Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.341
Filtrar
1.
Environ Monit Assess ; 196(6): 530, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724828

RESUMO

Increasingly, dry conifer forest restoration has focused on reestablishing horizontal and vertical complexity and ecological functions associated with frequent, low-intensity fires that characterize these systems. However, most forest inventory approaches lack the resolution, extent, or spatial explicitness for describing tree-level spatial aggregation and openings that were characteristic of historical forests. Uncrewed aerial system (UAS) structure from motion (SfM) remote sensing has potential for creating spatially explicit forest inventory data. This study evaluates the accuracy of SfM-estimated tree, clump, and stand structural attributes across 11 ponderosa pine-dominated stands treated with four different silvicultural prescriptions. Specifically, UAS-estimated tree height and diameter-at-breast-height (DBH) and stand-level canopy cover, density, and metrics of individual trees, tree clumps, and canopy openings were compared to forest survey data. Overall, tree detection success was high in all stands (F-scores of 0.64 to 0.89), with average F-scores > 0.81 for all size classes except understory trees (< 5.0 m tall). We observed average height and DBH errors of 0.34 m and - 0.04 cm, respectively. The UAS stand density was overestimated by 53 trees ha-1 (27.9%) on average, with most errors associated with understory trees. Focusing on trees > 5.0 m tall, reduced error to an underestimation of 10 trees ha-1 (5.7%). Mean absolute errors of bole basal area, bole quadratic mean diameter, and canopy cover were 11.4%, 16.6%, and 13.8%, respectively. While no differences were found between stem-mapped and UAS-derived metrics of individual trees, clumps of trees, canopy openings, and inter-clump tree characteristics, the UAS method overestimated crown area in two of the five comparisons. Results indicate that in ponderosa pine forests, UAS can reliably describe large- and small-grained forest structures to effectively inform spatially explicit management objectives.


Assuntos
Monitoramento Ambiental , Florestas , Pinus ponderosa , Tecnologia de Sensoriamento Remoto , Monitoramento Ambiental/métodos , Árvores
2.
PLoS One ; 19(5): e0301134, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38743645

RESUMO

Land cover classification (LCC) is of paramount importance for assessing environmental changes in remote sensing images (RSIs) as it involves assigning categorical labels to ground objects. The growing availability of multi-source RSIs presents an opportunity for intelligent LCC through semantic segmentation, offering a comprehensive understanding of ground objects. Nonetheless, the heterogeneous appearances of terrains and objects contribute to significant intra-class variance and inter-class similarity at various scales, adding complexity to this task. In response, we introduce SLMFNet, an innovative encoder-decoder segmentation network that adeptly addresses this challenge. To mitigate the sparse and imbalanced distribution of RSIs, we incorporate selective attention modules (SAMs) aimed at enhancing the distinguishability of learned representations by integrating contextual affinities within spatial and channel domains through a compact number of matrix operations. Precisely, the selective position attention module (SPAM) employs spatial pyramid pooling (SPP) to resample feature anchors and compute contextual affinities. In tandem, the selective channel attention module (SCAM) concentrates on capturing channel-wise affinity. Initially, feature maps are aggregated into fewer channels, followed by the generation of pairwise channel attention maps between the aggregated channels and all channels. To harness fine-grained details across multiple scales, we introduce a multi-level feature fusion decoder with data-dependent upsampling (MLFD) to meticulously recover and merge feature maps at diverse scales using a trainable projection matrix. Empirical results on the ISPRS Potsdam and DeepGlobe datasets underscore the superior performance of SLMFNet compared to various state-of-the-art methods. Ablation studies affirm the efficacy and precision of SAMs in the proposed model.


Assuntos
Tecnologia de Sensoriamento Remoto , Tecnologia de Sensoriamento Remoto/métodos , Algoritmos , Processamento de Imagem Assistida por Computador/métodos , Redes Neurais de Computação
3.
Environ Monit Assess ; 196(6): 516, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710964

RESUMO

Trace metal soil contamination poses significant risks to human health and ecosystems, necessitating thorough investigation and management strategies. Researchers have increasingly utilized advanced techniques like remote sensing (RS), geographic information systems (GIS), geostatistical analysis, and multivariate analysis to address this issue. RS tools play a crucial role in collecting spectral data aiding in the analysis of trace metal distribution in soil. Spectroscopy offers an effective understanding of environmental contamination by analyzing trace metal distribution in soil. The spatial distribution of trace metals in soil has been a key focus of these studies, with factors influencing this distribution identified as soil type, pH levels, organic matter content, land use patterns, and concentrations of trace metals. While progress has been made, further research is needed to fully recognize the potential of integrated geospatial imaging spectroscopy and multivariate statistical analysis for assessing trace metal distribution in soils. Future directions include mapping multivariate results in GIS, identifying specific anthropogenic sources, analyzing temporal trends, and exploring alternative multivariate analysis tools. In conclusion, this review highlights the significance of integrated GIS and multivariate analysis in addressing trace metal contamination in soils, advocating for continued research to enhance assessment and management strategies.


Assuntos
Monitoramento Ambiental , Metais , Tecnologia de Sensoriamento Remoto , Poluentes do Solo , Solo , Monitoramento Ambiental/métodos , Poluentes do Solo/análise , Análise Multivariada , Solo/química , Metais/análise , Sistemas de Informação Geográfica , Oligoelementos/análise
4.
Glob Chang Biol ; 30(5): e17315, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38721865

RESUMO

Grasslands provide important ecosystem services to society, including biodiversity, water security, erosion control, and forage production. Grasslands are also vulnerable to droughts, rendering their future vitality under climate change uncertain. Yet, the grassland response to drought is not well understood, especially for heterogeneous Central European grasslands. We here fill this gap by quantifying the spatiotemporal sensitivity of grasslands to drought using a novel remote sensing dataset from Landsat/Sentinel-2 paired with climate re-analysis data. Specifically, we quantified annual grassland vitality at fine spatial scale and national extent (Germany) from 1985 to 2021. We analyzed grassland sensitivity to drought by testing for statistically robust links between grassland vitality and common drought indices. We furthermore explored the spatiotemporal variability of drought sensitivity for 12 grassland habitat types given their different biotic and abiotic features. Grassland vitality maps revealed a large-scale reduction of grassland vitality during past droughts. The unprecedented drought of 2018-2019 stood out as the largest multi-year vitality decline since the mid-1980s. Grassland vitality was consistently coupled to drought (R2 = .09-.22) with Vapor Pressure Deficit explaining vitality best. This suggests that high atmospheric water demand, as observed during recent compounding drought and heatwave events, has major impacts on grassland vitality in Central Europe. We found a significant increase in drought sensitivity over time with highest sensitivities detected in periods of extremely high atmospheric water demand, suggesting that drought impacts on grasslands are becoming more severe with ongoing climate change. The spatial variability of grassland drought sensitivity was linked to different habitat types, with declining sensitivity from dry and mesic to wet habitats. Our study provides the first large-scale, long-term, and spatially explicit evidence of increasing drought sensitivities of Central European grasslands. With rising compound droughts and heatwaves under climate change, large-scale grassland vitality loss, as in 2018-2019, will thus become more likely in the future.


Assuntos
Mudança Climática , Secas , Pradaria , Tecnologia de Sensoriamento Remoto , Alemanha , Água/análise , Atmosfera
5.
Sci Rep ; 14(1): 10165, 2024 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702367

RESUMO

Exploring vegetation dynamics in arid areas and their responses to different natural and anthropogenic factors is critical for understanding ecosystems. Based on the monthly MOD13Q1 (250 m) remote sensing data from 2000 to 2019, this study analyzed spatio-temporal changes in vegetation cover in the Aksu River Basin and predicted future change trends using one-dimensional linear regression, the Mann-Kendall test, and the Hurst index. Quantitative assessment of the magnitude of anthropogenic and natural drivers was performed using the Geodetector model. Eleven natural and anthropogenic factors were quantified and analyzed within five time periods. The influence of the driving factors on the changes in the normalized difference vegetation index (NDVI) in each period was calculated and analyzed. Four main results were found. (1) The overall vegetation cover in the region significantly grew from 2000 to 2019. The vegetation cover changes were dominated by expected future improvements, with a Hurst index average of 0.45. (2) Land use type, soil moisture, surface temperature, and potential vapor dispersion were the main drivers of NDVI changes, with annual average q-values above 0.2. (3) The driving effect of two-factor interactions was significantly greater than that of single factors, especially land use type interacts with other factors to a greater extent on vegetation cover. (4) The magnitude of the interaction between soil moisture and potential vapor dispersion and the magnitude of the interaction between anthropogenic factors and other factors showed an obvious increasing trend. Current soil moisture and human activities had a positive influence on the growth of vegetation in the area. The findings of this study are important for ecological monitoring and security as well as land desertification control.


Assuntos
Ecossistema , Rios , China , Análise Espaço-Temporal , Monitoramento Ambiental/métodos , Plantas , Solo/química , Conservação dos Recursos Naturais , Tecnologia de Sensoriamento Remoto
6.
Environ Monit Assess ; 196(6): 515, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38709284

RESUMO

Drought events threaten freshwater reservoirs and agricultural productivity, particularly in semi-arid regions characterized by erratic rainfall. This study evaluates a novel technique for assessing the impact of drought on LULC variations in the context of climate change from 2018 to 2022. Various data sources were harnessed, encompassing Sentinel-2 satellite imagery for LULC classification, climate data from the CHIRPS and AgERA5 databases, geomorphological data from JAXA's ALOS satellite, and a drought indicator (Vegetation Health Index (VHI)) derived from MODIS data. Two classifier models, namely gradient tree boost (GTB) and random forest (RF), were trained and assessed for LULC classification, with performance evaluated by overall accuracy (OA) and kappa coefficient (K). Notably, the GTB model exhibited superior performance, with OA > 90% and a K > 0.9. Over the period from 2018 to 2022, Fez experienced LULC changes of 19.92% expansion in built-up areas, a 34.86% increase in bare land, a 17.86% reduction in water bodies, and a 37.30% decrease in agricultural land. Positive correlations of 0.81 and 0.89 were observed between changes in agricultural LULC, rainfall, and VHI. Furthermore, mild drought conditions were identified in the years 2020 and 2022. This study emphasizes the importance of AI and remote sensing techniques in assessing drought and environmental changes, with potential applications for improving existing drought monitoring systems.


Assuntos
Agricultura , Secas , Monitoramento Ambiental , Aprendizado de Máquina , Tecnologia de Sensoriamento Remoto , Agricultura/métodos , Monitoramento Ambiental/métodos , Mudança Climática , Imagens de Satélites
7.
PeerJ ; 12: e17319, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38699179

RESUMO

In this study, multisensor remote sensing datasets were used to characterize the land use and land covers (LULC) flooded by Hurricane Willa which made landfall on October 24, 2018. The landscape characterization was done using an unsupervised K-means algorithm of a cloud-free Sentinel-2 MultiSpectral Instrument (MSI) image, acquired during the dry season before Hurricane Willa. A flood map was derived using the histogram thresholding technique over a Synthetic Aperture Radar (SAR) Sentinel-1 C-band and combined with a flood map derived from a Sentinel-2 MSI image. Both, the Sentinel-1 and Sentinel-2 images were obtained after Willa landfall. While the LULC map reached an accuracy of 92%, validated using data collected during field surveys, the flood map achieved 90% overall accuracy, validated using locations extracted from social network data, that were manually georeferenced. The agriculture class was the dominant land use (about 2,624 km2), followed by deciduous forest (1,591 km2) and sub-perennial forest (1,317 km2). About 1,608 km2 represents the permanent wetlands (mangrove, salt marsh, lagoon and estuaries, and littoral classes), but only 489 km2 of this area belongs to aquatic surfaces (lagoons and estuaries). The flooded area was 1,225 km2, with the agricultural class as the most impacted (735 km2). Our analysis detected the saltmarsh class occupied 541 km2in the LULC map, and around 328 km2 were flooded during Hurricane Willa. Since the water flow receded relatively quickly, obtaining representative imagery to assess the flood event was a challenge. Still, the high overall accuracies obtained in this study allow us to assume that the outputs are reliable and can be used in the implementation of effective strategies for the protection, restoration, and management of wetlands. In addition, they will improve the capacity of local governments and residents of Marismas Nacionales to make informed decisions for the protection of vulnerable areas to the different threats derived from climate change.


Assuntos
Tempestades Ciclônicas , Inundações , Tecnologia de Sensoriamento Remoto , Inundações/estatística & dados numéricos , Tecnologia de Sensoriamento Remoto/instrumentação , Tecnologia de Sensoriamento Remoto/métodos , Monitoramento Ambiental/métodos , Humanos , Algoritmos
8.
Environ Monit Assess ; 196(6): 507, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38703253

RESUMO

The mangrove forest in Macajalar Bay is regarded as an important coastal ecosystem since it provides numerous ecosystem services. Despite their importance, the clearing of mangroves has been rampant and has reached critical rates. Addressing this problem and further advancing its conservation require accurate mangrove mapping. However, current spatial information related to mangroves is sparse and insufficient to understand the historical change dynamics. In this study, the synergy of 1950 vegetation maps and Landsat images was explored to provide multidecadal monitoring of mangrove forest change dynamics in Macajalar Bay, Philippines. Vegetation maps containing the 1950 mangrove extent and Landsat images were used as input data to monitor the rates of loss over 70 years. In 2020, the mangrove forest cover was estimated to be 201.73 ha, equivalent to only 61.99% of the 325.43 ha that was estimated in 1950. Between 1950 and 2020, net mangrove loss in Macajalar Bay totaled 324.29 ha. The highest clearing rates occurred between 1950 and 1990 when it recorded a total of 258.51 ha, averaging 6.46 ha/year. The original mangrove forest that existed in 1950 only represents 8.56% of the 2020 extent, suggesting that much of the old-growth mangrove had been cleared before 2000 and the existing mangrove forest is mainly composed of secondary mangrove forest stands. Across Macajalar Bay, intensified clearing that happened between 1950 and 1990 has been driven by large-scale aquaculture developments. Mangrove gains on the other hand were evident and have increased the total extent by 79.84 ha since 2000 as a result of several afforestation programs. However, approximately half of these gains that were observed since 2010 exhibited low canopy cover. As of writing, approximately 85% of the 2020 mangrove forest stands fall outside the 1950 original mangrove extent. Examining the viability of the original mangrove forest for mangrove reforestation together with promoting site-species matching, and biophysical assessment are necessary undertakings to advance current mangrove conservation initiatives in Macajalar Bay.


Assuntos
Conservação dos Recursos Naturais , Monitoramento Ambiental , Sistemas de Informação Geográfica , Tecnologia de Sensoriamento Remoto , Áreas Alagadas , Filipinas , Baías , Ecossistema
9.
Philos Trans R Soc Lond B Biol Sci ; 379(1904): 20230103, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38705174

RESUMO

None of the global targets for protecting nature are currently met, although humanity is critically dependent on biodiversity. A significant issue is the lack of data for most biodiverse regions of the planet where the use of frugal methods for biomonitoring would be particularly important because the available funding for monitoring is insufficient, especially in low-income countries. We here discuss how three approaches to insect biomonitoring (computer vision, lidar, DNA sequences) could be made more frugal and urge that all biomonitoring techniques should be evaluated for global suitability before becoming the default in high-income countries. This requires that techniques popular in high-income countries should undergo a phase of 'innovation through simplification' before they are implemented more broadly. We predict that techniques that acquire raw data at low cost and are suitable for analysis with AI (e.g. images, lidar-signals) will be particularly suitable for global biomonitoring, while techniques that rely heavily on patented technologies may be less promising (e.g. DNA sequences). We conclude the opinion piece by pointing out that the widespread use of AI for data analysis will require a global strategy for providing the necessary computational resources and training. This article is part of the theme issue 'Towards a toolkit for global insect biodiversity monitoring'.


Assuntos
Monitoramento Biológico , Insetos , Animais , Inteligência Artificial , Biodiversidade , Monitoramento Biológico/métodos , Conservação dos Recursos Naturais/métodos , Monitoramento Ambiental/métodos , Insetos/fisiologia , Tecnologia de Sensoriamento Remoto/métodos
10.
Philos Trans R Soc Lond B Biol Sci ; 379(1904): 20230123, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38705177

RESUMO

Arthropods contribute importantly to ecosystem functioning but remain understudied. This undermines the validity of conservation decisions. Modern methods are now making arthropods easier to study, since arthropods can be mass-trapped, mass-identified, and semi-mass-quantified into 'many-row (observation), many-column (species)' datasets, with homogeneous error, high resolution, and copious environmental-covariate information. These 'novel community datasets' let us efficiently generate information on arthropod species distributions, conservation values, uncertainty, and the magnitude and direction of human impacts. We use a DNA-based method (barcode mapping) to produce an arthropod-community dataset from 121 Malaise-trap samples, and combine it with 29 remote-imagery layers using a deep neural net in a joint species distribution model. With this approach, we generate distribution maps for 76 arthropod species across a 225 km2 temperate-zone forested landscape. We combine the maps to visualize the fine-scale spatial distributions of species richness, community composition, and site irreplaceability. Old-growth forests show distinct community composition and higher species richness, and stream courses have the highest site-irreplaceability values. With this 'sideways biodiversity modelling' method, we demonstrate the feasibility of biodiversity mapping at sufficient spatial resolution to inform local management choices, while also being efficient enough to scale up to thousands of square kilometres. This article is part of the theme issue 'Towards a toolkit for global insect biodiversity monitoring'.


Assuntos
Artrópodes , Biodiversidade , DNA Ambiental , Tecnologia de Sensoriamento Remoto , Artrópodes/classificação , Animais , DNA Ambiental/análise , Tecnologia de Sensoriamento Remoto/métodos , Florestas , Distribuição Animal , Código de Barras de DNA Taxonômico/métodos
11.
Philos Trans R Soc Lond B Biol Sci ; 379(1904): 20230101, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38705179

RESUMO

Insects are the most diverse group of animals on Earth, yet our knowledge of their diversity, ecology and population trends remains abysmally poor. Four major technological approaches are coming to fruition for use in insect monitoring and ecological research-molecular methods, computer vision, autonomous acoustic monitoring and radar-based remote sensing-each of which has seen major advances over the past years. Together, they have the potential to revolutionize insect ecology, and to make all-taxa, fine-grained insect monitoring feasible across the globe. So far, advances within and among technologies have largely taken place in isolation, and parallel efforts among projects have led to redundancy and a methodological sprawl; yet, given the commonalities in their goals and approaches, increased collaboration among projects and integration across technologies could provide unprecedented improvements in taxonomic and spatio-temporal resolution and coverage. This theme issue showcases recent developments and state-of-the-art applications of these technologies, and outlines the way forward regarding data processing, cost-effectiveness, meaningful trend analysis, technological integration and open data requirements. Together, these papers set the stage for the future of automated insect monitoring. This article is part of the theme issue 'Towards a toolkit for global insect biodiversity monitoring'.


Assuntos
Biodiversidade , Insetos , Insetos/fisiologia , Animais , Tecnologia de Sensoriamento Remoto/métodos , Tecnologia de Sensoriamento Remoto/instrumentação , Monitoramento Biológico/métodos
12.
Philos Trans R Soc Lond B Biol Sci ; 379(1904): 20230113, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38705181

RESUMO

In the current biodiversity crisis, populations of many species have alarmingly declined, and insects are no exception to this general trend. Biodiversity monitoring has become an essential asset to detect biodiversity change but remains patchy and challenging for organisms that are small, inconspicuous or make (nocturnal) long-distance movements. Radars are powerful remote-sensing tools that can provide detailed information on intensity, timing, altitude and spatial scale of aerial movements and might therefore be particularly suited for monitoring aerial insects and their movements. Importantly, they can contribute to several essential biodiversity variables (EBVs) within a harmonized observation system. We review existing research using small-scale biological and weather surveillance radars for insect monitoring and outline how the derived measures and quantities can contribute to the EBVs 'species population', 'species traits', 'community composition' and 'ecosystem function'. Furthermore, we synthesize how ongoing and future methodological, analytical and technological advancements will greatly expand the use of radar for insect biodiversity monitoring and beyond. Owing to their long-term and regional-to-large-scale deployment, radar-based approaches can be a powerful asset in the biodiversity monitoring toolbox whose potential has yet to be fully tapped. This article is part of the theme issue 'Towards a toolkit for global insect biodiversity monitoring'.


Assuntos
Biodiversidade , Insetos , Radar , Insetos/fisiologia , Animais , Tecnologia de Sensoriamento Remoto/métodos , Tecnologia de Sensoriamento Remoto/instrumentação , Monitoramento Biológico/métodos , Voo Animal
13.
Sci Rep ; 14(1): 9975, 2024 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-38693309

RESUMO

Phytoplankton is a fundamental component of marine food webs and play a crucial role in marine ecosystem functioning. The phenology (timing of growth) of these microscopic algae is an important ecological indicator that can be utilized to observe its seasonal dynamics, and assess its response to environmental perturbations. Ocean colour remote sensing is currently the only means of obtaining synoptic estimates of chlorophyll-a (a proxy of phytoplankton biomass) at high temporal and spatial resolution, enabling the calculation of phenology metrics. However, ocean colour observations have acknowledged weaknesses compromising its reliability, while the scarcity of long-term in situ data has impeded the validation of satellite-derived phenology estimates. To address this issue, we compared one of the longest available in situ time series (20 years) of chlorophyll-a concentrations in the Eastern Mediterranean Sea (EMS), along with concurrent remotely-sensed observations. The comparison revealed a marked coherence between the two datasets, indicating the capability of satellite-based measurements in accurately capturing the phytoplankton seasonality and phenology metrics (i.e., timing of initiation, duration, peak and termination) in the studied area. Furthermore, by studying and validating these metrics we constructed a satellite-derived phytoplankton phenology atlas, reporting in detail the seasonal patterns in several sub-regions in coastal and open seas over the EMS. The open waters host higher concentrations from late October to April, with maximum levels recorded during February and lowest during the summer period. The phytoplankton growth over the Northern Aegean Sea appeared to initiate at least a month later than the rest of the EMS (initiating in late November and terminating in late May). The coastal waters and enclosed gulfs (such as Amvrakikos and Maliakos), exhibit a distinct seasonal pattern with consistently higher levels of chlorophyll-a and prolonged growth period compared to the open seas. The proposed phenology atlas represents a useful resource for monitoring phytoplankton growth periods in the EMS, supporting water quality management practices, while enhancing our current comprehension on the relationships between phytoplankton biomass and higher trophic levels (as a food source).


Assuntos
Clorofila A , Ecossistema , Fitoplâncton , Estações do Ano , Fitoplâncton/crescimento & desenvolvimento , Fitoplâncton/fisiologia , Mar Mediterrâneo , Clorofila A/análise , Clorofila A/metabolismo , Clorofila/análise , Clorofila/metabolismo , Biomassa , Monitoramento Ambiental/métodos , Tecnologia de Sensoriamento Remoto
14.
Environ Monit Assess ; 196(6): 510, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38703304

RESUMO

Soils provide habitat, regulation and utilization functions. Therefore, Germany aims to reduce soil sealing to 30 ha day - 1 by 2030 and to eliminate it by 2050. About 55 ha day - 1 of soil are damaged (average 2018-2021), but detailed information on its soil quality is lacking. This study proposes a new approach using geo-information and remote sensing data to assess agricultural soil loss in Lower Saxony and Brandenburg. Soil quality is assessed based on erosion resistance, runoff regulation, filter functions, yield potential and the Müncheberg Soil Quality Rating from 2006 to 2015. Data from the German Soil Map at a scale of 1:200,000 (BÜK 200), climate, topography, CORINE Land Cover (CLC) and Imperviousness Layer (IMCC), both provided by the Copernicus Land Monitoring Service (CLMS), are used to generate information on soil functions, potentials and agricultural soil loss due to sealing. For the first time, soil losses under arable land are assessed spatially, quantitatively and qualitatively. An estimate of the qualitative loss of agricultural soil in Germany between 2006 and 2015 is obtained by intersecting the soil evaluation results with the quantitative soil loss according to IMCC. Between 2006 and 2015, about 73,300 ha of land were sealed in Germany, affecting about 37,000 ha of agricultural soils. This corresponds to a sealing rate of 11 ha per day for Germany. In Lower Saxony and Brandenburg, agricultural soils were sealed at a rate of 1.9 ha day - 1 and 0.8 ha day - 1 respectively, removing these soils from primary land use. In Lower Saxony, 75% of soils with moderate or better biotic yield potential have been removed from primary land use, while in Brandenburg this figure is as high as 88%. Implementing this approach can help decision-makers reassess sealed land and support Germany's sustainable development strategy.


Assuntos
Agricultura , Monitoramento Ambiental , Tecnologia de Sensoriamento Remoto , Solo , Alemanha , Agricultura/métodos , Solo/química , Monitoramento Ambiental/métodos , Erosão do Solo , Conservação dos Recursos Naturais/métodos
15.
PeerJ ; 12: e17361, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38737741

RESUMO

Phytoplankton are the world's largest oxygen producers found in oceans, seas and large water bodies, which play crucial roles in the marine food chain. Unbalanced biogeochemical features like salinity, pH, minerals, etc., can retard their growth. With advancements in better hardware, the usage of Artificial Intelligence techniques is rapidly increasing for creating an intelligent decision-making system. Therefore, we attempt to overcome this gap by using supervised regressions on reanalysis data targeting global phytoplankton levels in global waters. The presented experiment proposes the applications of different supervised machine learning regression techniques such as random forest, extra trees, bagging and histogram-based gradient boosting regressor on reanalysis data obtained from the Copernicus Global Ocean Biogeochemistry Hindcast dataset. Results obtained from the experiment have predicted the phytoplankton levels with a coefficient of determination score (R2) of up to 0.96. After further validation with larger datasets, the model can be deployed in a production environment in an attempt to complement in-situ measurement efforts.


Assuntos
Aprendizado de Máquina , Fitoplâncton , Tecnologia de Sensoriamento Remoto , Tecnologia de Sensoriamento Remoto/métodos , Tecnologia de Sensoriamento Remoto/instrumentação , Oceanos e Mares , Monitoramento Ambiental/métodos , Aprendizado de Máquina Supervisionado
16.
Sci Data ; 11(1): 473, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724591

RESUMO

The East African mountain ecosystems are facing increasing threats due to global change, putting their unique socio-ecological systems at risk. To monitor and understand these changes, researchers and stakeholders require accessible analysis-ready remote sensing data. Although satellite data is available for many applications, it often lacks accurate geometric orientation and has extensive cloud cover. This can generate misleading results and make it unreliable for time-series analysis. Therefore, it needs comprehensive processing before usage, which encompasses multi-step operations, requiring large computational and storage capacities, as well as expert knowledge. Here, we provide high-quality, atmospherically corrected, and cloud-free analysis-ready Sentinel-2 imagery for the Bale Mountains (Ethiopia), Mounts Kilimanjaro and Meru (Tanzania) ecosystems in East Africa. Our dataset ranges from 2017 to 2021 and is provided as monthly and annual aggregated products together with 24 spectral indices. Our dataset enables researchers and stakeholders to conduct immediate and impactful analyses. These applications can include vegetation mapping, wildlife habitat assessment, land cover change detection, ecosystem monitoring, and climate change research.


Assuntos
Ecossistema , Imagens de Satélites , Mudança Climática , Monitoramento Ambiental/métodos , Etiópia , Tecnologia de Sensoriamento Remoto , Tanzânia
17.
J Environ Manage ; 358: 120946, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38652991

RESUMO

Wilderness areas are natural landscape elements that are relatively undisrupted by human activity and play a critical role in maintaining ecological equilibrium, preserving naturalness, and ensuring ecosystem resilience. Since 2000, monitoring of global wilderness areas has increased owing to the availability of spatial map data and remote sensing imagery related to human activity and/or human footprint. Progress has been made in the remote sensing of wilderness areas by relying on available historical literature (e.g., published papers, books, and reports). However, to our knowledge, a synthesis of wilderness area research from a remote sensing perspective has not yet been performed. In this preliminary review, we discuss the concept of wilderness in different historical eras and systematically summarize dynamic wilderness monitoring at local, national, and global scales, available remotely sensed indicators, disparities and commonalities in identification methods, and mapping uncertainties. Finally, since this field remains in its initial stage owing to a lack of unified standards and vertical/horizontal comparisons, we present insights into future research directions, particularly with regard to remote sensing. The findings of this review may help to improve the overall understanding of current wilderness patterns (i.e., increases/decreases) and the mechanisms by which they change, as well as provide guidance for global nature conservation programs.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Meio Selvagem , Tecnologia de Sensoriamento Remoto , Humanos , Monitoramento Ambiental/métodos
18.
PLoS One ; 19(4): e0300473, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38635663

RESUMO

High-resolution imagery and deep learning models have gained increasing importance in land-use mapping. In recent years, several new deep learning network modeling methods have surfaced. However, there has been a lack of a clear understanding of the performance of these models. In this study, we applied four well-established and robust deep learning models (FCN-8s, SegNet, U-Net, and Swin-UNet) to an open benchmark high-resolution remote sensing dataset to compare their performance in land-use mapping. The results indicate that FCN-8s, SegNet, U-Net, and Swin-UNet achieved overall accuracies of 80.73%, 89.86%, 91.90%, and 96.01%, respectively, on the test set. Furthermore, we assessed the generalization ability of these models using two measures: intersection of union and F1 score, which highlight Swin-UNet's superior robustness compared to the other three models. In summary, our study provides a systematic analysis of the classification differences among these four deep learning models through experiments. It serves as a valuable reference for selecting models in future research, particularly in scenarios such as land-use mapping, urban functional area recognition, and natural resource management.


Assuntos
Aprendizado Profundo , Tecnologia de Sensoriamento Remoto , Benchmarking , Generalização Psicológica , Imagens, Psicoterapia
19.
Am J Bot ; 111(4): e16314, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38641918

RESUMO

PREMISE: Spectroscopy is a powerful remote sensing tool for monitoring plant biodiversity over broad geographic areas. Increasing evidence suggests that foliar spectral reflectance can be used to identify trees at the species level. However, most studies have focused on only a limited number of species at a time, and few studies have explored the underlying phylogenetic structure of leaf spectra. Accurate species identifications are important for reliable estimations of biodiversity from spectral data. METHODS: Using over 3500 leaf-level spectral measurements, we evaluated whether foliar reflectance spectra (400-2400 nm) can accurately differentiate most tree species from a regional species pool in eastern North America. We explored relationships between spectral, phylogenetic, and leaf functional trait variation as well as their influence on species classification using a hurdle regression model. RESULTS: Spectral reflectance accurately differentiated tree species (κ = 0.736, ±0.005). Foliar spectra showed strong phylogenetic signal, and classification errors from foliar spectra, although present at higher taxonomic levels, were found predominantly between closely related species, often of the same genus. In addition, we find functional and phylogenetic distance broadly control the occurrence and frequency of spectral classification mistakes among species. CONCLUSIONS: Our results further support the link between leaf spectral diversity, taxonomic hierarchy, and phylogenetic and functional diversity, and highlight the potential of spectroscopy to remotely sense plant biodiversity and vegetation response to global change.


Assuntos
Filogenia , Folhas de Planta , Árvores , Biodiversidade , Especificidade da Espécie , Análise Espectral , Tecnologia de Sensoriamento Remoto
20.
Ying Yong Sheng Tai Xue Bao ; 35(3): 659-668, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38646753

RESUMO

To accurately monitor the phenology of net ecosystem carbon exchange (NEE) in grasslands with remote sensing, we analyzed the variations in NEE and its phenology in the Stipa krylovii steppe and discussed the remote sensing vegetation index thresholds for NEE phenology, with the observational data from the Inner Mongolia Xilinhot National Climate Observatory's eddy covariance system and meteorological gradient observation system during 2018-2021, as well as Sentinel-2 satellite data from January 1, 2018 to December 31, 2021. Results showed that, from 2018 to 2021, NEE exhibited seasonal variations, with carbon sequestration occurring from April to October and carbon emission in other months, resulting in an overall carbon sink. The average Julian days for the start date (SCUP) and the end date (ECUP) of carbon uptake period were the 95th and 259th days, respectively, with an average carbon uptake period lasting 165 days. Photosynthetically active radiation showed a negative correlation with daily NEE, contributing to carbon absorption of grasslands. The optimal threshold for capturing SCUP was a 10% threshold of the red-edge chlorophyll index, while the normalized difference vegetation index effectively reflected ECUP with a threshold of 75%. These findings would provide a basis for remote sensing monitoring of grassland carbon source-sink dynamics.


Assuntos
Carbono , Ecossistema , Monitoramento Ambiental , Pradaria , Poaceae , Tecnologia de Sensoriamento Remoto , China , Carbono/metabolismo , Poaceae/metabolismo , Poaceae/crescimento & desenvolvimento , Monitoramento Ambiental/métodos , Sequestro de Carbono , Estações do Ano , Ciclo do Carbono
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...