Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 166
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Nature ; 619(7968): 129-134, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37380770

RESUMO

While sleeping, many vertebrate groups alternate between at least two sleep stages: rapid eye movement and slow wave sleep1-4, in part characterized by wake-like and synchronous brain activity, respectively. Here we delineate neural and behavioural correlates of two stages of sleep in octopuses, marine invertebrates that evolutionarily diverged from vertebrates roughly 550 million years ago (ref. 5) and have independently evolved large brains and behavioural sophistication. 'Quiet' sleep in octopuses is rhythmically interrupted by approximately 60-s bouts of pronounced body movements and rapid changes in skin patterning and texture6. We show that these bouts are homeostatically regulated, rapidly reversible and come with increased arousal threshold, representing a distinct 'active' sleep stage. Computational analysis of active sleep skin patterning reveals diverse dynamics through a set of patterns conserved across octopuses and strongly resembling those seen while awake. High-density electrophysiological recordings from the central brain reveal that the local field potential (LFP) activity during active sleep resembles that of waking. LFP activity differs across brain regions, with the strongest activity during active sleep seen in the superior frontal and vertical lobes, anatomically connected regions associated with learning and memory function7-10. During quiet sleep, these regions are relatively silent but generate LFP oscillations resembling mammalian sleep spindles11,12 in frequency and duration. The range of similarities with vertebrates indicates that aspects of two-stage sleep in octopuses may represent convergent features of complex cognition.


Assuntos
Sistema Nervoso Central , Tegumento Comum , Octopodiformes , Sono , Vigília , Animais , Mamíferos/fisiologia , Octopodiformes/fisiologia , Sono/fisiologia , Sono REM/fisiologia , Vigília/fisiologia , Tegumento Comum/inervação , Tegumento Comum/fisiologia , Movimento/fisiologia , Fatores de Tempo , Medida de Potenciais de Campo Local , Aprendizagem/fisiologia , Sistema Nervoso Central/anatomia & histologia , Sistema Nervoso Central/fisiologia , Nível de Alerta/fisiologia
2.
Anat Rec (Hoboken) ; 305(12): 3543-3608, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35225424

RESUMO

The skin is a barrier between the internal and external environment of an organism. Depending on the species, it participates in multiple functions. The skin is the organ that holds the body together, covers and protects it, and provides communication with its environment. It is also the body's primary line of defense, especially for anamniotes. All vertebrates have multilayered skin composed of three main layers: the epidermis, the dermis, and the hypodermis. The vital mission of the integument in aquatic vertebrates is mucus secretion. Cornification began in apmhibians, improved in reptilians, and endured in avian and mammalian epidermis. The feather, the most ostentatious and functional structure of avian skin, evolved in the Mesozoic period. After the extinction of the dinosaurs, birds continued to diversify, followed by the enlargement, expansion, and diversification of mammals, which brings us to the most complicated skin organization of mammals with differing glands, cells, physiological pathways, and the evolution of hair. Throughout these radical changes, some features were preserved among classes such as basic dermal structure, pigment cell types, basic coloration genetics, and similar sensory features, which enable us to track the evolutionary path. The structural and physiological properties of the skin in all classes of vertebrates are presented. The purpose of this review is to go all the way back to the agnathans and follow the path step by step up to mammals to provide a comparative large and updated survey about vertebrate skin in terms of morphology, physiology, genetics, ecology, and immunology.


Assuntos
Evolução Biológica , Dinossauros , Animais , Dinossauros/fisiologia , Plumas/anatomia & histologia , Tegumento Comum/anatomia & histologia , Tegumento Comum/fisiologia , Aves/anatomia & histologia , Mamíferos/anatomia & histologia
3.
In. González Tuero, Jaime Humberto. Heridas. Génesis, evolución y tratamiento. La Habana, Editorial Ciencias Médicas, 2022. , ilus.
Monografia em Espanhol | CUMED | ID: cum-78498
4.
Zool Res ; 42(5): 637-649, 2021 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-34472225

RESUMO

The insect brain is the central part of the neurosecretory system, which controls morphology, physiology, and behavior during the insect's lifecycle. Lepidoptera are holometabolous insects, and their brains develop during the larval period and metamorphosis into the adult form. As the only fully domesticated insect, the Lepidoptera silkworm Bombyx mori experienced changes in larval brain morphology and certain behaviors during the domestication process. Hormonal regulation in insects is a key factor in multiple processes. However, how juvenile hormone (JH) signals regulate brain development in Lepidoptera species, especially in the larval stage, remains elusive. We recently identified the JH receptor Methoprene tolerant 1 ( Met1) as a putative domestication gene. How artificial selection on Met1 impacts brain and behavioral domestication is another important issue addressing Darwin's theory on domestication. Here, CRISPR/Cas9-mediated knockout of Bombyx Met1 caused developmental retardation in the brain, unlike precocious pupation of the cuticle. At the whole transcriptome level, the ecdysteroid (20-hydroxyecdysone, 20E) signaling and downstream pathways were overactivated in the mutant cuticle but not in the brain. Pathways related to cell proliferation and specialization processes, such as extracellular matrix (ECM)-receptor interaction and tyrosine metabolism pathways, were suppressed in the brain. Molecular evolutionary analysis and in vitro assay identified an amino acid replacement located in a novel motif under positive selection in B. mori, which decreased transcriptional binding activity. The B. mori MET1 protein showed a changed structure and dynamic features, as well as a weakened co-expression gene network, compared with B. mandarina. Based on comparative transcriptomic analyses, we proposed a pathway downstream of JH signaling (i.e., tyrosine metabolism pathway) that likely contributed to silkworm larval brain development and domestication and highlighted the importance of the biogenic amine system in larval evolution during silkworm domestication.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Bombyx/metabolismo , Proteínas de Insetos/metabolismo , Hormônios Juvenis/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Bombyx/crescimento & desenvolvimento , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Sistemas CRISPR-Cas , Deleção de Genes , Regulação da Expressão Gênica no Desenvolvimento , Genótipo , Proteínas de Insetos/genética , Tegumento Comum/fisiologia , Larva/crescimento & desenvolvimento , Larva/metabolismo , Filogenia , Conformação Proteica
5.
Sci Rep ; 11(1): 16931, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34417514

RESUMO

Queen pheromones have long been studied as a major factor regulating reproductive division of labor in social insects. Hitherto, only a handful of queen pheromones were identified and their effects on workers have mostly been studied in isolation from the social context in which they operate. Our study examined the importance of behavioral and social context for the perception of queen semiochemicals by bumble bee workers. Our results indicate that a mature queen's cuticular semiochemicals are capable of inhibiting worker reproduction only when accompanied by the queen's visual presence and the offspring she produces, thus, when presented in realistic context. Queen's chemistry, queen's visual presence and presence of offspring all act to regulate worker reproduction, but none of these elements produces an inhibitory effect on its own. Our findings highlight the necessity to reconsider what constitutes a queen pheromone and suggest a new approach to the study of chemical ecology in social insects.


Assuntos
Abelhas/fisiologia , Hierarquia Social , Feromônios/metabolismo , Animais , Tegumento Comum/fisiologia , Reprodução/fisiologia , Tamanho da Amostra
6.
Zool Res ; 42(5): 614-619, 2021 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-34402607

RESUMO

Butterflies are diverse in virtually all aspects of their ontogeny, including morphology, life history, and behavior. However, the developmental regulatory mechanisms underlying the important phenotypic traits of butterflies at different developmental stages remain unknown. Here, we investigated the developmental regulatory profiles of butterflies based on transposase accessible chromatin sequencing (ATAC-seq) at three developmental stages in two representative species ( Papilio xuthus and Kallima inachus). Results indicated that 15%-47% of open chromatin peaks appeared in associated genes located 3 kb upstream (i.e., promoter region) of their transcription start site (TSS). Comparative analysis of the different developmental stages indicated that chromatin accessibility is a dynamic process and associated genes with differentially accessible (DA) peaks show functions corresponding to their phenotypic traits. Interestingly, the black color pattern in P. xuthus 4th instar larvae may be attributed to promoter peak-related genes involved in the melanogenesis pathway. Furthermore, many longevity genes in 5th instar larvae and pupae showed open peaks 3 kb upstream of their TSS, which may contribute to the overwintering diapause observed in K. inachus adults. Combined with RNA-seq analysis, our data demonstrated that several genes enriched in the melanogenesis and longevity pathways also exhibit higher expression, confirming that the expression of genes may be closely related to their phenotypic traits. This study offers new insights into larval cuticle color and adult longevity in butterflies and provides a resource for investigating the developmental regulatory mechanisms underlying butterfly ontogeny.


Assuntos
Borboletas/fisiologia , Cromatina/metabolismo , Pigmentação/genética , Pigmentos Biológicos/metabolismo , Transcriptoma , Animais , Borboletas/anatomia & histologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Tegumento Comum/fisiologia , Larva/anatomia & histologia , Larva/fisiologia , Pigmentação/fisiologia
7.
Zoolog Sci ; 38(3): 252-258, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34057350

RESUMO

Holothuria atra is a black sea cucumber commonly found on the sandy bottom of Okinawan coral reefs. The body surface of H. atra is usually covered with sand; however, sand never covers the body of another black congener, Holothuria leucospilota, which is sympatrically distributed with H. atra. The epidermal structures were examined in these two species by means of transmission electron microscopy to determine how sand adheres to the surface of H. atra. While the epidermis was basically composed of support cells bearing microvilli and vacuolated cells probably corresponding to mucus cells, two types of granular cells, type 1 and 2, were also found at the tip of the tube feet. These granular cells were closely similar in structure to secretory cells that have been supposed to secrete adhesive substances in other holothurians. Type 1 granular cells were also found in the dorsal epidermis of H. atra but not in H. leucospilota. Therefore, adhesive secretion by type 1 granular cells probably enables the attachment of sand to the H. atra body.


Assuntos
Holothuria/anatomia & histologia , Areia , Animais , Ecossistema , Holothuria/fisiologia , Tegumento Comum/anatomia & histologia , Tegumento Comum/fisiologia
8.
Sci Rep ; 11(1): 10396, 2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-34001926

RESUMO

Despite the relevance of chemical communication in vertebrates, comparative examinations of macroevolutionary trends in chemical signaling systems are scarce. Many turtle and tortoise species are reliant on chemical signals to communicate in aquatic and terrestrial macrohabitats, and many of these species possess specialized integumentary organs, termed mental glands (MGs), involved in the production of chemosignals. We inferred the evolutionary history of MGs and tested the impact of macrohabitat on their evolution. Inference of ancestral states along a time-calibrated phylogeny revealed a single origin in the ancestor of the subclade Testudinoidea. Thus, MGs represent homologous structures in all descending lineages. We also inferred multiple independent losses of MGs in both terrestrial and aquatic clades. Although MGs first appeared in an aquatic turtle (the testudinoid ancestor), macrohabitat seems to have had little effect on MG presence or absence in descendants. Instead, we find clade-specific evolutionary trends, with some clades showing increased gland size and morphological complexity, whereas others exhibiting reduction or MG loss. In sister clades inhabiting similar ecological niches, contrasting patterns (loss vs. maintenance) may occur. We conclude that the multiple losses of MGs in turtle clades have not been influenced by macrohabitat and that other factors have affected MG evolution.


Assuntos
Evolução Biológica , Tegumento Comum/fisiologia , Feromônios/química , Tartarugas/fisiologia , Comunicação Animal , Animais , Fenômenos Biomecânicos , Ecossistema , Tegumento Comum/anatomia & histologia , Feromônios/biossíntese , Filogenia , Transdução de Sinais/genética , Tartarugas/anatomia & histologia
9.
Curr Opin Genet Dev ; 69: 103-111, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33780743

RESUMO

Birds are the most diversified terrestrial vertebrates due to highly diverse integumentary organs that enable robust adaptability to various eco-spaces. Here we show that this complexity is built upon multi-level regional specifications. Across-the-body (macro-) specification includes the evolution of beaks and feathers as new integumentary organs that are formed with regional specificity. Within-an-organ (micro-) specification involves further modifications of organ shapes. We review recent progress in elucidating the molecular mechanisms underlying feather diversification as an example. (1) ß-Keratin gene clusters are regulated by typical enhancers or high order chromatin looping to achieve macro- and micro-level regional specification, respectively. (2) Multi-level symmetry-breaking of feather branches confers new functional forms. (3) Complex color patterns are produced by combinations of macro-patterning and micro-patterning processes. The integration of these findings provides new insights toward the principle of making a robustly adaptive bio-interface.


Assuntos
Adaptação Fisiológica/genética , Evolução Biológica , Aves/fisiologia , Tegumento Comum/fisiologia , Animais , Bico/anatomia & histologia , Bico/fisiologia , Aves/genética , Plumas/anatomia & histologia , Plumas/fisiologia , Tegumento Comum/anatomia & histologia , Pele/anatomia & histologia , Vertebrados/genética , Vertebrados/fisiologia
10.
Sci China Life Sci ; 64(10): 1765-1780, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33481165

RESUMO

Animal body coverings provide protection and allow for adaptation to environmental pressures such as heat, ultraviolet radiation, water loss, and mechanical forces. Here, using a comparative genomics analysis of 39 mammal species spanning three skin covering types (hairless, scaly and spiny), we found some genes (e.g., UVRAG, POLH, and XPC) involved in skin inflammation, skin innate immunity, and ultraviolet radiation damage repair were under selection in hairless ocean mammals (e.g., whales and manatees). These signatures might be associated with a high risk of skin diseases from pathogens and ultraviolet radiation. Moreover, the genomes from three spiny mammal species shared convergent genomic regions (EPHB2, EPHA4, and NIN) and unique positively selected genes (FZD6, INVS, and CDC42) involved in skin cell polarity, which might be related to the development of spines. In scaly mammals, the shared convergent genomic regions (e.g., FREM2) were associated with the integrity of the skin epithelium and epidermal adhesion. This study identifies potential convergent genomic features among distantly related mammals with the same skin covering type.


Assuntos
Genoma/genética , Tegumento Comum/fisiologia , Mamíferos/genética , Adaptação Fisiológica , Substituição de Aminoácidos , Animais , Evolução Molecular , Genômica , Folículo Piloso/crescimento & desenvolvimento , Mamíferos/classificação , Filogenia , Seleção Genética
11.
Proc Natl Acad Sci U S A ; 118(5)2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33468629

RESUMO

Many small animals use springs and latches to overcome the mechanical power output limitations of their muscles. Click beetles use springs and latches to bend their bodies at the thoracic hinge and then unbend extremely quickly, resulting in a clicking motion. When unconstrained, this quick clicking motion results in a jump. While the jumping motion has been studied in depth, the physical mechanisms enabling fast unbending have not. Here, we first identify and quantify the phases of the clicking motion: latching, loading, and energy release. We detail the motion kinematics and investigate the governing dynamics (forces) of the energy release. We use high-speed synchrotron X-ray imaging to observe and analyze the motion of the hinge's internal structures of four Elater abruptus specimens. We show evidence that soft cuticle in the hinge contributes to the spring mechanism through rapid recoil. Using spectral analysis and nonlinear system identification, we determine the equation of motion and model the beetle as a nonlinear single-degree-of-freedom oscillator. Quadratic damping and snap-through buckling are identified to be the dominant damping and elastic forces, respectively, driving the angular position during the energy release phase. The methods used in this study provide experimental and analytical guidelines for the analysis of extreme motion, starting from motion observation to identifying the forces causing the movement. The tools demonstrated here can be applied to other organisms to enhance our understanding of the energy storage and release strategies small animals use to achieve extreme accelerations repeatedly.


Assuntos
Besouros/fisiologia , Elasticidade , Dinâmica não Linear , Animais , Fenômenos Biomecânicos , Besouros/anatomia & histologia , Metabolismo Energético/fisiologia , Tegumento Comum/fisiologia , Movimento (Física) , Raios X
12.
Sci Rep ; 10(1): 20484, 2020 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-33235272

RESUMO

In social species, the presence of several reproductive individuals can generate conflict. In social insects, as queen number increases, individual oviposition rate may decrease because of direct and indirect behavioural and/or chemical interactions. Understanding the factors that mediate differences in queen fecundity should provide insight into the regulation and maintenance of highly polygynous insect societies, such as those of the invasive Argentine ant (Linepithema humile). In this study, we investigated (1) whether differences in the oviposition rates of Argentine ant queens exposed to polygynous conditions could result from interactions among them; (2) whether such differences in fecundity stemmed from differences in worker attention; and (3) whether polygynous conditions affected the cuticular hydrocarbon profiles of queens (CHCs). We found that differences in queen fecundity and CHC profiles observed under polygynous conditions disappeared when queens were exposed to monogynous conditions, suggesting some form of reproductive inhibition may exist when queens cohabit. These differences did not seem to arise from variation in worker attention because more fecund queens were not more attractive to workers. Levels of some CHCs were higher in more fecund queens. These CHCs are associated with greater queen productivity and survival. Our findings indicate that such compounds could be multifunctional queen pheromones.


Assuntos
Formigas/fisiologia , Comportamento de Nidação/fisiologia , Animais , Análise Discriminante , Feminino , Fertilidade/fisiologia , Hierarquia Social , Hidrocarbonetos/metabolismo , Tegumento Comum/fisiologia , Ovário/fisiologia , Óvulo/fisiologia , Reprodução/fisiologia
13.
Curr Biol ; 30(19): R1068-R1070, 2020 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-33022234

RESUMO

Early in amniote evolution, epidermal scales evolved in stem reptiles as an efficient barrier against water loss and ultraviolet radiation, making them a key development in the transition to a fully terrestrial existence [1]. Accordingly, epidermal scales are not simple inert structures but highly-evolved organs suited to perform a broad suite of functions. Here, we provide new data on the epidermal complexity of a non-avian theropod, Juravenator starki, from the Torleite Formation (upper Kimmeridgian), Bavaria, Germany [2]. Although epidermal scales have been noted previously on the tail of Juravenator, we report a unique scale type with distinctive circular nodes that we identify as integumentary sense organs, analogous to those in modern crocodylians. The surprising presence of such structures suggests the tail had a sensory function, which is nevertheless congruent with the inferred ecology of Juravenator and the evolution of integumentary sense organs among archosaurs.


Assuntos
Evolução Biológica , Dinossauros/anatomia & histologia , Dinossauros/fisiologia , Epiderme/anatomia & histologia , Epiderme/fisiopatologia , Fósseis , Órgãos dos Sentidos/fisiologia , Jacarés e Crocodilos/fisiologia , Animais , Tegumento Comum/anatomia & histologia , Tegumento Comum/fisiologia , Raios Ultravioleta
14.
Insect Mol Biol ; 29(5): 452-465, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32654295

RESUMO

The silkworm is an economically important insect producing plentiful silk fibre in the silk gland. In this study, we reported a cross-talk between the fat body, silk gland and midgut through a glycine-serine biosynthetic pathway in the silkworm. Amino acid sequence and functional domains of glycine transporter gene BmGT1-L were mapped. Our results indicated that BmGT1-L was specifically expressed in the midgut microvilli and persistently expressed during the feeding stages. RNA interference of BmGT1-L activated glycine biosynthesis, and BmGT1-L overexpression facilitated serine biosynthesis in the BmN4-SID1 cell. In addition, silkworms after FibH gene knock-out or silk gland extirpation showed markedly decreased BmGT1-L transcripts in the midgut and disturbed glycine-serine biosynthesis as silk yield decreased. Finally, BmGT1-L ectopic expression in the posterior silk gland promoted glycine biosynthesis, and enhanced silk yield via increasing fibroin synthesis. These results suggested that cross-talk between tissues can be used for enhancing silk yield in the silkworm.


Assuntos
Bombyx/metabolismo , Expressão Ectópica do Gene , Proteínas de Insetos/genética , Seda/biossíntese , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados/genética , Animais Geneticamente Modificados/crescimento & desenvolvimento , Animais Geneticamente Modificados/metabolismo , Bombyx/genética , Bombyx/crescimento & desenvolvimento , Glândulas Exócrinas/metabolismo , Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , Tegumento Comum/fisiologia , Larva/genética , Larva/crescimento & desenvolvimento , Larva/metabolismo , Alinhamento de Sequência , Seda/genética
15.
J Anat ; 237(3): 404-426, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32458532

RESUMO

Scaly-tailed squirrels, the most poorly known group of gliding mammals, hold the record for variety of remarkable integument peculiarities. One of the most striking of these features is the scales on the tail, which apparently allow them to reduce energy costs when positioning themselves on a tree trunk. No less interesting is a peculiar spur that supports the flying membrane: the unciform element ('spur'). Despite the peculiarity of such elements, their nature has not yet been studied. Using anatomical, histological methods and scanning electron microscopy we studied the structure of the skin and its derivatives in five of the six species from both genera of extant gliding scaly-tailed squirrels (Anomaluridae, Rodentia): Idiurus macrotis, Idiurus zenkeri, Anomalurus beecrofti, Anomalurus pusillus and Anomalurus derbianus. In addition to the common mammalian skin structures, such as hair, vibrissae, sebaceous glands, meibomian glands of eyelids and eccrine sweat glands of the palmar and plantar pads, these animals have unique species-specific skin derivatives (the tail scaly organ and its specific glands, vibrissae of the withers, patagium and its hair brush) that play a significant role in their adaptation to gliding and to their environment in general. The structure of the elbow spur is also described and hypotheses on its evolutionary origin from the tendon of the triceps muscle are presented.


Assuntos
Adaptação Fisiológica/fisiologia , Tegumento Comum/anatomia & histologia , Locomoção/fisiologia , Roedores/anatomia & histologia , Animais , Tegumento Comum/fisiologia , Roedores/fisiologia , Especificidade da Espécie
16.
Sci Rep ; 10(1): 6663, 2020 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-32313020

RESUMO

Cylindrical silk gland (CY) spigots distinguish a large clade of modern spiders, the CY spigot clade, which includes all entelegyne spiders and their closest relatives. Following a widespread paradigm, CYs and their spigots are only known to occur in female spiders and they produce silk used in the construction of egg sacs. Here we report the occurrence of a CY spigot or CY nubbin on each posterior median spinneret (PMS) in males (5th stadium and later) of the spider Australomimetus maculosus. Late juvenile males had a CY spigot on each PMS, whereas adult males either had a CY spigot or, more often, a non-functional CY nubbin. This indicates that potential CY use by males is at least largely limited to late juvenile instars and is not involved with egg sac construction. Despite the presence of CY spigots in both sexes, sexual dimorphism with respect to CYs was still evident since males lacked the CY spigot on each posterior lateral spinneret present in late juvenile and adult females, and CY spigots of males never had the wide shaft and opening of adult females. This study adds to our knowledge of spinning apparatus variability in modern spiders and demonstrates an exception to the paradigm that, in the CY spigot clade, such spigots are restricted to female spiders.


Assuntos
Tegumento Comum/fisiologia , Caracteres Sexuais , Seda/biossíntese , Aranhas/fisiologia , Animais , Feminino , Tegumento Comum/anatomia & histologia , Masculino , Microscopia Eletrônica de Varredura , Aranhas/anatomia & histologia , Aranhas/ultraestrutura
17.
Int J Mol Sci ; 21(7)2020 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-32244312

RESUMO

The skin of the frog Xenopus laeevis is protected from microbial infections by a mucus barrier that contains frog integumentary mucins (FIM)-A.1, FIM-B.1, and FIM-C.1. These gel-forming mucins are synthesized in mucous glands consisting of ordinary mucous cells and one or more cone cells at the gland base. FIM-A.1 and FIM-C.1 are unique because their cysteine-rich domains belong to the trefoil factor family (TFF). Furthermore, FIM-A.1 is unusually short (about 400 amino acid residues). In contrast, FIM-B.1 contains cysteine-rich von Willebrand D (vWD) domains. Here, we separate skin extracts by the use of size exclusion chromatography and analyze the distribution of FIM-A.1 and FIM-C.1. Two mucin complexes were detected, i.e., a high-molecular-mass Complex I, which contains FIM-C.1 and little FIM-A.1, whereas Complex II is of lower molecular mass and contains the bulk of FIM-A.1. We purified FIM-A.1 by a combination of size-exclusion chromatography (SEC) and anion-exchange chromatography and performed first in vitro binding studies with radioactively labeled FIM-A.1. Binding of 125I-labeled FIM-A.1 to the high-molecular-mass Complex I was observed. We hypothesize that the presence of FIM-A.1 in Complex I is likely due to lectin interactions, e.g., with FIM-C.1, creating a complex mucus network.


Assuntos
Tegumento Comum/fisiologia , Mucinas/metabolismo , Muco/metabolismo , Fatores Trefoil/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis/metabolismo , Animais , Glândulas Exócrinas , Mucinas/química , Pele/metabolismo , Proteínas de Xenopus/química
18.
Molecules ; 25(7)2020 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-32235326

RESUMO

Phosphine resistance is a worldwide issue threatening the grain industry. The cuticles of insects are covered with a layer of lipids, which protect insect bodies from the harmful effects of pesticides. The main components of the cuticular lipids are hydrocarbon compounds. In this research, phosphine-resistant and -susceptible strains of two main stored-grain insects, T. castaneum and R. dominica, were tested to determine the possible role of their cuticular hydrocarbons in phosphine resistance. Direct immersion solid-phase microextraction followed by gas chromatography-mass spectrometry (GC-MS) was applied to extract and analyze the cuticular hydrocarbons. The results showed significant differences between the resistant and susceptible strains regarding the cuticular hydrocarbons that were investigated. The resistant insects of both species contained higher amounts than the susceptible insects for the majority of the hydrocarbons, sixteen from cuticular extraction and nineteen from the homogenized body extraction for T. castaneum and eighteen from cuticular extraction and twenty-one from the homogenized body extraction for R. dominica. 3-methylnonacosane and 2-methylheptacosane had the highest significant difference between the susceptible and resistant strains of T. castaneum from the cuticle and the homogenized body, respectively. Unknown5 from the cuticle and 3-methylhentriacontane from the homogenized body recorded the highest significant differences in R. dominica. The higher hydrocarbon content is a key factor in eliminating phosphine from entering resistant insect bodies, acting as a barrier between insects and the surrounding phosphine environment.


Assuntos
Alcanos/isolamento & purificação , Besouros/efeitos dos fármacos , Resistência a Inseticidas/fisiologia , Inseticidas/farmacologia , Fosfinas/farmacologia , Tribolium/efeitos dos fármacos , Alcanos/química , Alcanos/classificação , Animais , Besouros/química , Besouros/fisiologia , Misturas Complexas/química , Grão Comestível/parasitologia , Cromatografia Gasosa-Espectrometria de Massas , Tegumento Comum/fisiologia , Microextração em Fase Sólida , Tribolium/química , Tribolium/fisiologia , Triticum/parasitologia
19.
Funct Integr Genomics ; 20(2): 223-235, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31478115

RESUMO

The diversity markings and pigment patterns in insects are outcomes of adaptive evolution. The elucidation of the molecular mechanism underlying variations in pigment patterns may improve our understanding of the origin and evolution of these spectacular diverse phenotypes. Melanin, ommochrome, and pteridine are the three main types of insect pigments, and the genes that directly participate in pigment biosynthesis have been extensively studied. However, available information on gene interactions and the whole pigment regulatory network is limited. In this study, we performed integument transcriptome sequencing to analyze three larval marking allelic mutants, namely, multi lunar (L), LC, and LCa, which have similar twin-spot markings on the dorsal side of multiple segments. Further analysis identified 336 differentially expressed genes (DEGs) between L and Dazao (wild type which exhibits normal markings), 68 DEGs between LC/+ and +LC/+LC, and 188 DEGs between LCa/+ and +LCa/+LCa. Gene Ontology (GO) analysis indicated a significant DEG enrichment of the functional terms catalytic activity, binding, metabolic process, and cellular process. Furthermore, three mutants share six common enriched KEGG pathways. We finally identified eight common DEGs among three pairwise comparisons, including Krueppel-like factor, TATA-binding protein, protein patched, UDP-glycosyltransferase, an unknown secreted protein, and three cuticular proteins. Microarray-based gene expression analysis revealed that the eight genes are upregulated during molting, which coincides with marking formation, and are significantly differentially expressed between marking and non-marking regions. The results suggest that the eight common genes are involved in the construction of the multiple twin-spot marking patterns in the three mutants.


Assuntos
Alelos , Bombyx/genética , Tegumento Comum/fisiologia , Mutação , Transcriptoma , Animais , Padronização Corporal , Perfilação da Expressão Gênica , Biblioteca Gênica , Genes de Insetos , Proteínas de Insetos/genética , Larva , Fenótipo , Pigmentos Biológicos/biossíntese , RNA-Seq , Pele/metabolismo
20.
Acta Biomater ; 101: 414-421, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31669541

RESUMO

In many cases, strong friction reduction is critical for success of both living organisms and engineering systems. Some arthropods exhibit good antifriction abilities in their specific living environments and have inspired many innovations for solving industry challenges. However, the current literature mainly focused on terrestrial insects, such as beetles, grasshoppers and katydids. The antifriction mechanisms in amphibious arthropods are still unknown, even if their surfaces are optimized for both air and water environments. Herein the tribological properties of the cuticle surface of the sandhopper Talitrus saltator were studied using a universal microtribometer. Further investigations were developed to identify the microstructural, compositional, wettability, and mechanical properties of the sandhopper shell cuticles. It was found that increasing normal force can significantly reduce the coefficient of friction of the shell cuticle, especially for the alive and rewet sandhopper shells. The shell consists of bottle-like nano-caves in its exocuticle, nano-tubes in its mesocuticle, and gauze-like multilayers in its endocuticle. Under physiological conditions, glycoprotein-like fluid fillings exist in both the bottle-like caves and the nano-tubes below and cover on the shell surface. More importantly, a new antifriction mechanism of lubricant-squeezing nano-porous system was established for the sandhopper shell. This work can deepen our understanding in antifriction surfaces of amphibiotic crustaceans, and provide a potential approach to resolve the friction challenge in micro-machines, especially for the applications under aqueous condition. STATEMENT OF SIGNIFICANCE: Friction regulation is one of the critical mechanisms for animal locomotion in natural environments. However, not much is known about the mechanism of amphibious arthropods to reduce friction between their body and diverse environments, particularly achieving adaption under both air and aqueous conditions. We quantitatively study the microstructural, compositional and mechanical properties of the sandhopper (Talitrus saltator) shell cuticle and tribological behaviors under different conditions. Our results reveal the nano-porous system with fluid fillings for the sandhopper's shell and demonstrate the potential antifriction mechanism of this amphibious animal. We anticipate this work will inspire some effective antifriction designs for micro-machines, especially for their applications in complex environment like human body.


Assuntos
Anfípodes/anatomia & histologia , Anfípodes/fisiologia , Fricção , Tegumento Comum/anatomia & histologia , Tegumento Comum/fisiologia , Anfípodes/ultraestrutura , Exoesqueleto/anatomia & histologia , Exoesqueleto/ultraestrutura , Animais , Módulo de Elasticidade , Modelos Lineares , Reologia , Propriedades de Superfície , Molhabilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...