Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 615
Filtrar
1.
JCI Insight ; 9(9)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38564292

RESUMO

Central for wound healing is the formation of granulation tissue, which largely consists of collagen and whose importance stretches past wound healing, including being implicated in both fibrosis and skin aging. Cyclophilin D (CyD) is a mitochondrial protein that regulates the permeability transition pore, known for its role in apoptosis and ischemia-reperfusion. To date, the role of CyD in human wound healing and collagen generation has been largely unexplored. Here, we show that CyD was upregulated in normal wounds and venous ulcers, likely adaptive as CyD inhibition impaired reepithelialization, granulation tissue formation, and wound closure in both human and pig models. Overexpression of CyD increased keratinocyte migration and fibroblast proliferation, while its inhibition reduced migration. Independent of wound healing, CyD inhibition in fibroblasts reduced collagen secretion and caused endoplasmic reticulum collagen accumulation, while its overexpression increased collagen secretion. This was confirmed in a Ppif-KO mouse model, which showed a reduction in skin collagen. Overall, this study revealed previously unreported roles of CyD in skin, with implications for wound healing and beyond.


Assuntos
Colágeno , Fibroblastos , Camundongos Knockout , Peptidil-Prolil Isomerase F , Pele , Cicatrização , Animais , Feminino , Humanos , Masculino , Camundongos , Movimento Celular , Proliferação de Células , Colágeno/metabolismo , Ciclofilinas/metabolismo , Ciclofilinas/genética , Modelos Animais de Doenças , Fibroblastos/metabolismo , Tecido de Granulação/metabolismo , Tecido de Granulação/patologia , Queratinócitos/metabolismo , Peptidil-Prolil Isomerase F/metabolismo , Peptidil-Prolil Isomerase F/genética , Pele/metabolismo , Pele/patologia , Suínos , Cicatrização/fisiologia
2.
Cell Mol Biol (Noisy-le-grand) ; 70(3): 155-161, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38650137

RESUMO

The purpose of this study was to explore the mechanism of "simmer pus and grow meat" method based on bFGF regulating WNT / ß-Catenin signaling pathway. Of 100 SPF rats, 25 were randomly selected as blank group, and 75 rats were established chronic infectious wound model and divided into blank group, model group (normal saline treatment, n = 25), experimental group (purple and white ointment treatment, n = 25), and wet burn ointment group (wet burn treatment, n = 25). The wound healing rate of rats was compared. The protein expressions of PCAN, VEGF, bFGF, ß-Catenin, GSK-3ß and C-Myc in granulation tissues were detected. On the 7th day, the wound healing rate of the model group was lower than that of the other 3 groups (P<0.05), and the wound healing rate of the positive control group was higher than that of the experimental group and the control group (P<0.05). The expressions of bFGF, GSK-3ß and C-MyC in model group were higher than those in control group (P<0.05). The ß-catenin protein expression in the model group was lower than that in the control group (P<0.05), and the ß-catenin protein expression in the experimental group and the positive control group was higher than that in the model group (P<0.05). The expressions of PCAN and VEGF in model group were lower than those in model group (P<0.05). We found that Zibai ointment promotes chronic wound healing by modulating the bFGF/Wnt/ß-Catenin signaling pathway.


Assuntos
Fator 2 de Crescimento de Fibroblastos , Via de Sinalização Wnt , Cicatrização , beta Catenina , Animais , Cicatrização/efeitos dos fármacos , Via de Sinalização Wnt/efeitos dos fármacos , Fator 2 de Crescimento de Fibroblastos/metabolismo , beta Catenina/metabolismo , Ratos , Masculino , Glicogênio Sintase Quinase 3 beta/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Ratos Sprague-Dawley , Queimaduras/metabolismo , Queimaduras/tratamento farmacológico , Queimaduras/patologia , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Modelos Animais de Doenças , Tecido de Granulação/efeitos dos fármacos , Tecido de Granulação/metabolismo , Tecido de Granulação/patologia
3.
Immun Inflamm Dis ; 12(4): e1233, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38577990

RESUMO

OBJECTIVE: To observe the expression of inflammatory factors and autophagy-related proteins in granulation tissue of diabetic foot ulcer (DFU) patients and analyze their relationship with infection. METHODS: This is a retrospective cohort study. One hundred and fifty-two patients with DFU in our hospital from July 2020 to March 2022 were selected as the DFU group, including 98 cases in infection stage group and 54 cases in infection control group. The patients were further graded as the mild (51 cases), the moderate (65 cases), and the severe infection group (36 cases) according to the Wagner grading criteria. Sixty-seven patients with foot burns during the same period were selected as the control group. The distribution of pathogenic bacteria on the ulcer surface was examined using fully automated bacterial analyzer. The expression of inflammatory factors (procalcitonin [PCT], tumor necrosis factor-α [TNF-α], and interleukin-6 [IL-6]) was valued by real-time fluorescence quantitative PCR (qRT-PCR). Protein expression was measured by immunohistochemistry (IHC). The correlation was analyzed by Pearson. RESULTS: The surface infection of DFU patients was mostly induced by gram-negative and gram-positive bacteria, with Pseudomonas aeruginosa predominating among the Gram-negative bacteria and Staphylococcus aureus among the gram-positive bacteria. The infection stage group had higher content of PCT, TNF-α, and IL-6 and lower content of Beclin-1 and LC3 than the infection control group (p < .001). The levels of PCT, TNF-α, and IL-6 in the DFU patients with cardiovascular events were higher than those in the nonoccurrence group (p < .001). Glycated hemoglobin in patients with DFU was positively correlated with PCT, TNF-α, and IL-6 levels (p < .05), and negatively correlated with Beclin-1 and LC3 levels (p < .001). CONCLUSION: P. aeruginosa and S. aureus were predominant bacterial in DFU infections. Inflammatory factor and autophagy protein expression were closely correlated with the degree of infection.


Assuntos
Diabetes Mellitus , Pé Diabético , Humanos , Pé Diabético/metabolismo , Pé Diabético/microbiologia , Pé Diabético/patologia , Fator de Necrose Tumoral alfa , Estudos Retrospectivos , Interleucina-6 , Staphylococcus aureus , Proteína Beclina-1/genética , Bactérias , Tecido de Granulação/metabolismo , Tecido de Granulação/patologia , Autofagia
4.
Int J Mol Sci ; 24(4)2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36835248

RESUMO

Wound healing is characterized by a systemic and complex process of cellular and molecular activities. Dipotassium Glycyrrhizinate (DPG), a side product derived from glycyrrhizic acid, has several biological effects, such as being antiallergic, antioxidant, antibacterial, antiviral, gastroprotective, antitumoral, and anti-inflammatory. This study aimed to evaluate the anti-inflammatory effect of topical DPG on the healing of cutaneous wounds by secondary intention in an in vivo experimental model. Twenty-four male Wistar rats were used in the experiment, and were randomly divided into six groups of four. Circular excisions were performed and topically treated for 14 days after wound induction. Macroscopic and histopathological analyses were performed. Gene expression was evaluated by real-time qPCR. Our results showed that treatment with DPG caused a decrease in the inflammatory exudate as well as an absence of active hyperemia. Increases in granulation tissue, tissue reepithelization, and total collagen were also observed. Furthermore, DPG treatment reduced the expression of pro-inflammatory cytokines (Tnf-α, Cox-2, Il-8, Irak-2, Nf-kB, and Il-1) while increasing the expression of Il-10, demonstrating anti-inflammatory effects across all three treatment periods. Based on our results, we conclude that DPG attenuates the inflammatory process by promoting skin wound healing through the modulation of distinct mechanisms and signaling pathways, including anti-inflammatory ones. This involves modulation of the expression of pro- and anti-inflammatory cytokine expression; promotion of new granulation tissue; angiogenesis; and tissue re-epithelialization, all of which contribute to tissue remodeling.


Assuntos
Anti-Inflamatórios , Ácido Glicirrízico , Cicatrização , Animais , Masculino , Ratos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Citocinas/metabolismo , Ácido Glicirrízico/farmacologia , Ácido Glicirrízico/uso terapêutico , Tecido de Granulação/metabolismo , Ratos Wistar , Pele/metabolismo , Cicatrização/efeitos dos fármacos
5.
Int J Mol Sci ; 23(3)2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35163435

RESUMO

Lower-extremity arterial disease is a major health problem with increasing prevalence, often leading to non-traumatic amputation, disability and mortality. The molecular mechanisms underpinning abnormal vascular wall remodeling are not fully understood. We hypothesized on the existence of a vascular tissue memory that may be transmitted through soluble signaling messengers, transferred from humans to healthy recipient animals, and consequently drive the recapitulation of arterial wall thickening and other vascular pathologies. We examined the effects of the intralesional infiltration for 6 days of arteriosclerotic popliteal artery-derived homogenates (100 µg of protein) into rats' full-thickness wounds granulation tissue. Animals infiltrated with normal saline solution or healthy brachial arterial tissue homogenate obtained from traumatic amputation served as controls. The significant thickening of arteriolar walls was the constant outcome in two independent experiments for animals receiving arteriosclerotic tissue homogenates. This material induced other vascular morphological changes including an endothelial cell phenotypic reprogramming that mirrored the donor's vascular histopathology. The immunohistochemical expression pattern of relevant vascular markers appeared to match between the human tissue and the corresponding recipient rats. These changes occurred within days of administration, and with no cross-species limitation. The identification of these "vascular disease drivers" may pave novel research avenues for atherosclerosis pathobiology.


Assuntos
Arteriosclerose/metabolismo , Tecido de Granulação/metabolismo , Artéria Poplítea/lesões , Proteínas/administração & dosagem , Lesões do Sistema Vascular/induzido quimicamente , Idoso , Animais , Arteriosclerose/patologia , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Ratos , Lesões do Sistema Vascular/patologia
6.
Mol Med Rep ; 24(6)2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34608502

RESUMO

Label­free quantitative mass spectrometry was used to analyze the differences in the granulation tissue protein expression profiles of patients with diabetic foot ulcers (DFUs) before and after negative­pressure wound therapy (NPWT) to understand how NPWT promotes the healing of diabetic foot wounds. A total of three patients with DFUs hospitalized for Wagner grade 3 were enrolled. The patients received NPWT for one week. The granulation tissue samples of the patients prior to and following NPWT for one week were collected. The protein expression profiles were analyzed with label­free quantitative mass spectrometry and the differentially expressed proteins (DEPs) in the DFU patients prior to and following NPWT for one week were identified. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses were conducted to annotate the DEPs and DEP­associated signaling pathways. Western blotting and ELISA were performed to validate the results. By comparing the differences in the protein profiles of granulation tissue samples prior to and following NPWT for one week, 36 proteins with significant differences were identified (P<0.05); 33 of these proteins were upregulated and three proteins were downregulated. NPWT altered proteins mainly associated with antioxidation and detoxification, the cytoskeleton, regulation of the inflammatory response, complement and coagulation cascades and lipid metabolism. The functional validation of the DEPs demonstrated that the levels of cathepsin S in peripheral blood and granulation tissue were significantly lower than those prior to NPWT (P<0.05), while the levels of protein S isoform 1, inter α­trypsin inhibitor heavy chain H4 and peroxiredoxin­2 in peripheral blood and granulation tissue were significantly higher than those prior to NPWT (P<0.05). The present study identified multiple novel proteins altered by NPWT and laid a foundation for further studies investigating the mechanism of action of NPWT.


Assuntos
Pé Diabético/metabolismo , Úlcera do Pé/metabolismo , Tecido de Granulação/metabolismo , Tratamento de Ferimentos com Pressão Negativa , Proteoma/metabolismo , Proteômica , Idoso , Catepsinas/metabolismo , Pé Diabético/terapia , Feminino , Úlcera do Pé/terapia , Humanos , Masculino , Espectrometria de Massas/métodos , Pessoa de Meia-Idade , Peroxirredoxinas/metabolismo , Proteína S/metabolismo , Proteínas Secretadas Inibidoras de Proteinases/metabolismo , Transdução de Sinais , Cicatrização
7.
Adv Sci (Weinh) ; 8(18): e2100293, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34278740

RESUMO

Excessive inflammation often impedes the healing of chronic wounds. Scavenging of chemokines by multiarmed poly(ethylene glycol)-glycosaminoglycan (starPEG-GAG) hydrogels has recently been shown to support regeneration in a diabetic mouse chronic skin wound model. Herein, a textile-starPEG-GAG composite wound contact layer (WCL) capable of selectively sequestering pro-inflammatory chemokines is reported. Systematic variation of the local and integral charge densities of the starPEG-GAG hydrogel component allows for tailoring its affinity profile for biomolecular signals of the wound milieu. The composite WCL is subsequently tested in a large animal (porcine) model of human wound healing disorders. Dampening excessive inflammatory signals without affecting the levels of pro-regenerative growth factors, the starPEG-GAG hydrogel-based WCL treatment induced healing with increased granulation tissue formation, angiogenesis, and deposition of connective tissue (collagen fibers). Thus, this biomaterials technology expands the scope of a new anti-inflammatory therapy toward clinical use.


Assuntos
Materiais Biocompatíveis/farmacologia , Quimiocinas/metabolismo , Tecido de Granulação/metabolismo , Hidrogéis/farmacologia , Inflamação/prevenção & controle , Cicatrização , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Suínos
8.
Am J Physiol Heart Circ Physiol ; 320(3): H1066-H1079, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33356962

RESUMO

Butyrate is a short-chain fatty acid (SCFA) derived from microbiota and is involved in a range of cell processes in a concentration-dependent manner. Low concentrations of sodium butyrate (NaBu) were shown to be proangiogenic. However, the mechanisms associated with these effects are not yet fully known. Here, we investigated the contribution of the SCFA receptor GPR43 in the proangiogenic effects of local treatment with NaBu and its effects on matrix remodeling using the sponge-induced fibrovascular tissue model in mice lacking the Gpr43 gene (Gpr43-KO) and the wild-type (WT) mice. We demonstrated that NaBu (0.2 mM intraimplant) treatment enhanced the neovascularization process, blood flow, and VEGF levels in a GPR43-dependent manner in the implants. Moreover, NaBu was able to modulate matrix remodeling aspects of the granulation tissue such as proteoglycan production, collagen deposition, and α-smooth muscle actin (α-SMA) expression in vivo, besides increasing transforming growth factor (TGF)-ß1 levels in the fibrovascular tissue, in a GPR43-dependent manner. Interestingly, NaBu directly stimulated L929 murine fibroblast migration and TGF-ß1 and collagen production in vitro. GPR43 was found to be expressed in human dermal fibroblasts, myofibroblasts, and endothelial cells. Overall, our findings evidence that the metabolite-sensing receptor GPR43 contributes to the effects of low dose of NaBu in inducing angiogenesis and matrix remodeling during granulation tissue formation. These data provide important insights for the proposition of new therapeutic approaches based on NaBu, beyond the highly explored intestinal, anti-inflammatory, and anticancer purposes, as a local treatment to improve tissue repair, particularly, by modulating granulation tissue components.NEW & NOTEWORTHY Our data show the contribution of the metabolite-sensing receptor GPR43 in the effects of low dose of sodium butyrate (NaBu) on stimulating angiogenesis and extracellular matrix remodeling in a model of granulation tissue formation in mice. We also show that human dermal fibroblasts, myofibroblasts, and endothelial cells express the receptor GPR43. These data provide important insights for the use of NaBu in local therapeutic approaches applicable to tissue repair in sites other than the intestine.


Assuntos
Indutores da Angiogênese/administração & dosagem , Ácido Butírico/administração & dosagem , Matriz Extracelular/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Tecido de Granulação/efeitos dos fármacos , Neovascularização Fisiológica/efeitos dos fármacos , Receptores Acoplados a Proteínas G/metabolismo , Animais , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Colágeno/metabolismo , Modelos Animais de Doenças , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Fibroblastos/metabolismo , Fibroblastos/patologia , Tecido de Granulação/metabolismo , Tecido de Granulação/patologia , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores Acoplados a Proteínas G/deficiência , Receptores Acoplados a Proteínas G/genética , Tampões de Gaze Cirúrgicos , Fator de Crescimento Transformador beta1/metabolismo
9.
Mol Cell Biochem ; 476(2): 1083-1092, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33230787

RESUMO

The inflammatory reaction influences the deposition of collagen within wound granulation tissue. The aim of the present study is to determine whether histamine acting directly on myofibroblasts derived from wound granulation tissue may influence collagen deposition. It also identifies the histamine receptor involved in this process. The experiments were carried out on cells isolated from the granulation tissue of a wound model (a polypropylene net inserted subcutaneously to rats) or intact rat skin. Collagen content was measured following the addition of different concentrations of histamine and treatment with histamine receptor antagonists (ketotifen - H1 inhibitor, ranitidine - H2 inhibitor) and a histamine receptor H1 agonist (2-pyridylethylamine dihydrochloride).The cells were identified as myofibroblasts: alpha-smooth muscle actin, vimentin, and desmin positive in all experimental conditions. Histamine increased the collagen level within both cell cultures, i.e., those isolated from granulation tissue or intact skin. It did not, however, influence the expression of either the collagen type I or III genes within the cultured myofibroblasts. Histamine activity was reduced by ketotifen (the H1 receptor inhibitor) and increased by the H1 receptor agonist, as demonstrated by changes in the levels of collagen in the myofibroblast culture. Histamine increased collagen content within the cultures, acting directly on myofibroblasts via H1 receptor stimulation.


Assuntos
Colágeno/metabolismo , Tecido de Granulação/efeitos dos fármacos , Histamina/farmacologia , Miofibroblastos/efeitos dos fármacos , Receptores Histamínicos H1/metabolismo , Cicatrização/efeitos dos fármacos , Animais , Células Cultivadas , Tecido de Granulação/metabolismo , Histamina/metabolismo , Agonistas dos Receptores Histamínicos/metabolismo , Agonistas dos Receptores Histamínicos/farmacologia , Masculino , Miofibroblastos/metabolismo , Ratos , Ratos Wistar , Cicatrização/fisiologia
10.
Biomed Mater ; 16(1): 015013, 2020 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-33325379

RESUMO

Stent-related granulation tissue hyperplasia is a major complication that limits the application of stents in airways. In this study, an arsenic trioxide-eluting electrospun nanofiber-covered self-expandable metallic stent (ATO-NFCS) was developed. Poly-L-lactide-caprolactone (PLCL) was selected as the drug-carrying polymer. Stents with two different ATO contents (0.4% ATO/PLCL and 1.2% ATO/PLCL) were fabricated. The in vitro release in simulated airway fluid suggested that the total ATO release time was 1 d. The growth of human embryonic pulmonary fibroblasts (CCC-HPF-1), normal human bronchial epithelial cells and airway smooth muscle cells was inhibited by ATO. When embedded in paravertebral muscle, the nanofiber membrane showed good short-term and long-term biological effects. In an animal study, placement of the ATO-NFCS in the trachea through a delivery system under fluoroscopy was feasible. The changes in liver and kidney function 1 and 7 d after ATO-NFCS placement were within the normal range. On pathological examination, the heart, liver, spleen, lungs and kidneys were normal. The effectiveness of the ATO-NFCS in reducing granulation tissue hyperplasia and collagen deposition was demonstrated in the rabbit airway (n = 18) at 4 weeks. The present study preliminarily investigated the efficacy of the ATO-NFCS in reducing granulation tissue formation in the trachea of rabbits. The results suggest that the ATO-NFCS is safe in vivo, easy to place, and effective for the suppression of granulation tissue formation.


Assuntos
Trióxido de Arsênio/química , Nanofibras/química , Stents Metálicos Autoexpansíveis , Traqueia/cirurgia , Animais , Trióxido de Arsênio/toxicidade , Materiais Biocompatíveis/química , Materiais Biocompatíveis/toxicidade , Células Cultivadas , Colágeno/metabolismo , Tecido de Granulação/metabolismo , Tecido de Granulação/patologia , Humanos , Hiperplasia/metabolismo , Hiperplasia/patologia , Hiperplasia/prevenção & controle , Técnicas In Vitro , Teste de Materiais , Nanofibras/toxicidade , Coelhos , Stents Metálicos Autoexpansíveis/efeitos adversos , Traqueia/metabolismo , Traqueia/patologia , Estenose Traqueal/patologia , Estenose Traqueal/cirurgia
11.
Int J Mol Sci ; 21(15)2020 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-32759725

RESUMO

We report a comparative study of multipotent mesenchymal stromal cells (MSC) delivered by injection, MSC-based cell sheets (CS) or MSC secretome to induce healing of cutaneous pressure ulcer in C57Bl/6 mice. We found that transplantation of CS from adipose-derived MSC resulted in reduction of fibrosis and recovery of skin structure with its appendages (hair and cutaneous glands). Despite short retention of CS on ulcer surface (3-7 days) it induced profound changes in granulation tissue (GT) structure, increasing its thickness and altering vascularization pattern with reduced blood vessel density and increased maturation of blood vessels. Comparable effects on GT vascularization were induced by MSC secretome, yet this treatment has failed to induce repair of skin with its appendages we observed in the CS group. Study of secretome components produced by MSC in monolayer or sheets revealed that CS produce more factors involved in pericyte chemotaxis and blood vessel maturation (PDGF-BB, HGF, G-CSF) but not sprouting inducer (VEGF165). Analysis of transcriptome using RNA sequencing and Gene Ontology mapping found in CS upregulation of proteins responsible for collagen binding and GT maturation as well as fatty acid metabolism enzymes known to be negative regulators of blood vessel sprouting. At the same time, downregulated transcripts were enriched by factors activating capillary growth, suggesting that in MSC sheets paracrine activity may shift towards matrix remodeling and maturation of vasculature, but not activation of blood vessel sprouting. We proposed a putative paracrine trigger mechanism potentially rendering an impact on GT vascularization and remodeling. Our results suggest that within sheets, MSC may change their functional state and spectrum of soluble factors that influence tissue repair and induce more effective skin healing inclining towards regeneration and reduced scarring.


Assuntos
Fibrose/genética , Transplante de Células-Tronco Mesenquimais , Úlcera por Pressão/terapia , Cicatrização/genética , Tecido Adiposo/transplante , Animais , Cicatriz/genética , Cicatriz/patologia , Fibrose/patologia , Fibrose/terapia , Tecido de Granulação/metabolismo , Tecido de Granulação/patologia , Humanos , Células-Tronco Mesenquimais/metabolismo , Camundongos , Úlcera por Pressão/genética , Úlcera por Pressão/patologia , Pele/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética
12.
Bull Exp Biol Med ; 169(3): 401-404, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32748145

RESUMO

We studied the relationship between structural components of the wound (scab, leukocyte shaft, newly formed epithelium, and granulation tissue) and tissue components (epithelial and connective tissue) during spontaneous healing of skin wounds in rats. The regenerate structures were evaluated by microscopic morphometry. The number of vessels in 10 fields of view was calculated (at ×600), the dimensions of newly formed regenerate structures were determined: height of the scab, leukocyte shaft, granulation tissue, the border zone of the epithelium, and the length of the epithelial wedge. For the studied morphometric parameters, regression models of changes in the parameters of the regenerating wound were created depending on the term of the reparative process (days 7 and 14). The correlation analysis of the morphometric parameters of the regenerating wound revealed bilateral strong (direct and inverse) correlations in pairs. Most of the identified dependencies were linear and the changes in the number of vessels in the granulation tissue fit the quadratic regression law. The regularities observed by us during spontaneous healing of full-layer skin defects can be considered as control values for comparison with reparation of similar wounds under conditions of stimulation.


Assuntos
Modelos Teóricos , Cicatrização/fisiologia , Animais , Feminino , Tecido de Granulação/metabolismo , Ratos , Pele/metabolismo
13.
J Wound Care ; 29(Sup5b): S4-S10, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32427027

RESUMO

Not only does oxygen play an essential role in each stage of the wound healing process. It also helps to increases host resistance to infection. Any impairment to the oxygen supply can therefore delay healing. This article explores the affects of oxygen on the wound cells and tissue, and explains how an adequate supply is required for granulation tissue formation and epithelialisation to occur.


Assuntos
Tecido de Granulação/metabolismo , Oxigênio/metabolismo , Cicatrização , Humanos
14.
Wound Repair Regen ; 28(4): 448-459, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32175700

RESUMO

Signal transducer and activator of transcription 1 (Stat1) is a ubiquitously expressed latent transcription factor that is activated by many cytokines and growth factors. Global Stat1 knockout mice are prone to chemical-induced lung and liver fibrosis, suggesting roles for Stat1 in tissue repair. However, the importance of Stat1 in fibroblast-mediated and vascular smooth muscle cell (VSMC)-mediated injury response has not been directly evaluated in vivo. Here, we focused on two models of tissue repair in conditional Stat1 knockout mice: excisional skin wounding in mice with Stat1 deletion in dermal fibroblasts, and carotid artery ligation in mice with global Stat1 deletion or deletion specific to VSMCs. In the skin model, dermal wounds closed at a similar rate in mice with fibroblast Stat1 deletion and controls, but collagen and α-smooth muscle actin (αSMA) expression were increased in the mutant granulation tissue. Cultured Stat1 -/- and Stat1 +/- dermal fibroblasts exhibited similar αSMA+ stress fiber assembly, collagen gel contraction, proliferation, migration, and growth factor-induced gene expression. In the artery ligation model, there was a significant increase in fibroblast-driven perivascular fibrosis when Stat1 was deleted globally. However, VSMC-driven remodeling and neointima formation were unchanged when Stat1 was deleted specifically in VSMCs. These results suggest an in vivo role for Stat1 as a suppressor of fibroblast mediated, but not VSMC mediated, injury responses, and a suppressor of the myofibroblast phenotype.


Assuntos
Artérias Carótidas/metabolismo , Fibroblastos/metabolismo , Miócitos de Músculo Liso/metabolismo , Miofibroblastos/metabolismo , Reepitelização/genética , Fator de Transcrição STAT1/genética , Pele/metabolismo , Actinas/metabolismo , Animais , Lesões das Artérias Carótidas/metabolismo , Movimento Celular/genética , Proliferação de Células/genética , Colágeno/metabolismo , Regulação da Expressão Gênica/genética , Tecido de Granulação/metabolismo , Camundongos , Camundongos Knockout , Músculo Liso Vascular/metabolismo , Fenótipo , Cicatrização/genética
15.
Wound Repair Regen ; 28(3): 293-306, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32011053

RESUMO

The field of regenerative medicine encounters different challenges. The success of tissue-engineered implants is dependent on proper wound healing. Today, the process of normal urinary bladder wound healing is poorly characterized. We aspired to explore and elucidate the natural response to injury in an in vivo model in order to further optimize tissue regeneration in future studies. In this study, we aimed to characterize histological and molecular changes during normal healing in a rat model by performing a standardized incisional wound followed by surgical closure. We used a rodent model (n = 40) to follow the healing process in the urinary bladder for 28 days. Surgical exposure of the bladder without incision (n = 40) was performed in controls. Histological characterization and western blot analyses of proteins was carried out using specific staining and markers for inflammation, proliferation, angiogenesis, and tissue maturation. For the molecular characterization of gene expression total RNA was collected for RT2 -PCR in wound healing pathway arrays. Analysis of histology revealed distinct, but overlapping, phases of healing with a local inflammatory response (days 1-8) simultaneous with a rapid formation of granulation tissue and proliferation (days 2-8). We also identified significant changes in gene expression related to inflammation, proliferation, and extracellular matrix formation. Healing of an incisional wound in a rodent urinary bladder demonstrated that all the classical phases of wound healing: hemostasis, inflammation, proliferation followed by tissue maturation were present. Our data suggest that the bladder and the skin share similar molecular signaling during wound healing, although we noted differences in the duration of each phase compared to previous studies in rat skin. Further studies will address whether our findings can be extrapolated to the human bladder.


Assuntos
Ferida Cirúrgica/metabolismo , Ferida Cirúrgica/patologia , Bexiga Urinária/lesões , Cicatrização/fisiologia , Animais , Colágeno/metabolismo , Modelos Animais de Doenças , Tecido de Granulação/metabolismo , Tecido de Granulação/patologia , Mediadores da Inflamação/metabolismo , Integrinas/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley , Ferida Cirúrgica/etiologia
16.
Can Respir J ; 2020: 4213807, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32051729

RESUMO

Objective: This study aims to explore the role of erythromycin-regulated histone deacetylase-2 in benign tracheal stenosis. Methods: The rabbit model of tracheal stenosis was established. The rabbits were randomly divided into 8 groups. Histone deacetylase-2 (HDAC2) expression was detected by immunofluorescence. The expression of type I collagen and type III collagen was detected by immunohistochemical method. The expression of TGF-ß1, VEGF and IL-8 in serum and alveolar lavage fluid was detected by ELISA. The expression of HDAC2, TGF-ß1, VEGF and IL-8 in serum and alveolar lavage fluid was detected by ELISA. The expression of HDAC2, TGF. Results: In Erythromycin (ERY) group, ERY + Budesonide group, ERY + Vorinostat group and ERY + Budesonide + Vorinostat group, the degree of bronchial stenosis was alleviated, and the mucosal epithelium was still slightly proliferated. The effect of ERY combined with other drugs was more obvious. The HDAC2 protein expression increased significantly in ERY group, ERY + Budesonide group and ERY + Budesonide + Vorinostat group and decreased significantly in Vorinostat group, the expression of collagen I and III decreased significantly in ERY group, ERY + Budesonide group and ERY + Budesonide + Vorinostat group (P < 0.05). The TGF-ß1, VEGF and IL-8 in serum and alveolar lavage fluid was detected by ELISA. The expression of HDAC2, TGF-P < 0.05). The TGF. Conclusions: Erythromycin inhibited inflammation and excessive proliferation of granulation tissue after tracheobronchial mucosal injury by up-regulating the expression of HDAC2, it promoted wound healing and alleviated tracheobronchial stenosis. When combined with budesonide, penicillin and other glucocorticoids and antibiotics, it had a good synergistic effect. However, vorinostat could attenuate erythromycin's effect by down-regulating the expression of HDAC2. It may have good clinical application prospects in the treatment of tracheal stenosis.


Assuntos
Eritromicina/farmacocinética , Histona Desacetilase 2 , Mucosa Respiratória , Estenose Traqueal , Regulação para Cima/efeitos dos fármacos , Animais , Líquido da Lavagem Broncoalveolar/imunologia , Budesonida/farmacocinética , Glucocorticoides/farmacocinética , Tecido de Granulação/efeitos dos fármacos , Tecido de Granulação/metabolismo , Histona Desacetilase 2/genética , Histona Desacetilase 2/metabolismo , Inibidores de Histona Desacetilases/farmacocinética , Imuno-Histoquímica , Inibidores da Síntese de Proteínas/farmacocinética , Coelhos , Mucosa Respiratória/efeitos dos fármacos , Mucosa Respiratória/imunologia , Estenose Traqueal/tratamento farmacológico , Estenose Traqueal/imunologia , Estenose Traqueal/metabolismo , Fator de Crescimento Transformador beta1/sangue , Fator de Crescimento Transformador beta1/metabolismo , Resultado do Tratamento , Vorinostat/farmacocinética
17.
Ann Surg ; 271(6): 1174-1185, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-30614873

RESUMO

OBJECTIVE: The objective of this work was to causatively link biofilm properties of bacterial infection to specific pathogenic mechanisms in wound healing. BACKGROUND: Staphylococcus aureus is one of the four most prevalent bacterial species identified in chronic wounds. Causatively linking wound pathology to biofilm properties of bacterial infection is challenging. Thus, isogenic mutant stains of S. aureus with varying degree of biofilm formation ability was studied in an established preclinical porcine model of wound biofilm infection. METHODS: Isogenic mutant strains of S. aureus with varying degree (ΔrexB > USA300 > ΔsarA) of biofilm-forming ability were used to infect full-thickness porcine cutaneous wounds. RESULTS: Compared with that of ΔsarA infection, wound biofilm burden was significantly higher in response to ΔrexB or USA300 infection. Biofilm infection caused degradation of cutaneous collagen, specifically collagen 1 (Col1), with ΔrexB being most pathogenic in that regard. Biofilm infection of the wound repressed wound-edge miR-143 causing upregulation of its downstream target gene matrix metalloproteinase-2. Pathogenic rise of collagenolytic matrix metalloproteinase-2 in biofilm-infected wound-edge tissue sharply decreased collagen 1/collagen 3 ratio compromising the biomechanical properties of the repaired skin. Tensile strength of the biofilm infected skin was compromised supporting the notion that healed wounds with a history of biofilm infection are likely to recur. CONCLUSION: This study provides maiden evidence that chronic S. aureus biofilm infection in wounds results in impaired granulation tissue collagen leading to compromised wound tissue biomechanics. Clinically, such compromise in tissue repair is likely to increase wound recidivism.


Assuntos
Biofilmes , Colágeno/metabolismo , Tecido de Granulação/metabolismo , Staphylococcus aureus/isolamento & purificação , Cicatrização/fisiologia , Infecção dos Ferimentos/microbiologia , Animais , Células Cultivadas , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Tecido de Granulação/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Infecções Estafilocócicas/microbiologia , Suínos , Infecção dos Ferimentos/diagnóstico
18.
J Biomed Mater Res B Appl Biomater ; 108(2): 527-537, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31074946

RESUMO

Epidermal downgrowth around percutaneous devices produce sinus tracts, which then accumulate bacteria becoming foci of infection. This mode to failure is epidermal-centric, and is accelerated by changes in the chemokines and cytokines of the underlying periprosthetic granulation tissue (GT). In order to more fully comprehend the mechanism of downgrowth, in this 28-day study, percutaneous devices were placed in 10 Zucker diabetic fatty rats; 5 animals were induced with diabetes mellitus II (DM II) prior to the surgery and 5 animals served as a healthy, nondiabetic cohort. At necropsy, periprosthetic tissues were harvested, and underwent histological and polymerase chain reaction (PCR) studies. After isolating GTs from the surrounding tissue and extracting ribonucleic acids, PCR array and quantitative-PCR (qPCR) analyses were carried-out. The PCR array for 84 key wound-healing associated genes showed a five-fold or greater change in 31 genes in the GTs of healthy animals compared to uninjured healthy typical skin tissues. Eighteen genes were overexpressed and these included epidermal growth factor (EGF) and epidermal growth factor receptor (EGFR). Thirteen genes were underexpressed. When GTs of DM II animals were compared to healthy animals, there were 8 genes overexpressed and 25 genes underexpressed; under expressed genes included EGF and EGFR. The qPCR and immunohistochemistry data further validated these observations. Pathway analysis of genes up-regulated 15-fold or more indicated two, EGFR and interleukin-10, centric clustering effects. It was concluded that EGFR could be a key player in exacerbating the epidermal downgrowth, and might be an effective target for preventing downgrowth.


Assuntos
Ligas/química , Diabetes Mellitus Tipo 2/metabolismo , Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB/genética , Titânio/química , Ligas/metabolismo , Animais , Citocinas/metabolismo , Diabetes Mellitus Experimental , Receptores ErbB/metabolismo , Regulação da Expressão Gênica , Tecido de Granulação/metabolismo , Humanos , Masculino , Projetos Piloto , Implantação de Prótese , Ratos Zucker , Pele , Titânio/metabolismo , Cicatrização
19.
Adv Skin Wound Care ; 33(1): 36-42, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31663923

RESUMO

OBJECTIVE: To compare wound products by measuring time to granulation tissue and time to complete wound healing for tracheostomy wounds in the pediatric population. METHODS: Investigators identified 134 charts of patients treated January 2013 and June 2017; 93 charts met the inclusion criteria. This study compared the use of a foam dressing (n = 34) to the foam dressing plus a wound filler (n = 59) in patients who developed or were admitted with a wound caused by a tracheostomy device. PRIMARY OUTCOME MEASURES: Time in days to granulation tissue and to wound closure. RESULTS: The average time to complete wound closure for participants in this study was 14 days. There was no statistically significant difference in time to granulation tissue or wound closure formation between the wound care products (F2,34 = 1.11, P = .34). Cluster analysis (10 splits) revealed that pressure injury stage was the best predictor, accounting for 41% of the variance in the high treatment response group (those healing in <14 days). Patients who were African American with a stage 2 pressure injury, had a PUSH score of 5 or more, and were using a foam plus a wound filler dressing were 86% more likely to be in the high-response group. CONCLUSIONS: All wounds reviewed healed with current wound care practices without surgical intervention. Best practice for healing tracheostomy wounds in pediatric patients should include the wound filler in the first 14 days based on variable interaction.


Assuntos
Tecido de Granulação/metabolismo , Tratamento de Ferimentos com Pressão Negativa/métodos , Traqueostomia/métodos , Cicatrização/fisiologia , Adolescente , Bandagens , Criança , Análise por Conglomerados , Estudos de Coortes , Feminino , Tecido de Granulação/patologia , Humanos , Masculino , Pediatria , Úlcera por Pressão/fisiopatologia , Úlcera por Pressão/terapia , Prognóstico , Estudos Retrospectivos , Medição de Risco , Resultado do Tratamento , Técnicas de Fechamento de Ferimentos
20.
Chin J Integr Med ; 26(1): 26-32, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31776965

RESUMO

OBJECTIVE: To examine the effect of moxibustion on the wound healing process and its mechanism using a rat wound model. METHODS: Sixty male Sprague-Dawley rats were randomly divided into a sham-treated group (n=30, wound surgery only) and a moxibustion group (n=30, wound treated with moxibustion). Circular full-thickness skin wounds were produced in rats. Moxibustion was applied to the edge of wound and was continued on alternating days till 14 days after surgery, followed by measurement of wound size. Expression of collagens, prolyl-4-hydroxylase (P4H) and transforming growth factor-ß (TGF-ß) were evaluated by histochemical study and real-time polymerase chain reaction. RESULTS: The size of the wound lesion was significantly reduced in rats treated with moxibustion as compared to that in sham-treated rats at 4-10 days after wounding (P<0.01). Moxibustion stimulated mRNA expression of collagens at 4 days (P<0.01), but not at 7 days, accompanied by enhanced proliferation of P4H-positive fibroblasts. Of importance, expression of TGF-ß in tissue from the wound lesion treated with moxibustion was significantly increased as compared to that in sham-treated rats at 4 days (P<0.01 or P<0.05), but not at 7 days. CONCLUSIONS: The treatment with moxibustion promoted the wound healing process in the early phase through proliferation of fibroblasts and rapid formation of granulation, possibly mediated by induction of TGF-ß which is a key molecule in the physiological process of wound healing. Moxibustion can be expected to be effective as complementary treatment for intractable ulcers.


Assuntos
Tecido de Granulação/metabolismo , Moxibustão , Fator de Crescimento Transformador beta/metabolismo , Cicatrização , Animais , Colágeno/metabolismo , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...