Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mycorrhiza ; 34(3): 173-180, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38643436

RESUMO

Taxus, a genus of conifers known for its medicinal significance, faces various conservation challenges with several species classified under different threat categories by the IUCN. The overharvesting of bark and leaves for the well-known chemotherapy drug paclitaxel has resulted in its population decline. Exploring the mycorrhizal relationship in Taxus is of utmost importance, as mycorrhizal fungi play pivotal roles in nutrition, growth, and ecological resilience. Taxus predominantly associates with arbuscular mycorrhizal fungi (AM), and reports suggest ectomycorrhizal (EM) or dual mycorrhizal associations as well. This review consolidates existing literature on mycorrhizal associations in Taxus species, focusing on structural, physiological, and molecular aspects. AM associations are well-documented in Taxus, influencing plant physiology and propagation. Conversely, EM associations remain relatively understudied, with limited evidence suggesting their occurrence. The review highlights the importance of further research to elucidate dual mycorrhizal associations in Taxus, emphasizing the need for detailed structural and physiological examinations to understand their impact on growth and survival.


Assuntos
Micorrizas , Simbiose , Taxus , Micorrizas/fisiologia , Taxus/microbiologia , Raízes de Plantas/microbiologia
2.
Phytochemistry ; 216: 113873, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37769958

RESUMO

Endophytes coevolve with plant hosts and thus are more probable to acquire the character (in favor) of producing undescribed bioactive metabolites. Consequently, the topic has been intensely investigated for over two decades, but endophytic metabolites with neuroprotective effect remain scarce. The study presents the discovery of eight undescribed (named solanapyrones U-Z and prosolanapyrones A and B) and six known pyrones (solanapyrones A-C and E-G) from the culture of Nigrospora oryzae, an endophytic fungus associated with Taxus chinensis var. mairei. The structures and absolute configurations of undescribed pyrones were elucidated by extensive spectroscopic analysis, modified Mosher's method, and induced circular dichroism (ICD) spectrum. Solanapyrones A and B and an undescribed pyrone (solanapyrone U) were demonstrated to be more neuroprotective than clenbuterol in inducing bone marrow mesenchymal stem cells (bMSCs) to secret nerve growth factor (NGF). The work updates the pyrone chemodiversity in nature and extends the biofunction repertoire of solanapyrone-related polyketides.


Assuntos
Ascomicetos , Taxus , Taxus/microbiologia , Pironas/química , Dicroísmo Circular
3.
Appl Microbiol Biotechnol ; 107(20): 6151-6162, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37606790

RESUMO

There have been two hundred reports that endophytic fungi produce Taxol®, but its production yield is often rather low. Although considerable efforts have been made to increase Taxol/taxanes production in fungi by manipulating cocultures, mutagenesis, genome shuffles, and gene overexpression, little is known about the molecular signatures of Taxol biosynthesis and its regulation. It is known that some fungi have orthologs of the Taxol biosynthetic pathway, but the overall architecture of this pathway is unknown. A biosynthetic putative gene homology approach, combined with genomics and transcriptomics analysis, revealed that a few genes for metabolite residues may be located on dispensable chromosomes. This review explores a number of crucial topics (i) finding biosynthetic pathway genes using precursors, elicitors, and inhibitors; (ii) orthologs of the Taxol biosynthetic pathway for rate-limiting genes/enzymes; and (iii) genomics and transcriptomics can be used to accurately predict biosynthetic putative genes and regulators. This provides promising targets for future genetic engineering approaches to produce fungal Taxol and precursors. KEY POINTS: • A recent trend in predicting Taxol biosynthetic pathway from endophytic fungi. • Understanding the Taxol biosynthetic pathway and related enzymes in fungi. • The genetic evidence and formation of taxane from endophytic fungi.


Assuntos
Paclitaxel , Taxus , Fungos/genética , Fungos/metabolismo , Taxus/microbiologia
4.
PLoS One ; 18(2): e0282010, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36821563

RESUMO

Although bioproduction of Paclitaxel by endophytic fungi is highly considered as an alternative promising source, but its yield is usually very low in comparison with other taxoids. Different strategies i.e., chemical and physical elicitations have been developed in order to overcome the shortage of Paclitaxel production. Paclitaxel biosynthesis is started with terpenoid pathway followed by phenylpropanoid metabolism where a benzoylphenylisoserine moiety is attached to C13 of baccatin III skeleton. This point which is catalyzed by the function of PAM seems to be a bottleneck that limits the rate of Paclitaxel production. Whether phenylpropanoids pathway regulates the taxanes biosynthesis in Cryptosporiopsis tarraconensis endophytic fungus elicited with benzoic acid (BA) was hypothesized in the present paper. The involvement of certain signal molecules and key enzymes of terpenoid and phenylpropanoid metabolism were investigated. According to the results, application of BA promoted a signaling pathway which was started with increase of H2O2 and ABA and continued by increase of NO and MJ, and finally resulted in increase of both phenylpropanoids and taxanes. However, again the rate of Paclitaxel production was lower than other taxoids, and the latter was much lower than phenolics. Therefore, supplying benzoic acid provided the precursor for the common taxan ring production. It is unlikely that Paclitaxel production is merely controlled by side chain production stage. It is more likely that in C. tarraconensis endophytic fungus, similar to Taxus sp., the competition between phenylpropanoid and taxoid pathways for substrate ended in favor of the former. The interaction network which was constructed based on DSPC algorithm confirmed that most compounds with close proximity have shared metabolic pathway relationships. Therefore, it is unlikely that the feeding with a given precursor directly result in increase of a desired metabolite which is composed of different merits.


Assuntos
Ascomicetos , Taxus , Peróxido de Hidrogênio/metabolismo , Paclitaxel/metabolismo , Taxoides/metabolismo , Ascomicetos/metabolismo , Taxus/microbiologia
5.
Sci Rep ; 12(1): 9390, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35672438

RESUMO

Taxol (Paclitaxel) and its derivative taxanes are widely used in chemotherapy and treatment of different types of cancer. Although the extracted taxanes from Taxus sp. are currently used in semi-synthetic production of Taxol, providing alternative always available sources is still a main concern. Due to availability and fast growth rate, microorganisms are much potent alternative sources for taxanes. In the present study, 249 endophytic fungi were isolated from Corylus avellana at six different locations of Iran, among which 18 species were capable to produce taxanes. Genotyping analysis indicated that 17 genera were ascomycetes but only one basidiomycete. Seven taxanes were detected and quantified in solid and suspension cultures by HPLC and their structures were confirmed by LC-Mass analysis. Among endophytes, CA7 had all 7 taxoids and CA1 had the highest Taxol yield. In 78% of endophytes transferring to liquid media was accompanied by increase of taxanes yield and increased taxan production and its release to media up to 90%. Evaluation of cytotoxicity indicated that extracts of all isolated fungi were lethal to MCF7 cells. Since endophytes produced remarkable amounts of taxanes, they can be suggested as alternative inexpensive and easily available resources for Taxol production in semi-synthesis plans.


Assuntos
Ascomicetos , Corylus , Taxus , Ascomicetos/genética , Endófitos , Fungos , Humanos , Paclitaxel , Taxoides , Taxus/microbiologia
6.
BMC Plant Biol ; 22(1): 12, 2022 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-34979929

RESUMO

BACKGROUND: Taxol from Taxus species is a precious drug used for the treatment of cancer and can effectively inhibit the proliferation of cancer cells. However, the growth of Taxus plants is very slow and the content of taxol is quite low. Therefore, it is of great significance to improve the yield of taxol by modern biotechnology without destroying the wild forest resources. Endophytic fungus which symbiosis with their host plants can promote the growth and secondary metabolism of medicinal plants. RESULTS: Here, an endophytic fungus KL27 was isolated from T. chinensis, and identified as Pseudodidymocyrtis lobariellae. The fermentation broth of KL27 (KL27-FB) could significantly promote the accumulation of taxol in needles of T. chinensis, reaching 0.361 ± 0.082 mg/g·DW (dry weight) at 7 days after KL27-FB treatment, which is 3.26-fold increase as compared to the control. The RNA-seq and qRT-PCR showed that KL27-FB could significantly increase the expression of key genes involved in the upstream pathway of terpene synthesis (such as DXS and DXR) and those in the taxol biosynthesis pathway (such as GGPPS, TS, T5OH, TAT, T10OH, T14OH, T2OH, TBT, DBAT and PAM), especially at the early stage of the stimulation. Moreover, the activation of jasmonic acid (JA) biosynthesis and JA signal transduction, and its crosstalk with other hormones, such as gibberellin acid (GA), ethylene (ET) and salicylic acid (SA), explained the elevation of most of the differential expressed genes related to taxol biosynthesis pathway. Moreover, TF (transcriptional factor)-encoding genes, including MYBs, ethylene-responsive transcription factors (ERFs) and basic/helix-loop-helix (bHLH), were detected as differential expressed genes after KL27-FB treatment, further suggested that the regulation of hormone signaling on genes of taxol biosynthesis was mediated by TFs. CONCLUSIONS: Our results indicated that fermentation broth of endophytic fungus KL27-FB could effectively enhance the accumulation of taxol in T. chinensis needles by regulating the phytohormone metabolism and signal transduction and further up-regulating the expression of multiple key genes involved in taxol biosynthesis. This study provides new insight into the regulatory mechanism of how endophytic fungus promotes the production and accumulation of taxol in Taxus sp.


Assuntos
Ascomicetos/fisiologia , Endófitos/fisiologia , Regulação da Expressão Gênica de Plantas , Paclitaxel/biossíntese , Reguladores de Crescimento de Plantas/metabolismo , Transdução de Sinais , Taxus/metabolismo , Genes de Plantas , Paclitaxel/metabolismo , Taxus/microbiologia , Regulação para Cima
7.
Curr Pharm Biotechnol ; 22(3): 360-366, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32564747

RESUMO

BACKGROUND: Taxus is a valuable woody species with important medicinal value. The bark of Taxus can produce taxol, a natural antineoplastic drug that is widely used in the treatment of breast, ovarian and lung cancers. However, the low content of taxol in the bark of Taxus can not meet the growing clinical demands, so the current research aims at finding ways to increase taxol production. OBJECTIVE: In this review, the research progress of taxol including the factors affecting the taxol content, biosynthesis pathway of taxol, production of taxol in vitro and the application of multi-omics approaches in Taxus as well as future research prospects will be discussed. RESULTS: The taxol content is not only dependent on the species, age and tissues but is also affected by light, moisture levels, temperature, soil fertility and microbes. Most of the enzymes in the taxol biosynthesis pathway have been identified and characterized. Total chemical synthesis, semi-synthesis, plant cell culture and biosynthesis in endophytic fungi have been explored to product taxol. Multi-omics have been used to study Taxus and taxol. CONCLUSION: Further efforts in the identification of unknown enzymes in the taxol biosynthesis pathway, establishment of the genetic transformation system in Taxus and the regulatory mechanism of taxol biosynthesis and Taxus cell growth will play a significant role in improving the yield of taxol in Taxus cells and plants.


Assuntos
Antineoplásicos Fitogênicos/biossíntese , Pesquisa Biomédica/tendências , Paclitaxel/biossíntese , Taxus , Animais , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/uso terapêutico , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Paclitaxel/química , Paclitaxel/uso terapêutico , Taxus/microbiologia
8.
F1000Res ; 9: 379, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33093944

RESUMO

Background: Endophytic fungi are largely underexplored in the discovery of natural bioactive products though being rich sources of novel compounds with promising pharmaceutical potential. In this study, Taxus wallichiana, which has huge medicinal value, was investigated for its endophytic diversity and capability to produce bioactive secondary metabolites by analyzing antioxidant, antimicrobial and cytotoxic properties. Methods: The endophytes were identified by ITS-PCR using genomic DNA samples. The secondary metabolites were extracted by solvent extraction method using ethyl acetate. The antioxidant activity was analyzed by Thin Layer Chromatography, Total Phenol Content (TPC), Total Flavonoid Content (TFC) and DPPH assay, and the antimicrobial activity was analyzed by agar-well diffusion method. Brine shrimp lethality assay was used to analyze the cytotoxicity of the fungal extracts. Results: Out of 16 different Taxus trees sampled from different locations of Dhorpatan, 13 distinctive endophytic fungi were isolated and grouped into 9 different genera: Bjerkandera, Trichoderma, Preussia, Botrytis, Arthrinium, Alternaria, Cladosporium, Sporormiella and Daldinia. The ethyl acetate extracts isolated from three endophytic fungi: Alternaria alternata, Cladosporium cladosporioides and Alternaria brassicae showed significant TPC values of 204±6.144, 312.3±2.147 and 152.7±4.958µg GAE/mg of dry extract, respectively, and TFC values of 177.9±2.911, 644.1±4.202 and 96.38±3.851µg RE/mg of dry extract, respectively. Furthermore, these three extracts showed a dose dependent radical scavenging activity with IC 50 concentration of 22.85, 22.15 and 23.001 µg/ml, respectively. The extracts of C. cladosporioides and A. brassicae also showed promising antimicrobial activity against Escherichia coli, Staphylococcus aureus and Bacillus subtilis with a minimum inhibitory concentration of 250µg/ml for all bacteria. Both the samples showed cytotoxic property against shrimp nauplii with LC 50 of 104.2 and 125.9µg/ml, respectively. Conclusions: The crude fungal extracts obtained from endophytes: A. alternata, C. cladosporioides and A. brassicae upon purification and further identification of the bioactive compounds can be a fascinating source for novel pharmaceutical agents.


Assuntos
Antibacterianos/farmacologia , Antioxidantes/farmacologia , Citotoxinas/farmacologia , Fungos/química , Taxus/microbiologia , Alternaria/química , Animais , Antibacterianos/isolamento & purificação , Antioxidantes/isolamento & purificação , Cladosporium/química , Citotoxinas/isolamento & purificação , Decápodes/efeitos dos fármacos , Endófitos/química , Nepal , Metabolismo Secundário
9.
Microbiol Res ; 239: 126536, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32738763

RESUMO

The present study aims to investigate the endophytic bacteria, isolated from the roots of Taxus wallichiana Zucc. and designated as GBPI_TWL and GBPI_TWr, for their plant growth promoting traits. On the basis of phenotypic and molecular characters, the bacteria are identified as species of Burkholderia and Enterobacter, respectively. Both the bacteria could grow at wide range of temperature (5-40 °C, opt=25 °C) and pH (1.5-11.0, opt = 6-7), and tolerate salt concentration up to 12 %. While both the bacterial endophytes possessed siderophore, HCN, ammonia, and salicyclic acid producing abilities, GBPI_TWL showed IAA and ACC deaminase producing abilities, in addition. The bacteria were found to be potential phosphate solubilizers at wide temperature range (5-35 °C) by utilizing tricalcium, iron, and aluminium phosphate as substrate. Further, the bacterial isolates produced phytase and phosphatase enzymes in both acidic and alkaline conditions. Positive influence of the inoculation with the bioformulations of GBPI_TWL and GBPI_TWr was demonstrated on the test crops namely rice (Oryza sativa) and soybean (Glycine max) with respect to physico-chemical and plant growth parameters in net house experiments. The study will have implications in developing bioformulations, specifically for low temperature environments, in view of environmental sustainability.


Assuntos
Bactérias/genética , Bioprospecção , Endófitos/genética , Endófitos/isolamento & purificação , Desenvolvimento Vegetal , Taxus/microbiologia , 6-Fitase/biossíntese , Bactérias/enzimologia , Bactérias/isolamento & purificação , DNA Ribossômico , Oryza/crescimento & desenvolvimento , Oryza/microbiologia , Fosfatos/metabolismo , Monoéster Fosfórico Hidrolases/biossíntese , Filogenia , Raízes de Plantas/microbiologia , Análise de Sequência de DNA , Glycine max/crescimento & desenvolvimento , Glycine max/microbiologia , Taxus/crescimento & desenvolvimento
10.
Molecules ; 25(13)2020 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-32630044

RESUMO

Endophytic fungi have been considered as a repertoire for bioactive secondary metabolites with potential application in medicine, agriculture and food industry. The biosynthetic pathways by fungal endophytes raise the argument of acquisition of these machineries of such complex metabolites from the plant host. Diterpenoids "Taxol" is the most effective anticancer drug with highest annual sale, since its discovery in 1970 from the Pacific yew tree, Taxus brevifolia. However, the lower yield of Taxol from this natural source (bark of T. brevifolia), availability and vulnerability of this plant to unpredicted fluctuation with the ecological and environmental conditions are the challenges. Endophytic fungi from Taxus spp. opened a new avenue for industrial Taxol production due to their fast growth, cost effectiveness, independence on climatic changes, feasibility of genetic manipulation. However, the anticipation of endophytic fungi for industrial Taxol production has been challenged by the loss of its productivity, due to the metabolic reprograming of cells, downregulating the expression of its encoding genes with subculturing and storage. Thus, the objectives of this review were to (1) Nominate the endophytic fungal isolates with the Taxol producing potency from Taxaceae and Podocarpaceae; (2) Emphasize the different approaches such as molecular manipulation, cultural optimization, co-cultivation for enhancing the Taxol productivities; (3) Accentuate the genome mining of the rate-limiting enzymes for rapid screening the Taxol biosynthetic machinery; (4) Triggering the silenced rate-limiting genes and transcriptional factors to activates the biosynthetic gene cluster of Taxol.


Assuntos
Vias Biossintéticas , Endófitos/metabolismo , Fungos/metabolismo , Paclitaxel/farmacologia , Taxus/microbiologia , Traqueófitas/microbiologia , Endófitos/isolamento & purificação , Fungos/isolamento & purificação , Genômica
11.
Appl Microbiol Biotechnol ; 104(16): 6991-7003, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32617617

RESUMO

Taxol, a phyto-extracted diterpenoid, is the most commercially needed drug in cancer chemotherapy. In spite of the microbial production of taxol being successful and prospective, the reported yields are still not sufficient for large-scale production. Thus, the discovery of new taxol-producing microbial strains and production enhancement methodologies such as process optimization, strain improvement, and immobilization technique are the main objectives. In this paper, a taxol-producing start strain Epicoccum nigrum TXB502 (initial yield 61.35 µg L-1) was isolated from Taxus baccata and identified by morphological and molecular tools. The optimum cultivation and nutritional conditions were assessed by testing one parameter at a time approach that resulted in 88.59% significant production increase. In addition, a stable mutant with improved productivity (40.07% yield increase in comparison with the parent strain) was successfully developed after gamma irradiation mutagenesis of the start strain. The taxol titer was further improved via testing different immobilization carriers for both spores and mycelia of this mutant. Over taxol production was achieved using alginate-immobilized mycelia with the feasibility of conducting six successive production cycles in a semi-continuous form. The final total concentration reached 8187.77 µg taxol 6 L-1 which represents approximately 22-fold increase, as compared to the initial titer of the start strain. These findings can pave the way for the prospective industrial manufacturing of taxol, as the achieved taxol production in this study is the highest reported by academic laboratories for microbial cultures. KEY POINTS: • Discovery of a new taxol-producing endophytic fungus E. nigrum TXB502 strain. • Taxol yield was successfully improved via bioprocess optimization and strain mutagenesis. • Alginate-immobilized mycelia were efficient for a semi-continuous production of taxol. • The final total concentration of taxol showed approximately 22-fold increase as compared to the initial titer.


Assuntos
Antineoplásicos/metabolismo , Ascomicetos/genética , Ascomicetos/metabolismo , Raios gama , Mutagênese , Paclitaxel/biossíntese , Ascomicetos/efeitos da radiação , Meios de Cultura/química , Fermentação , Microbiologia Industrial/métodos , Micélio/metabolismo , Taxus/microbiologia
12.
Nat Prod Res ; 34(1): 110-121, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31298589

RESUMO

Taxol is one of the anticancer drugs synthesized naturally in the evergreen Taxus brevifolia forest tree belonging to the yew family (Taxaceae) growing on the Pacific. There are reportedly evidence for treating ovarian, breast and lung cancers through this drug given its unique structural and functional features. Extraction of this drug from yew trees bark is one of the most common ways of producing this drug, but 3000 trees are needed to obtain a kilogram of Taxol. Hence, further attention has recently been attracted to the metabolic engineering strategies, including, engineering cellular metabolism of microorganisms and their optimization. Accordingly, the present paper article was aimed to review recent advances in elevating the production and commercialization of Taxol through metabolic engineering techniques.


Assuntos
Engenharia Metabólica/métodos , Paclitaxel/biossíntese , Taxus/química , Antineoplásicos Fitogênicos/biossíntese , Humanos , Neoplasias/tratamento farmacológico , Taxus/microbiologia , Árvores/microbiologia
13.
Int J Syst Evol Microbiol ; 70(1): 481-486, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31613744

RESUMO

A Gram-staining-positive, aerobic, rod-shaped, endospore-forming bacterium, designated strain M5HDSG1-1T, was originally isolated from a surface-sterilized root of Taxus chinensis (Pilger) Rehd. in Guizhou, PR China. This bacterium was tested by a polyphasic approach to determine its taxonomic position. A 16S rRNA gene-based phylogenetic analysis revealed that M5HDSG1-1T had the greatest similarity to the type strain of Bacillus nealsonii DSM 15077T (99.1 %). The average nucleotide identity values between M5HDSG1-1T and Bacillus nealsonii DSM 15077T and Bacillus circulans NBRC 13626T were 73.3 and 72.8 %, respectively. The digital DNA-DNA hybridization values between M5HDSG1-1T and Bacillus nealsonii DSM 15077T and Bacillus circulans NBRC 13626T were 20.1 and 20.6 %, respectively, which were below the recommended thresholds. M5HDSG1-1T grew at a pH range of 6.0-12.0 (optimum, 7.0-8.0), at temperatures between 10 and 45 °C (optimum, 30 °C) and at 0-2 % (w/v) NaCl (optimum, 1 %). Neither substrate nor aerial mycelia was formed, and no diffusible pigments were observed on the media tested. The predominant isoprenoid quinone was menaquinone-7 (MK-7). The major fatty acids were anteiso-C15 : 0, and iso-C15 : 0. The polar lipids comprised diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, an unidentified aminophospholipid and an unidentified phospholipid. The DNA G+C content was 37.5 mol%. According to the phylogeneic, phenotypic and chemotaxonomic data, M5HDSG1-1T was clearly distinguishable from other species with validly published names in the genus Bacillus and should therefore be classified as representing a novel species, and we suggest the name Bacillus taxi sp. nov. The type strain is M5HDSG1-1T (=JCM 33117T=CGMCC 1.13668T).


Assuntos
Bacillus/classificação , Filogenia , Raízes de Plantas/microbiologia , Taxus/microbiologia , Bacillus/isolamento & purificação , Técnicas de Tipagem Bacteriana , Composição de Bases , China , DNA Bacteriano/genética , Endófitos/classificação , Endófitos/isolamento & purificação , Ácidos Graxos/química , Hibridização de Ácido Nucleico , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Vitamina K 2/análogos & derivados , Vitamina K 2/química
14.
PLoS One ; 14(12): e0226500, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31830112

RESUMO

BACKGROUND: Temperature is a key factor influencing the growth and distribution of Taxus chinensis var. mairei, which is of high medicinal value. However, there is little information about the changes in rhizosphere bacterial community of Taxus chinensis var. maire under different temperatures. METHODS: In this study, the rhizosphere bacterial communities of Taxus chinensis var. maire under a series of temperatures [5°C (T5), 15°C (T15), 25°C (T25), 35°C (T35)] were assessed through high-throughput sequencing. And some taxa annotated as Mitochondria were positively correlated with the activity of SOD. RESULTS: Activity of peroxidase (POD) and superoxide dismutase (SOD) were increased and decreased respectively with increasing incubation temperature, showing that SOD may be the dominant reactive oxygen species (ROS) detoxifying enzyme in Taxus chinensis var. maire under low temperature. Taxus chinensis var. maire enriched specific bacterial taxa in rhizosphere under different temperature, and the rhizosphere bacterial diversity decreased with increasing temperature. CONCLUSION: The results indicated that rhizosphere bacteria may play important role for Taxus chinensis var. maire in coping with temperature changes, and the management of rhizosphere bacteria in a potential way to increase the cold resistance of Taxus chinensis var. mairei, thus improving its growth under low temperature and enlarging its habitats.


Assuntos
Bactérias/isolamento & purificação , Rizosfera , Taxus/crescimento & desenvolvimento , Temperatura , Antioxidantes/metabolismo , Bactérias/classificação , Bactérias/genética , Espécies Reativas de Oxigênio/metabolismo , Microbiologia do Solo , Taxus/microbiologia
15.
Fitoterapia ; 139: 104390, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31655088

RESUMO

From extracts of the plant associated fungus Chaetosphaeronema achilleae collected in Iran, a previously unreported isoindolinone named chaetosisoindolinone (1) and a previously undescribed indanone named chaetosindanone (2) were isolated in addition to five known metabolites, 2-(2-acetyl-3,5-dihydroxyphenyl) acetic acid (3), vulculic acid (4), 2-(2-acetyl-3-hydroxy-5-methoxyphenyl)acetic acid (5), curvulin (6), and curvulol (7). Their structures were elucidated on the basis of extensive spectroscopic analysis and high-resolution mass spectrometry. The isolated compounds were tested for their antimicrobial, anti-biofilm, and nematicidal activities. Compound 2 exhibited cytotoxicity against the human breast adenocarcinoma MCF-7 cells with an IC50 value of 1.5 µg/mL. Furthermore, compounds 4 and 7 almost completely inhibited biofilm formation in Staphylococcus aureus at 256 µg/mL. Weak antimicrobial activities were also observed for some of the isolated compounds against Mucor hiemalis, Rhodoturula glutinis, Chromobacterium violaceum, and Staphylococcus aureus.


Assuntos
Antibacterianos/farmacologia , Antineoplásicos/farmacologia , Ascomicetos/química , Biofilmes/efeitos dos fármacos , Taxus/microbiologia , Antibacterianos/isolamento & purificação , Antineoplásicos/isolamento & purificação , Humanos , Irã (Geográfico) , Células MCF-7 , Testes de Sensibilidade Microbiana , Estrutura Molecular , Staphylococcus aureus/efeitos dos fármacos
16.
J Ind Microbiol Biotechnol ; 46(5): 613-623, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30783891

RESUMO

Paclitaxel is a main impressive chemotherapeutic agent with unique mode of action and broad-spectrum activity against cancers. Hazel (Corylus avellana) is a paclitaxel-producing species through bioprospection. Endophytic fungi have significant roles in plant paclitaxel production. This study evaluated the effect of co-culture of C. avellana cells and paclitaxel-producing endophytic fungus, Epicoccum nigrum strain YEF2 and also the effect of elicitors derived from this fungal strain on paclitaxel production. The results clearly revealed that co-culture of C. avellana cells and E. nigrum was more effective than elicitation of C. avellana cells by only cell extract or culture filtrate of this fungal strain. Co-culture of C. avellana cells and E. nigrum surpassed monocultures in terms of paclitaxel production designating their synergistic interaction potential. Fungal inoculum amount, co-culture establishment time and co-culture period were important factors for achieving the maximum production of paclitaxel in this co-culture system. The highest total yield of paclitaxel (404.5 µg L-1) was produced in co-culture established on 13th day using 3.2% (v/v) of E. nigrum mycelium suspension, which was about 5.5 and 136.6 times that in control cultures of C. avellana cells and E. nigrum, respectively. This is the first report on positive effect of co-culture of paclitaxel-producing endophytic fungus and non-host plant cells for enhancing paclitaxel production.


Assuntos
Ascomicetos/metabolismo , Química Farmacêutica/métodos , Técnicas de Cocultura , Corylus/microbiologia , Paclitaxel/biossíntese , Células Cultivadas , Fermentação , Microbiologia Industrial , Micélio , Extratos Vegetais/metabolismo , Simbiose , Taxus/microbiologia
17.
Pol J Microbiol ; 67(4): 417-430, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30550228

RESUMO

We isolated three laccase-producing fungus strains from Taxus rhizosphere. Myrotheium verrucaria strain DJTU-sh7 had the highest laccase activity of 216.2 U/ml, which was increased to above 300 U/ml after optimization. DJTU-sh7 had the best decolorizing effect for three classes of reactive dyes. The DJTU-sh7-containing fungal consortium displayed the robust decolorizing ability. Both color removal efficiency and chemical oxygen demand were increased in the consortium mediated biotransformation. Transcriptome changes of M. verrucaria elicited by azo dye and phenolic were quantified by the high throughput transcriptome sequencing, and the activities of the selected oxidases and reductases were determined. The possible involvement of oxidases and reductases, especially laccase, aryl alcohol oxidase, and ferric reductase in the biotransformation of dye and phenolic compounds was revealed at both transcriptomic and phenotypic levels. Revealing the transcriptomic mechanisms of fungi in dealing with organic pollutants facilitates the fine-tuned manipulation of strains in developing novel bioremediation and biodegradation strategies.We isolated three laccase-producing fungus strains from Taxus rhizosphere. Myrotheium verrucaria strain DJTU-sh7 had the highest laccase activity of 216.2 U/ml, which was increased to above 300 U/ml after optimization. DJTU-sh7 had the best decolorizing effect for three classes of reactive dyes. The DJTU-sh7-containing fungal consortium displayed the robust decolorizing ability. Both color removal efficiency and chemical oxygen demand were increased in the consortium mediated biotransformation. Transcriptome changes of M. verrucaria elicited by azo dye and phenolic were quantified by the high throughput transcriptome sequencing, and the activities of the selected oxidases and reductases were determined. The possible involvement of oxidases and reductases, especially laccase, aryl alcohol oxidase, and ferric reductase in the biotransformation of dye and phenolic compounds was revealed at both transcriptomic and phenotypic levels. Revealing the transcriptomic mechanisms of fungi in dealing with organic pollutants facilitates the fine-tuned manipulation of strains in developing novel bioremediation and biodegradation strategies.


Assuntos
Ascomicetos/genética , Ascomicetos/metabolismo , Corantes/metabolismo , Rizosfera , Taxus/microbiologia , Transcriptoma , Compostos Azo , Biodegradação Ambiental , Biotransformação , Sequenciamento de Nucleotídeos em Larga Escala , Lacase/biossíntese , Fenóis/metabolismo , Fenótipo , Microbiologia do Solo
18.
J Basic Microbiol ; 58(6): 501-512, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29676472

RESUMO

In the present study, the shotgun high throughput metagenomic sequencing was implemented to globally capture the features of Taxus rhizosphere microbiome. Total reads could be assigned to 6925 species belonging to 113 bacteria phyla and 301 species of nine fungi phyla. For archaea and virus, 263 and 134 species were for the first time identified, respectively. More than 720,000 Unigenes were identified by clean reads assembly. The top five assigned phyla were Actinobacteria (363,941 Unigenes), Proteobacteria (182,053), Acidobacteria (44,527), Ascomycota (fungi; 18,267), and Chloroflexi (15,539). KEGG analysis predicted numerous functional genes; 7101 Unigenes belong to "Xenobiotics biodegradation and metabolism." A total of 12,040 Unigenes involved in defense mechanisms (e.g., xenobiotic metabolism) were annotated by eggNOG. Talaromyces addition could influence not only the diversity and structure of microbial communities of Taxus rhizosphere, but also the relative abundance of functional genes, including metabolic genes, antibiotic resistant genes, and genes involved in pathogen-host interaction, bacterial virulence, and bacterial secretion system. The structure and function of rhizosphere microbiome could be sensitive to non-native microbe addition, which could impact on the pollutant degradation. This study, complementary to the amplicon sequencing, more objectively reflects the native microbiome of Taxus rhizosphere and its response to environmental pressure, and lays a foundation for potential combination of phytoremediation and bioaugmentation.


Assuntos
Metagenômica/métodos , Microbiota , Raízes de Plantas/microbiologia , Rizosfera , Microbiologia do Solo , Taxus/microbiologia , Archaea/classificação , Archaea/genética , Archaea/isolamento & purificação , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Biodegradação Ambiental , Poluentes Ambientais/efeitos adversos , Fungos/classificação , Fungos/genética , Fungos/isolamento & purificação , Genes Arqueais/genética , Genes Bacterianos/genética , Genes Fúngicos/genética , Genes Virais/genética , Filogenia , Vírus/classificação , Vírus/genética , Vírus/isolamento & purificação
19.
Foodborne Pathog Dis ; 15(5): 269-276, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29377722

RESUMO

Endophytes are a potential source of novel bioactive compounds with medicinal properties. In this study, 41 endophytic bacteria (EB) were isolated from tissues of a medicinally important plant Taxus brevifolia (Pacific yew). The objective was to screen all the EB isolates for their antibacterial effects against five foodborne pathogenic bacteria: Bacillus cereus ATCC10876, Staphylococcus aureus ATCC12600, Listeria monocytogenes ATCC19115, Escherichia coli ATCC43890, and Salmonella Typhimurium ATCC19585. Among the EB isolates, T. brevifolia seed (TbS)-8, T. brevifolia fleshy part of fruit (TbFl)-10, T. brevifolia leaf (TbL)-22, TbS-29, and TbL-34 exerted significant antibacterial activity against the tested foodborne pathogens. Especially TbFl-10 showed the highest antibacterial activity against all the tested bacteria and was identified as Paenibacillus kribbensis (Pk). Furthermore, an ethyl acetate extract of Pk-TbFl-10 possessed antibacterial activities against the tested five foodborne pathogenic bacteria, with zones of inhibition from 15.71 ± 2.85 to 13.01 ± 2.12 mm. Scanning electron microscopy analysis revealed ruptured, lysed, shrunk, and swollen cells of all the tested foodborne pathogens treated with the ethyl acetate extract of Pk-TbFl-10, suggesting that a metabolite(s) of Pk-TbFl-10 penetrates the cell membrane and causes cell lysis leading to cell death. Our results indicate that Pk-TbFl-10 isolated from T. brevifolia can serve as a novel source of natural antibacterial agents against foodborne pathogenic bacteria, with potential applications in the pharmaceutical industry.


Assuntos
Antibiose , Endófitos/isolamento & purificação , Paenibacillus/fisiologia , Taxus/microbiologia , Bacillus cereus/crescimento & desenvolvimento , Endófitos/fisiologia , Escherichia coli/crescimento & desenvolvimento , Microbiologia de Alimentos , Listeria monocytogenes/crescimento & desenvolvimento , Testes de Sensibilidade Microbiana , Paenibacillus/isolamento & purificação , Salmonella typhimurium/crescimento & desenvolvimento , Staphylococcus aureus/crescimento & desenvolvimento
20.
Sheng Wu Gong Cheng Xue Bao ; 33(12): 1945-1954, 2017 Dec 25.
Artigo em Chinês | MEDLINE | ID: mdl-29271172

RESUMO

To enrich the resource pool of endophytic fungi from plants which produce taxol, a taxol-producing endophytic fungus TMS-26 was isolated from the stem of Taxus Media. The result of high performance liquid chromatography (HPLC) showed that TMS-26 extract exhibited similar chromatographic peaks and retention time (4.545 min) with authentic taxol. Then mass spectrometry (MS) analysis further confirmed that TMS-26 extracts contained the same mass peaks with authentic taxol ((M+Na)+=876). These indicated that the isolated endophytic fungus TMS-26 can produce taxol. According to the morphological characteristics, the molecular analysis of 18S rDNA and internal transcribed spacer nuclear rDNA gene sequence, the fungus was identified as Aspergillus fumigatus TMS-26.


Assuntos
Aspergillus fumigatus/metabolismo , Paclitaxel/biossíntese , Taxus/microbiologia , Aspergillus fumigatus/genética , Cromatografia Líquida de Alta Pressão , DNA Fúngico/genética , DNA Espaçador Ribossômico/genética , Endófitos/metabolismo , Filogenia , RNA Ribossômico 18S/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...