Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Life Sci ; 332: 122107, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37739164

RESUMO

AIMS: Prolonged high levels of cytokines, glucose, or free fatty acids are associated with diabetes, elevation of cytosolic Ca2+ concentration ([Ca2+]C), and depletion of Ca2+ concentration in the endoplasmic reticulum (ER) of pancreatic beta cells. This Ca2+ imbalance induces ER stress and apoptosis. Lupenone, a lupan-type triterpenoid, is beneficial in diabetes; however, its mechanism of action is yet to be clarified. This study evaluated the protective mechanism of lupenone against thapsigargin-induced ER stress and apoptosis in pancreatic beta cells. MATERIALS AND METHODS: MIN6, INS-1, and native mouse islet cells were used. Western blot for protein expressions, measurement of [Ca2+]C, and in vivo glucose tolerance test were mainly performed. KEY FINDINGS: Thapsigargin increased the protein levels of cleaved caspase 3, cleaved PARP, and the phosphorylated form of JNK, ATF4, and CHOP. Thapsigargin increased the interaction between stromal interaction molecule1 (Stim1) and Orai1, enhancing store-operated calcium entry (SOCE). SOCE is further activated by protein tyrosine kinase 2 (Pyk2), which is Ca2+-dependent and phosphorylates the tyrosine residue at Y361 in Stim1. Lupenone inhibited thapsigargin-mediated Pyk2 activation, suppressed [Ca2+]C, ER stress, and apoptosis. Lupenone restored impaired glucose-stimulated insulin secretion effectuated by thapsigargin and glucose intolerance in a low-dose streptozotocin-induced diabetic mouse model. SIGNIFICANCE: These results suggested that lupenone attenuated thapsigargin-induced ER stress and apoptosis by inhibiting SOCE; this may be due to the hindrance of Pyk2-mediated Stim1 tyrosine phosphorylation. In beta cells that are inevitably exposed to frequent [Ca2+]C elevation, the attenuation of abnormally high SOCE would be beneficial for their survival.


Assuntos
Diabetes Mellitus , Células Secretoras de Insulina , Lupanos , Triterpenos , Animais , Camundongos , Apoptose , Cálcio/metabolismo , Linhagem Celular , Diabetes Mellitus/metabolismo , Estresse do Retículo Endoplasmático , Quinase 1 de Adesão Focal/metabolismo , Quinase 2 de Adesão Focal/metabolismo , Glucose/metabolismo , Células Secretoras de Insulina/metabolismo , Fosforilação , Tapsigargina/efeitos adversos , Triterpenos/metabolismo , Tirosina/metabolismo , Lupanos/farmacologia
2.
Am J Chin Med ; 48(6): 1435-1454, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32907363

RESUMO

Endoplasmic reticulum stress (ER stress) plays a main role in pancreatic [Formula: see text]-cell dysfunction and death because of intracellular Ca[Formula: see text] turbulence and inflammation activation. Although several drugs are targeting pancreatic [Formula: see text]-cell to improve [Formula: see text]-cell function, there still lacks agents to alleviate [Formula: see text]-cell ER stress conditions. Therefore we used thapsigargin (THAP) or high glucose (HG) to induce ER stress in [Formula: see text]-cell and aimed to screen natural molecules against ER stress-induced [Formula: see text]-cell dysfunction. Through screening the Traditional Chinese drug library ([Formula: see text] molecules), luteolin was finally discovered to improve [Formula: see text]-cell function. Cellular viability results indicated luteolin reduced the THAP or HG-induced [Formula: see text]-cell death and apoptosis through MTT and flow cytometry assay. Moreover, luteolin improved [Formula: see text]-cell insulin secretion ability under ER stress conditions. Also ER stress-induced intracellular Ca[Formula: see text] turbulence and inflammation activation were inhibited by luteolin treatment. Mechanically, luteolin inhibited HNF4[Formula: see text] signaling, which was induced by ER stress. Moreover, luteolin reduced the transcriptional level of HNF4[Formula: see text] downstream gene, such as Asnk4b and HNF1[Formula: see text]. Conversely HNF4[Formula: see text] knockdown abolished the effect of luteolin on [Formula: see text]-cell using siRNA. These results suggested the protective effect of luteolin on [Formula: see text]-cell was through HNF4[Formula: see text]/Asnk4b pathway. In conclusion, our study discovered that luteolin improved [Formula: see text]-cell function and disclosed the underlying mechanism of luteolin on [Formula: see text]-cell, suggesting luteolin is a promising agent against pancreatic dysfunction.


Assuntos
Sobrevivência Celular/efeitos dos fármacos , Medicamentos de Ervas Chinesas/química , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Estresse do Retículo Endoplasmático/genética , Fator 4 Nuclear de Hepatócito/genética , Fator 4 Nuclear de Hepatócito/metabolismo , Células Secretoras de Insulina/patologia , Células Secretoras de Insulina/fisiologia , Luteolina/farmacologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Tapsigargina/efeitos adversos , Apoptose/efeitos dos fármacos , Cálcio/metabolismo , Morte Celular/efeitos dos fármacos , Células Cultivadas , Avaliação Pré-Clínica de Medicamentos , Estresse do Retículo Endoplasmático/fisiologia , Glucose/efeitos adversos , Células Secretoras de Insulina/metabolismo , Luteolina/isolamento & purificação
3.
Molecules ; 25(3)2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-32012916

RESUMO

Heat stress induces apoptosis in various cells. Selenium, an essential micronutrient, has beneficial effects in maintaining the cellular physiological functions. However, its potential protective action against chronic heat stress (CHS)-induced apoptosis in granulosa cells and the related molecular mechanisms are not fully elucidated. In this study, we investigated the roles of selenium in CHS-induced apoptosis in mouse granulosa cells and explored its underlying mechanism. The heat treatment for 6-48 h induced apoptosis, potentiated caspase 3 activity, increased the expression levels of apoptosis-related gene BAX and ER stress markers, glucose-regulated protein 78 (GRP78), and CCAAT/enhancer binding protein homologous protein (CHOP) in mouse granulosa cells. The treatment with ER stress inhibitor 4-PBA significantly attenuated the adverse effects caused by CHS. Selenium treatment significantly attenuated the CHS- or thapsigargin (Tg, an ER stress activator)-induced apoptosis, potentiation of caspase 3 activity, and the increased protein expression levels of BAX, GRP78, and CHOP. Additionally, treatment of the cells with 5 ng/mL selenium significantly ameliorated the levels of estradiol, which were decreased in response to heat exposure. Consistently, administering selenium supplement alleviated the hyperthermia-caused reduction in the serum estradiol levels in vivo. Together, our findings indicate that selenium has protective effects on CHS-induced apoptosis via inhibition of the ER stress pathway. The current study provides new insights in understanding the role of selenium during the process of heat-induced cell apoptosis.


Assuntos
Estresse do Retículo Endoplasmático/efeitos dos fármacos , Células da Granulosa/citologia , Selênio/administração & dosagem , Tapsigargina/efeitos adversos , Animais , Apoptose/efeitos dos fármacos , Butilaminas/farmacologia , Técnicas de Cultura de Células , Células Cultivadas , Chaperona BiP do Retículo Endoplasmático , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Células da Granulosa/efeitos dos fármacos , Células da Granulosa/metabolismo , Proteínas de Choque Térmico/metabolismo , Resposta ao Choque Térmico/efeitos dos fármacos , Camundongos , Selênio/farmacologia , Fator de Transcrição CHOP/metabolismo , Proteína X Associada a bcl-2/metabolismo
4.
Free Radic Biol Med ; 141: 59-66, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31163256

RESUMO

Chronic endoplasmic reticulum (ER) stress has deleterious effects on pancreatic ß-cell function and survival in type 2 diabetes (T2D). Cyclin-dependent kinase 5 (CDK5) plays a critical role in ß-cell failure under diabetic milieu conditions. However, little information is available on CDK5's ability to impair the function of ß-cells via a chemical ER stress inducer thapsigargin. Myricetin, a natural flavonoid, has therapeutic potential for the treatment of type 2 diabetes mellitus. Therefore, we examined the effect of CDK5 on thapsigargin-induced ß-cell apoptosis, and explored the relationship between myricetin and CDK5. Exposure of beta cells with thapsigargin, induced a Src-mediated redox signaling (VAV2-Rac1-NOX) formation and CDK5 activation. Activated CDK5 induced antiapoptotic protein myeloid cell leukemia sequence 1 (Mcl-1) degradation which was associated with p66Shc serine 36 phosphorylation, causing beta cell apoptosis via mitochondrial dysfunction. Exposure of beta cells to myricetin resulted in an acute inhibition of Src-mediated redox signaling (VAV2-Rac1-NOX) formation and CDK5 activation. Myricetin inhibited CDK5 activation by directly binding to its ATP-binding pocket. Treatment with myricetin also enhanced the stability of Mcl-1 after thapsigargin treatment. Inhibition of CDK5 with myricetin or roscovitine, a CDK5 inhibitor attenuates thapsigargin induced p66Shc serine 36 phosphorylation and also reduced mitochondrial dysfunction by decreasing mitochondrial ROS and caspase-3 activation. In addition, myricetin was observed to enhance PDX-1 and insulin mRNA expression and potentiate glucose stimulated insulin secretion (GSIS). Taken together, these findings indicate that thapsigargin-induced early molecular events lead to CDK5-p66Shc signalosome contributes to thapsigargin-induced pancreatic ß-cell dysfunction. Myricetin blocked thapsigargin induced CDK5-p66Shc signalosome formation and prevented pancreatic beta cell dysfunction. In this study, we demonstrated for the first time that thapsigargin initiated CDK5-p66Shc signalosome mediates the pancreatic beta cell dysfunction and myricetin protects the pancreatic beta cells through the inhibition of CDK5-p66Shc signalosome.


Assuntos
Apoptose , Quinase 5 Dependente de Ciclina/metabolismo , Flavonoides/farmacologia , Células Secretoras de Insulina/metabolismo , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src/metabolismo , Tapsigargina/efeitos adversos , Animais , Linhagem Celular Tumoral , Estresse do Retículo Endoplasmático , Células Secretoras de Insulina/efeitos dos fármacos , Potencial da Membrana Mitocondrial , Mitocôndrias/metabolismo , NADPH Oxidases/metabolismo , Neuropeptídeos/metabolismo , Estresse Oxidativo , Ratos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Proteínas rac1 de Ligação ao GTP/metabolismo , Quinases da Família src/metabolismo
5.
PLoS One ; 14(5): e0217945, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31150519

RESUMO

Chemical proteasome inhibition has been a valuable animal model of neurodegeneration to uncover roles for the ubiquitin-proteasome system in the central nervous system. However, little is known about the effects of chemical proteasome inhibitors on retinal integrity. Therefore, we characterized the effects of structurally different chemical proteasome inhibitors on the retinal morphology and the mechanisms of their action in the normal adult rat eyes. Intravitreal injection of MG-262 and other proteasome inhibitors led to inner retinal degeneration. MG-262-induced inner retinal degeneration was accompanied by reduced proteasome activity, increased poly-ubiquitinated protein levels, and increased positive immunostaining of ubiquitin, 20S proteasome subunit and GADD153/CHOP in the retina. Its retinal degenerative effect was also associated with reduced retinal neurofilament light chain gene expression, reflecting retinal ganglion cell death. MG-262-induced neurofilament light chain downregulation was largely resistant to pharmacological modulation including endoplasmic reticulum stress, apoptosis or MAP kinase inhibitors. Thus, this study provides further evidence of roles for the ubiquitin-proteasome system in the maintenance of the retinal structural integrity. Chemical proteasome inhibition may be used as a novel animal model of inner retinal degeneration, including retinal ganglion cell loss, which warrants further analysis of the molecular mechanisms underlying its retinal degenerative effect.


Assuntos
Complexo de Endopeptidases do Proteassoma/genética , Inibidores de Proteassoma/farmacologia , Retina/patologia , Degeneração Retiniana/patologia , Animais , Apoptose/efeitos dos fármacos , Ácidos Borônicos/efeitos adversos , Ácidos Borônicos/farmacologia , Modelos Animais de Doenças , Retículo Endoplasmático/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Humanos , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Ratos , Retina/efeitos dos fármacos , Degeneração Retiniana/induzido quimicamente , Degeneração Retiniana/metabolismo , Células Ganglionares da Retina/efeitos dos fármacos , Células Ganglionares da Retina/patologia , Tapsigargina/efeitos adversos , Tapsigargina/farmacologia , Tunicamicina/efeitos adversos , Tunicamicina/farmacologia
6.
Sci Rep ; 9(1): 410, 2019 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-30675021

RESUMO

The PERK arm of the unfolded protein response (UPR) regulates cellular proteostasis and survival in response to endoplasmic reticulum (ER) stress. However, the impact of PERK signaling on extracellular proteostasis is poorly understood. We define how PERK signaling influences extracellular proteostasis during ER stress using a conformational reporter of the secreted amyloidogenic protein transthyretin (TTR). We show that inhibiting PERK signaling impairs secretion of destabilized TTR during thapsigargin (Tg)-induced ER stress by increasing its ER retention in chaperone-bound complexes. Interestingly, PERK inhibition increases the ER stress-dependent secretion of TTR in non-native conformations that accumulate extracellularly as soluble oligomers. Pharmacologic or genetic TTR stabilization partially restores secretion of native TTR tetramers. However, PERK inhibition still increases the ER stress-dependent secretion of TTR in non-native conformations under these conditions, indicating that the conformation of stable secreted proteins can also be affected by inhibiting PERK. Our results define a role for PERK in regulating extracellular proteostasis during ER stress and indicate that genetic or aging-related alterations in PERK signaling can exacerbate ER stress-related imbalances in extracellular proteostasis implicated in diverse diseases.


Assuntos
Estresse do Retículo Endoplasmático , Pré-Albumina/metabolismo , Proteostase , eIF-2 Quinase/metabolismo , Neuropatias Amiloides Familiares/metabolismo , Neuropatias Amiloides Familiares/patologia , Células HEK293 , Humanos , Tapsigargina/efeitos adversos , Tapsigargina/farmacologia , eIF-2 Quinase/genética
7.
Lab Invest ; 95(10): 1157-73, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26192086

RESUMO

Epithelial-to-mesenchymal transition (EMT) and apoptosis of peritoneal mesothelial cells are known to be the earliest mechanisms of peritoneal fibrosis in peritoneal dialysis (PD). Endoplasmic reticulum (ER) stress with an unfolded protein response is regarded to have a role in the development of organ fibrosis. To investigate the potential role of ER stress as a target to prevent and/or delay the development of peritoneal fibrosis, we examined the effect of ER stress on EMT or apoptosis of human peritoneal mesothelial cells (HPMCs) and elucidated the mechanisms underlying the protective effect of ER stress preconditioning on TGF-ß1-induced EMT. ER stress inducers, tunicamycin (TM) and thapsigargin (TG), induced EMT with Smad2/3 phosphorylation, an increased nuclear translocation of ß-catenin and Snail expression. Low concentrations of TM and TG did not induce apoptosis within 48 h; however, high concentrations of TM- (>1 ng/ml) and TG- (>1 nM) induced apoptosis at 12 h with a persistent increase in C/EBP homologous protein. TGF-ß1 induced EMT and apoptosis in HPMCs, which was ameliorated by taurine-conjugated ursodeoxycholic acid, an ER stress blocker. Interestingly, pre-treatment with TM or TG for 4 h also protected the cells from TGF-ß1-induced EMT and apoptosis, demonstrating the role of ER stress as an adaptive response to protect HPMCs from EMT and apoptosis. Peritoneal mesothelial cells isolated from PD patients displayed an increase in GRP78/94, which was correlated with the degree of EMT. These findings suggest that the modulation of ER stress in HPMCs could serve as a novel approach to ameliorate peritoneal damage in PD patients.


Assuntos
Apoptose , Estresse do Retículo Endoplasmático , Transição Epitelial-Mesenquimal , Modelos Biológicos , Diálise Peritoneal/efeitos adversos , Fibrose Peritoneal/patologia , Resposta a Proteínas não Dobradas , Antibacterianos/efeitos adversos , Líquido Ascítico/metabolismo , Líquido Ascítico/patologia , Células Cultivadas , Chaperona BiP do Retículo Endoplasmático , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Moduladores de Transporte de Membrana/efeitos adversos , Sinais de Localização Nuclear/efeitos dos fármacos , Sinais de Localização Nuclear/metabolismo , Fibrose Peritoneal/induzido quimicamente , Fibrose Peritoneal/etiologia , Fibrose Peritoneal/metabolismo , Fosforilação/efeitos dos fármacos , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo , Fatores de Transcrição da Família Snail , Tapsigargina/efeitos adversos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Tunicamicina/efeitos adversos , beta Catenina/metabolismo
8.
Biosci Rep ; 35(1)2015 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-25608948

RESUMO

Apoptosis mediates the precise and programmed natural death of neurons and is a physiologically important process in neurogenesis during maturation of the central nervous system. However, premature apoptosis and/or an aberration in apoptosis regulation are implicated in the pathogenesis of neurodegeneration. Thus, it is important to identify neuronal pathways/factors controlling apoptosis. Pink1 [phosphatase and tensin homologue (PTEN)-induced kinase 1] is a ubiquitously expressed gene and has been reported to have a physiological role in mitochondrial maintenance, suppressing mitochondrial oxidative stress, fission and autophagy. However, how Pink1 is involved in neuronal survival against oxidative stress remains not well understood. In the present paper, we demonstrate that thapsigargin, a specific irreversible inhibitor of endoplasmic reticulum (ER) calcium-ATPase, could lead to dramatic oxidative stress and neuronal apoptosis by ectopic calcium entry. Importantly, the neuronal toxicity of thapsigargin inhibits antioxidant gene Pink1 expression. Although Pink1 knockdown enhances the neuronal apoptosis by thapsigargin, its overexpression restores it. Our findings have established the neuronal protective role of Pink1 against oxidative stress and afford rationale for developing new strategy to the therapy of neurodegenerative diseases.


Assuntos
Apoptose/efeitos dos fármacos , Inibidores Enzimáticos/efeitos adversos , Neurônios/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Proteínas Quinases/metabolismo , Tapsigargina/efeitos adversos , Animais , Cálcio/metabolismo , Células Cultivadas , Técnicas de Silenciamento de Genes , Camundongos , Neurônios/citologia , Neurônios/metabolismo , Proteínas Quinases/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/antagonistas & inibidores , Regulação para Cima
9.
Cell Death Differ ; 18(5): 769-82, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21113145

RESUMO

Loss of parkin function is responsible for the majority of autosomal recessive parkinsonism. Here, we show that parkin is not only a stress-protective, but also a stress-inducible protein. Both mitochondrial and endoplasmic reticulum (ER) stress induce an increase in parkin-specific mRNA and protein levels. The stress-induced upregulation of parkin is mediated by ATF4, a transcription factor of the unfolded protein response (UPR) that binds to a specific CREB/ATF site within the parkin promoter. Interestingly, c-Jun can bind to the same site, but acts as a transcriptional repressor of parkin gene expression. We also present evidence that mitochondrial damage can induce ER stress, leading to the activation of the UPR, and thereby to an upregulation of parkin expression. Vice versa, ER stress results in mitochondrial damage, which can be prevented by parkin. Notably, the activity of parkin to protect cells from stress-induced cell death is independent of the proteasome, indicating that proteasomal degradation of parkin substrates cannot explain the cytoprotective activity of parkin. Our study supports the notion that parkin has a role in the interorganellar crosstalk between the ER and mitochondria to promote cell survival under stress, suggesting that both ER and mitochondrial stress can contribute to the pathogenesis of Parkinson's disease.


Assuntos
Fator 4 Ativador da Transcrição/metabolismo , Retículo Endoplasmático/fisiologia , Mitocôndrias/fisiologia , Estresse Fisiológico , Ubiquitina-Proteína Ligases/genética , Sequência de Bases , Carbonil Cianeto m-Clorofenil Hidrazona/farmacologia , Morte Celular , Linhagem Celular , Retículo Endoplasmático/efeitos dos fármacos , Inibidores Enzimáticos/efeitos adversos , Genes Reporter , Humanos , Ionóforos/farmacologia , Luciferases de Renilla/biossíntese , Potencial da Membrana Mitocondrial , Mitocôndrias/efeitos dos fármacos , Regiões Promotoras Genéticas , Complexo de Endopeptidases do Proteassoma/fisiologia , Proteínas Proto-Oncogênicas c-jun/metabolismo , Interferência de RNA , Elementos de Resposta/genética , Transdução de Sinais , Tapsigargina/efeitos adversos , Transcrição Gênica , Ubiquitina-Proteína Ligases/metabolismo , Resposta a Proteínas não Dobradas , Regulação para Cima , eIF-2 Quinase/metabolismo
10.
J Bone Miner Metab ; 26(3): 231-40, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18470663

RESUMO

Activating transcription factor 4 (ATF4) protein has a dual role in osteoblasts. It functions as a responder to stress to the endoplasmic reticulum (ER) as well as a transcription factor for bone formation. Little is known about molecular pathways that can potentially lead to stress-induced apoptosis or homeostasis of extracellular matrix (ECM) molecules. Based on microarray-derived mRNA expression data for mouse osteoblasts (MC3T3 E1 cells, clone 4), we analyzed the ER-stress responses in the presence of 10 nM Thapsigargin using two computational approaches: "Gene Set Enrichment Analysis (GSEA)" and "Ingenuity Pathways Analysis (IPA)." GSEA presented a strong linkage to an expression pattern observed in the responses to hypoxia, and IPA identified two molecular pathways: ATF4-unlinked connective tissue development and ATF4-linked organ morphology. Real-time polymerase chain reaction (PCR) and Western blot analyses validated eIF2alpha-driven translational regulation as well as ATF4-linked transcriptional activation of transcription factors and growth factors including FOS, FGF-9, and BMP-2. Consistent with the role of p38 MAPK in hypoxia, phosphorylation of p38 MAPK was activated in nonapoptotic osteoblasts under surviving ER stress. Furthermore, the level of phosphorylated PERK was elevated. These results support cross-talk between p38 MAPK and ER kinase, presenting a similarity to the responses to hypoxia as well as a pathway toward connective tissue development and organ morphology.


Assuntos
Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Tapsigargina/efeitos adversos , Células 3T3 , Fator 4 Ativador da Transcrição/biossíntese , Fator 4 Ativador da Transcrição/metabolismo , Animais , Células Clonais , Retículo Endoplasmático/enzimologia , Perfilação da Expressão Gênica , Camundongos , Osteoblastos/enzimologia , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética , eIF-2 Quinase/biossíntese , eIF-2 Quinase/genética , eIF-2 Quinase/metabolismo
11.
Apoptosis ; 11(9): 1629-41, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16820963

RESUMO

Co-activation and cross-talk of different apoptotic pathways have been described in several systems however, the differential contributions of the different executors have not been well characterized. Here we report the co-translocation to the nucleus of caspase-12 and AIF in response to two endoplasmic reticulum (ER) stresses: protein misfolding and disruption of calcium homeostasis. As seen by treatment with pan-caspase inhibitor and calpain inhibitors, apoptosis is not mediated by executor caspases but by calpains. By reduction of AIF or caspase-12 expression we unraveled that AIF primarily controls apoptosis caused by changes in calcium homeostasis while caspase-12 has a main role in programmed cell death induced by protein misfolding. Nevertheless, the two apoptotic factors appear to reinforce each other during the apoptotic process, confirming that while the first response primarily involves one organelle, mitochondria and ER can influence each other in the apoptotic event.


Assuntos
Fator de Indução de Apoptose/fisiologia , Apoptose/fisiologia , Caspase 12/fisiologia , Retículo Endoplasmático/fisiologia , Receptor Cross-Talk/fisiologia , Transdução de Sinais/fisiologia , Animais , Fator de Indução de Apoptose/metabolismo , Cálcio/metabolismo , Bloqueadores dos Canais de Cálcio/farmacologia , Caspase 12/metabolismo , Retículo Endoplasmático/efeitos dos fármacos , Camundongos , Mitocôndrias/metabolismo , Modelos Biológicos , Células NIH 3T3 , Dobramento de Proteína , Transporte Proteico/fisiologia , Interferência de RNA , Tapsigargina/efeitos adversos , Tapsigargina/farmacologia , Distribuição Tecidual , Transfecção , Tunicamicina/efeitos adversos , Tunicamicina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...