites (n = 12), and periodontitis and peri-implantitis sites (n = 10). Concentration of interleukin-8 (IL-8), IL-1ß and IL-10 in GCF was determined by enzyme-linked immunosorbent assay. Loads of P. gingivalis and T. forsythia and the presence of proteases and miropin genes were assessed in biofilm by quantitative PCR, whereas gene expression was estimated by quantitative RT-PCR. The presence of P. gingivalis and T. forsythia, as well as the level of IL-8 and IL-1ß, were associated with disease severity in the periodontal and peri-implant tissues. In biofilm samples harboring T. forsythia, genes encoding proteases were found to be present at 72.4% for karilysin and 100% for other KLIKK-protease genes and miropin. At the same time, detectable mRNA expression of individual genes ranged from 20.7% to 58.6% of samples (for forsylisin and miropsin-1, respectively). In comparison with the T. forsythia proteases, miropin and the gingipains were highly expressed. The level of expression of gingipains was associated with those of miropin and certain T. forsythia proteases around teeth but not implants. Cumulatively, KLIKK-proteases and especially miropin, might play a role in pathogenesis of both periodontal and peri-implant diseases.


Assuntos
Peptídeo Hidrolases/biossíntese , Peri-Implantite/metabolismo , Periodontite/metabolismo , Porphyromonas gingivalis/enzimologia , Inibidores de Proteases/metabolismo , Serpinas/biossíntese , Tannerella forsythia/enzimologia , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Biofilmes , Biomarcadores , Implantes Dentários/microbiologia , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos/genética , Líquido do Sulco Gengival/química , Gengivite/metabolismo , Gengivite/microbiologia , Humanos , Interleucina-10/metabolismo , Interleucina-1beta/metabolismo , Interleucina-8/metabolismo , Mucosite/metabolismo , Mucosite/microbiologia , Peptídeo Hidrolases/genética , Peri-Implantite/microbiologia , Periodontite/microbiologia , Projetos Piloto , Porphyromonas gingivalis/genética , Porphyromonas gingivalis/patogenicidade , RNA Mensageiro/metabolismo , Serpinas/genética , Suécia , Tannerella forsythia/genética , Tannerella forsythia/patogenicidade
9.
Biochem J ; 475(6): 1159-1176, 2018 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-29483296

RESUMO

Bacterial sialidases cleave terminal sialic acid from a variety of host glycoproteins, and contribute to survival and growth of many human-dwelling bacterial species, including various pathogens. Tannerella forsythia, an oral, Gram-negative, fastidious anaerobe, is a key organism in periodontal disease and possesses a dedicated sialic acid utilisation and scavenging (nan) operon, including NanH sialidase. Here, we describe biochemical characterisation of recombinant NanH, including its action on host-relevant sialoglycans such as sialyl Lewis A and sialyl Lewis X (SLeA/X), and on human cell-attached sialic acids directly, uncovering that it is a highly active broad specificity sialidase. Furthermore, the N-terminal domain of NanH was hypothesised and proved to be capable of binding to a range of sialoglycans and non-sialylated derivatives with Kd in the micromolar range, as determined by steady-state tryptophan fluorescence spectroscopy, but it has no catalytic activity in isolation from the active site. We consider this domain to represent the founding member of a novel subfamily of carbohydrate-binding module (CBM), involved in glycosidase-ligand binding. In addition, we created a catalytically inactive version of the NanH enzyme (FRIP → YMAP) that retained its ability to bind sialic acid-containing ligands and revealed for the first time that binding activity of a CBM is enhanced by association with the catalytic domain. Finally, we investigated the importance of Lewis-type sialoglycans on T. forsythia-host interactions, showing that nanomolar amounts of SLeA/X were capable of reducing invasion of oral epithelial cells by T. forsythia, suggesting that these are key ligands for bacterial-cellular interactions during periodontal disease.


Assuntos
Metabolismo dos Carboidratos , Interações Hospedeiro-Patógeno , Neuraminidase/química , Neuraminidase/metabolismo , Domínios e Motivos de Interação entre Proteínas , Tannerella forsythia/enzimologia , Sítios de Ligação , Metabolismo dos Carboidratos/genética , Domínio Catalítico , Interações Hospedeiro-Patógeno/genética , Humanos , Ácido N-Acetilneuramínico/metabolismo , Neuraminidase/genética , Domínios e Motivos de Interação entre Proteínas/genética , Ácidos Siálicos/metabolismo , Especificidade por Substrato , Tannerella forsythia/genética , Tannerella forsythia/metabolismo , Tannerella forsythia/patogenicidade , Células Tumorais Cultivadas
10.
Mol Oral Microbiol ; 33(2): 125-132, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29247483

RESUMO

Tannerella forsythia is a Gram-negative oral pathogen strongly associated with periodontitis. This bacterium has an absolute requirement for exogenous N-acetylmuramic acid (MurNAc), an amino sugar that forms the repeating disaccharide unit with amino sugar N-acetylglucosamine (GlcNAc) of the peptidoglycan backbone. In silico genome analysis indicates that T. forsythia lacks the key biosynthetic enzymes needed for the de novo synthesis of MurNAc, and so relies on alternative ways to meet its requirement for peptidoglycan biosynthesis. In the subgingival niche, the bacterium can acquire MurNAc and peptidoglycan fragments (muropeptides) released by the cohabiting bacteria during their cell wall breakdown associated with cell division. Tannerella forsythia is able to also use host sialic acid (Neu5Ac) in lieu of MurNAc or muropeptides for its survival during the biofilm growth. Evidence suggests that the bacterium might be able to shunt sialic acid into a metabolic pathway leading to peptidoglycan synthesis. In this review, we explore the mechanisms by which T. forsythia is able to scavenge MurNAc, muropeptide and sialic acid for its peptidoglycan synthesis, and the impact of these scavenging activities on pathogenesis.


Assuntos
Peptidoglicano/biossíntese , Tannerella forsythia/metabolismo , Acetilglucosamina/metabolismo , Biofilmes/crescimento & desenvolvimento , Parede Celular/metabolismo , Meio Ambiente , Interações Hospedeiro-Patógeno/fisiologia , Redes e Vias Metabólicas/genética , Ácidos Murâmicos/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Periodontite/microbiologia , Tannerella forsythia/enzimologia , Tannerella forsythia/genética , Tannerella forsythia/patogenicidade
11.
Appl Environ Microbiol ; 84(1)2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29079615

RESUMO

Tannerella forsythia and Fusobacterium nucleatum are dental plaque bacteria implicated in the development of periodontitis. These two species have been shown to form synergistic biofilms and have been found to be closely associated in dental plaque biofilms. A number of genetic loci for TonB-dependent membrane receptors (TDR) for glycan acquisition, with many existing in association with genes coding for enzymes involved in the breakdown of complex glycans, have been identified in T. forsythia In this study, we focused on a locus, BFO_0186-BFO_0188, that codes for a predicted TDR-SusD transporter along with a putative ß-glucan hydrolyzing enzyme (BFO_0186). This operon is located immediately downstream of a 2-gene operon that codes for a putative stress-responsive extracytoplasmic function (ECF) sigma factor and an anti-sigma factor. Here, we show that BFO_0186 expresses a ß-glucanase that cleaves glucans with ß-1,6 and ß-1,3 linkages. Furthermore, the BFO_0186-BFO_0188 locus is upregulated, with an induction of ß-glucanase activity, in cobiofilms of T. forsythia and F. nucleatum The ß-glucanase activity in mixed biofilms in turn leads to an enhanced hydrolysis of ß-glucans and release of glucose monomers and oligomers as nutrients for F. nucleatum In summary, our study highlights the role of T. forsythia ß-glucanase expressed by the asaccharolytic oral bacterium T. forsythia in the development of T. forsythia-F. nucleatum mixed species biofilms, and suggest that dietary ß-glucans might contribute in plaque development and periodontal disease pathogenesis.IMPORTANCE The development of dental plaque biofilm is a complex process in which metabolic, chemical and physical interactions between bacteria take a central role. Previous studies have shown that the dental pathogens T. forsythia and F. nucleatum form synergistic biofilms and are closely associated in human dental plaque. In this study, we show that ß-glucanase from the periodontal pathogen T. forsythia plays a role in the formation of T. forsythia-F. nucleatum cobiofilms by hydrolyzing ß-glucans to glucose as a nutrient. We also unveiled that the expression of T. forsythia ß-glucanase is induced in response to F. nucleatum sensing. This study highlights the involvement of ß-glucanase activity in the development of T. forsythia-F. nucleatum biofilms and suggests that intake of dietary ß-glucans might be a contributing risk factor in plaque development and periodontal disease pathogenesis.


Assuntos
Biofilmes/crescimento & desenvolvimento , Placa Dentária/microbiologia , Fusobacterium nucleatum/fisiologia , Tannerella forsythia/enzimologia , Fusobacterium nucleatum/crescimento & desenvolvimento , Humanos
12.
Infect Immun ; 85(9)2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28630069

RESUMO

Severe periodontitis is known to aggravate diabetes mellitus, though molecular events related to that link have not been fully elucidated. Porphyromonas gingivalis, a major pathogen of periodontitis, expresses dipeptidyl peptidase 4 (DPP4), which is involved in regulation of blood glucose levels by cleaving incretins in humans. We examined the enzymatic characteristics of DPP4 from P. gingivalis as well as two other periodontopathic bacteria, Tannerella forsythia and Prevotella intermedia, and determined whether it is capable of regulating blood glucose levels. Cell-associated DPP4 activity was found in those microorganisms, which was effectively suppressed by inhibitors of human DPP4, and molecules sized 73 kDa in P. gingivalis, and 71 kDa in T. forsythia and P. intermedia were immunologically detected. The kcat/Km values of recombinant DPP4s ranged from 721 ± 55 to 1,283 ± 23 µM-1s-1 toward Gly-Pro-4-methylcoumaryl-7-amide (MCA), while those were much lower for His-Ala-MCA. Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) analysis showed His/Tyr-Ala dipeptide release from the N termini of incretins, glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinotropic polypeptide, respectively, with the action of microbial DPP4. Moreover, intravenous injection of DPP4 into mice decreased plasma active GLP-1 and insulin levels, accompanied by a substantial elevation in blood glucose over the control after oral glucose administration. These results are the first to show that periodontopathic bacterial DPP4 is capable of modulating blood glucose levels the same as mammalian DPP4; thus, the incidence of periodontopathic bacteremia may exacerbate diabetes mellitus via molecular events of bacterial DPP4 activities.


Assuntos
Glicemia , Dipeptidil Peptidase 4/metabolismo , Incretinas/metabolismo , Porphyromonas gingivalis/enzimologia , Prevotella intermedia/enzimologia , Tannerella forsythia/enzimologia , Animais , Dipeptidil Peptidase 4/genética , Feminino , Polipeptídeo Inibidor Gástrico/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Insulina/sangue , Camundongos Endogâmicos C57BL , Proteólise , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
13.
Glycobiology ; 27(6): 555-567, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28334934

RESUMO

The occurrence of nonulosonic acids in bacteria is wide-spread and linked to pathogenicity. However, the knowledge of cognate nonulosonic acid transferases is scarce. In the periodontopathogen Tannerella forsythia, several proposed virulence factors carry strain-specifically either a pseudaminic or a legionaminic acid derivative as terminal sugar on an otherwise structurally identical, protein-bound oligosaccharide. This study aims to shed light on the transfer of either nonulosonic acid derivative on a proximal N-acetylmannosaminuronic acid residue within the O-glycan structure, exemplified with the bacterium's abundant S-layer glycoproteins. Bioinformatic analyses provided the candidate genes Tanf_01245 (strain ATCC 43037) and TFUB4_00887 (strain UB4), encoding a putative pseudaminic and a legionaminic acid derivative transferase, respectively. These transferases have identical C-termini and contain motifs typical of glycosyltransferases (DXD) and bacterial sialyltransferases (D/E-D/E-G and HP). They share homology to type B glycosyltransferases and TagB, an enzyme catalyzing glycerol transfer to an N-acetylmannosamine residue in teichoic acid biosynthesis. Analysis of a cellular pool of nucleotide-activated sugars confirmed the presence of the CMP-activated nonulosonic acid derivatives, which are most likely serving as substrates for the corresponding transferase. Single gene knock-out mutants targeted at either transferase were analyzed for S-layer O-glycan composition by ESI-MS, confirming the loss of the nonulosonic acid derivative. Cross-complementation of the mutants with the nonnative nonulosonic acid transferase was not successful indicating high stringency of the enzymes. This study identified plausible candidates for a pseudaminic and a legionaminic acid derivative transferase; these may serve as valuable tools for engineering of novel sialoglycoconjugates.


Assuntos
Proteínas de Bactérias/metabolismo , Ácidos Siálicos/metabolismo , Sialiltransferases/metabolismo , Tannerella forsythia/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Glicosilação , Mutação , Homologia de Sequência de Aminoácidos , Ácidos Siálicos/química , Sialiltransferases/química , Sialiltransferases/genética
14.
Glycobiology ; 27(4): 342-357, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-27986835

RESUMO

Tannerella forsythia is an anaerobic, Gram-negative periodontal pathogen. A unique O-linked oligosaccharide decorates the bacterium's cell surface proteins and was shown to modulate the host immune response. In our study, we investigated the biosynthesis of the nonulosonic acid (NulO) present at the terminal position of this glycan. A bioinformatic analysis of T. forsythia genomes revealed a gene locus for the synthesis of pseudaminic acid (Pse) in the type strain ATCC 43037 while strains FDC 92A2 and UB4 possess a locus for the synthesis of legionaminic acid (Leg) instead. In contrast to the NulO in ATCC 43037, which has been previously identified as a Pse derivative (5-N-acetimidoyl-7-N-glyceroyl-3,5,7,9-tetradeoxy-l-glycero-l-manno-NulO), glycan analysis of strain UB4 performed in this study indicated a 350-Da, possibly N-glycolyl Leg (3,5,7,9-tetradeoxy-d-glycero-d-galacto-NulO) derivative with unknown C5,7 N-acyl moieties. We have expressed, purified and characterized enzymes of both NulO pathways to confirm these genes' functions. Using capillary electrophoresis (CE), CE-mass spectrometry and NMR spectroscopy, our studies revealed that Pse biosynthesis in ATCC 43037 essentially follows the UDP-sugar route described in Helicobacter pylori, while the pathway in strain FDC 92A2 corresponds to Leg biosynthesis in Campylobacter jejuni involving GDP-sugar intermediates. To demonstrate that the NulO biosynthesis enzymes are functional in vivo, we created knockout mutants resulting in glycans lacking the respective NulO. Compared to the wild-type strains, the mutants exhibited significantly reduced biofilm formation on mucin-coated surfaces, suggestive of their involvement in host-pathogen interactions or host survival. This study contributes to understanding possible biological roles of bacterial NulOs.


Assuntos
Vias Biossintéticas/genética , Proteínas de Membrana/genética , Tannerella forsythia/genética , Genoma Bacteriano/genética , Glicosilação , Interações Hospedeiro-Patógeno/genética , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Oligossacarídeos/genética , Oligossacarídeos/metabolismo , Ácidos Siálicos/biossíntese , Açúcares Ácidos/metabolismo , Tannerella forsythia/enzimologia , Tannerella forsythia/patogenicidade
15.
Arch Oral Biol ; 75: 81-88, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27825675

RESUMO

OBJECTIVE: To evaluate the adhesion of selected bacterial strains incl. expression of important virulence factors at dentin and titanium SLA surfaces coated with layers of serum proteins. METHODS: Dentin- and moderately rough SLA titanium-discs were coated overnight with human serum, or IgG, or human serum albumin (HSA). Thereafter, Porphyromonas gingivalis, Tannerella forsythia, or a six-species mixture were added for 4h and 24h. The number of adhered bacteria (colony forming units; CFU) was determined. Arg-gingipain activity of P. gingivalis and mRNA expressions of P. gingivalis and T. forsythia proteases and T. forsythia protease inhibitor were measured. RESULTS: Coating specimens never resulted in differences exceeding 1.1 log10 CFU, comparing to controls, irrespective the substrate. Counts of T. forsythia were statistically significantly higher at titanium than dentin, the difference was up to 3.7 log10 CFU after 24h (p=0.002). No statistically significant variation regarding adhesion of the mixed culture was detected between surfaces or among coatings. Arg-gingipain activity of P. gingivalis was associated with log10 CFU but not with the surface or the coating. Titanium negatively influenced mRNA expression of T. forsythia protease inhibitor at 24h (p=0.026 uncoated, p=0.009 with serum). CONCLUSIONS: The present findings indicate that: a) single bacterial species (T. forsythia) can adhere more readily to titanium SLA than to dentin, b) low expression of T. forsythia protease inhibitor may influence the virulence of the species on titanium SLA surfaces in comparison with teeth, and c) surface properties (e.g. material and/or protein layers) do not appear to significantly influence multi-species adhesion.


Assuntos
Aderência Bacteriana/efeitos dos fármacos , Materiais Revestidos Biocompatíveis , Corrosão Dentária , Dentina/microbiologia , Porphyromonas gingivalis/fisiologia , Albumina Sérica Humana/farmacologia , Tannerella forsythia/metabolismo , Titânio , Adesinas Bacterianas/metabolismo , Contagem de Colônia Microbiana , Cisteína Endopeptidases/metabolismo , Cisteína Endopeptidases Gingipaínas , Humanos , Imunoglobulina G , Porphyromonas gingivalis/enzimologia , Porphyromonas gingivalis/crescimento & desenvolvimento , Inibidores de Proteases , RNA Mensageiro/metabolismo , Soro , Propriedades de Superfície , Tannerella forsythia/enzimologia , Tannerella forsythia/crescimento & desenvolvimento
16.
Arch Oral Biol ; 73: 72-78, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27697692

RESUMO

OBJECTIVE: The aim of this study was to analyze whether periodontopathogens induced inflammatory cell death and the release of diverse endogenous danger molecules in THP-1-derived macrophages. METHODS: The macrophages were treated with Treponema denticola, Porphyromonas gingivalis, and Tannerella forsythia. Activation of caspase-1 and caspase-4 was detected by Western blotting. Cell death of bacteria-stimulated macrophages was examined using a lactate dehydrogenase (LDH) assay and propidium iodide (PI)/annexin V (AV) staining. Levels of endogenous danger signals, including adenosine triphosphate (ATP), uric acid, heat shock protein 60 (HSP60), high-mobility group box protein 1 (HMGB1), and fibronectin in the culture supernatants were determined using an ATP bioluminescence assay kit, a uric acid assay kit, and Western blotting, respectively. RESULTS: T. denticola, P. gingivalis, and T. forsythia induced activation of caspase-1 and caspase-4. The LDH assay and PI/AV staining showed that all three pathogens induced pyroptotic cell death. All three bacteria induced release of ATP, which is an important ligand for inflammasome activation; the increase in ATP ultimately leads to caspase-1 activation. T. denticola induced release of HSP60 and fibronectin, while T. forsythia induced release of HMGB1 in addition to HSP60 and fibronectin. None of the endogenous molecules except for fibronectin were detected in P. gingivalis-infected cells, possibly due to degradation of these factors by the proteolytic activity of the bacteria. Interestingly, P. gingivalis induced uric acid release. CONCLUSION: Inflammatory cell death and endogenous danger molecules released from cells infected with periodontopathogens may play critical roles in the pathogenesis and progression of periodontitis by augmenting immune and inflammatory responses.


Assuntos
Morte Celular/fisiologia , Periodontite/microbiologia , Porphyromonas gingivalis/patogenicidade , Tannerella forsythia/patogenicidade , Treponema denticola/patogenicidade , Trifosfato de Adenosina/metabolismo , Western Blotting , Caspase 1/metabolismo , Caspases Iniciadoras/metabolismo , Células Cultivadas , Chaperonina 60/metabolismo , Fibronectinas/metabolismo , Citometria de Fluxo , Proteínas HMGB/metabolismo , Humanos , Macrófagos , Porphyromonas gingivalis/enzimologia , Transdução de Sinais , Tannerella forsythia/enzimologia , Treponema denticola/enzimologia , Ácido Úrico/metabolismo
17.
Microb Pathog ; 100: 37-42, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27594668

RESUMO

Tannerella forsythia is a bacteria associated with severe periodontal disease. This study reports identification and characterization of a membrane-associated serine protease from T. forsythia. The protease was isolated from T. forsythia membrane fractions and shown to cleave both gelatin and type I collagen. The protease was able to cleave both substrates over a wide range of pH values, however optimal cleavage occurred at pH 7.5 for gelatin and 8.0 for type I collagen. The protease was also shown to cleave both gelatin and type I collagen at the average reported temperature for the gingival sulcus however it showed a lack of thermal stability with a complete loss of activity by 60 °C. When treated with protease inhibitors the enzyme's activity could only be completely inhibited by serine protease inhibitors antipain and phenylmethanesulfonyl fluoride (PMSF). Further characterization of the protease utilized serine protease synthetic peptides. The protease cleaved N-succinyl-Ala-Ala-Pro-Phe p-nitroanilide but not Nα-benzoyl-dl-arginine p-nitroanilide (BAPNA) or N-methoxysuccinyl-Ala-Ala-Pro-Val p-nitroanilide indicating that the protease is a chymotrypsin-like serine protease. Since type I collagen is a major component in the gingival tissues and periodontal ligament, identification and characterization of this enzyme provides important information regarding the role of T. forsythia in periodontal disease.


Assuntos
Serina Proteases/isolamento & purificação , Serina Proteases/metabolismo , Tannerella forsythia/enzimologia , Antipaína/metabolismo , Colágeno Tipo I/metabolismo , Inibidores Enzimáticos/análise , Estabilidade Enzimática , Gelatina/metabolismo , Concentração de Íons de Hidrogênio , Hidrólise , Proteínas de Membrana/química , Proteínas de Membrana/isolamento & purificação , Proteínas de Membrana/metabolismo , Fluoreto de Fenilmetilsulfonil/metabolismo , Serina Proteases/química , Especificidade por Substrato , Temperatura
18.
J Bacteriol ; 198(22): 3119-3125, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27601356

RESUMO

Tannerella forsythia is a Gram-negative periodontal pathogen lacking the ability to undergo de novo synthesis of amino sugars N-acetylmuramic acid (MurNAc) and N-acetylglucosamine (GlcNAc) that form the disaccharide repeating unit of the peptidoglycan backbone. T. forsythia relies on the uptake of these sugars from the environment, which is so far unexplored. Here, we identified a novel transporter system of T. forsythia involved in the uptake of MurNAc across the inner membrane and characterized a homolog of the Escherichia coli MurQ etherase involved in the conversion of MurNAc-6-phosphate (MurNAc-6-P) to GlcNAc-6-P. The genes encoding these components were identified on a three-gene cluster spanning Tanf_08375 to Tanf_08385 located downstream from a putative peptidoglycan recycling locus. We show that the three genes, Tanf_08375, Tanf_08380, and Tanf_08385, encoding a MurNAc transporter, a putative sugar kinase, and a MurQ etherase, respectively, are transcriptionally linked. Complementation of the Tanf_08375 and Tanf_08380 genes together in trans, but not individually, rescued the inability of an E. coli mutant deficient in the phosphotransferase (PTS) system-dependent MurNAc transporter MurP as well as that of a double mutant deficient in MurP and components of the PTS system to grow on MurNAc. In addition, complementation with this two-gene construct in E. coli caused depletion of MurNAc in the medium, further confirming this observation. Our results show that the products of Tanf_08375 and Tanf_08380 constitute a novel non-PTS MurNAc transporter system that seems to be widespread among bacteria of the Bacteroidetes phylum. To the best of our knowledge, this is the first identification of a PTS-independent MurNAc transporter in bacteria. IMPORTANCE: In this study, we report the identification of a novel transporter for peptidoglycan amino sugar N-acetylmuramic acid (MurNAc) in the periodontal pathogen T. forsythia It has been known since the late 1980s that T. forsythia is a MurNAc auxotroph relying on environmental sources for this essential sugar. Most sugar transporters, and the MurNAc transporter MurP in particular, require a PTS phosphorelay to drive the uptake and concurrent phosphorylation of the sugar through the inner membrane in Gram-negative bacteria. Our study uncovered a novel type of PTS-independent MurNAc transporter, and although so far, it seems to be unique to T. forsythia, it may be present in a range of bacteria both of the oral cavity and gut, especially of the phylum Bacteroidetes.


Assuntos
Proteínas de Bactérias/metabolismo , Glicosídeo Hidrolases/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Ácidos Murâmicos/metabolismo , Tannerella forsythia/genética , Proteínas de Bactérias/genética , Escherichia coli/genética , Glicosídeo Hidrolases/genética , Proteínas de Membrana Transportadoras/genética , Peptidoglicano/metabolismo , Tannerella forsythia/enzimologia
19.
Mol Oral Microbiol ; 31(2): 189-203, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26172848

RESUMO

Although enolases are cytosolic enzymes involved in the glycolytic pathway, they can also be secreted or expressed on the surface of a variety of eukaryotic cells and bacteria. Surface-exposed enolases of eukaryotes and bacteria can function as plasminogen receptors. Furthermore, antibodies raised against bacterial enolases can react with host enolases, suggesting molecular mimicry between bacterial and host enzymes. In this study, we analyzed an enolase of the major periodontopathogen Tannerella forsythia, which is either secreted or present on the cell surface, via matrix-assisted laser desorption ionization time-of-flight mass spectrometry and immunofluorescence, respectively. The T. forsythia enolase retained the enzymatic activity converting 2-phosphoglycerate to phosphoenolpyruvate and showed plasminogen binding and activating ability, which resulted in the degradation of fibronectin secreted from human gingival fibroblasts. In addition, it induced proinflammatory cytokine production, including interleukin-1ß (IL-1ß), IL-6, IL-8, and tumour necrosis factor-α (TNF-a) in the human THP-1 monocytic cell line. Taken together, our results demonstrate that T. forsythia enolase plays a role in pathogenesis in the host by plasminogen activation and proinflammatory cytokine induction, which has the potential to exaggerate inflammation in periodontitis.


Assuntos
Fosfopiruvato Hidratase/metabolismo , Tannerella forsythia/enzimologia , Tannerella forsythia/patogenicidade , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/metabolismo , Linhagem Celular , Células Cultivadas , Citocinas/biossíntese , Ativação Enzimática , Ensaio de Imunoadsorção Enzimática , Fibroblastos/metabolismo , Gengiva/metabolismo , Infecções por Bactérias Gram-Negativas/microbiologia , Humanos , Mediadores da Inflamação/metabolismo , Interleucinas/biossíntese , Interleucinas/imunologia , Monócitos , Periodontite/metabolismo , Periodontite/microbiologia , Fosfopiruvato Hidratase/genética , Fosfopiruvato Hidratase/imunologia , Plasminogênio/análise , Tannerella forsythia/genética , Fator de Necrose Tumoral alfa/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...