Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.080
Filtrar
1.
PLoS One ; 19(4): e0302021, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38625839

RESUMO

Falls among older adults are a costly public health concern. Such falls can be precipitated by balance disturbances, after which a recovery strategy requiring rapid, high force outputs is necessary. Sarcopenia among older adults likely diminishes their ability to produce the forces necessary to arrest gait instability. Age-related changes to tendon stiffness may also delay muscle stretch and afferent feedback and decrease force transmission, worsening fall outcomes. However, the association between muscle strength, tendon stiffness, and gait instability is not well established. Given the ankle's proximity to the onset of many walking balance disturbances, we examined the relation between both plantarflexor strength and Achilles tendon stiffness with walking-related instability during perturbed gait in older and younger adults-the latter quantified herein using margins of stability and whole-body angular momentum including the application of treadmill-induced slip perturbations. Older and younger adults did not differ in plantarflexor strength, but Achilles tendon stiffness was lower in older adults. Among older adults, plantarflexor weakness associated with greater whole-body angular momentum following treadmill-induced slip perturbations. Weaker older adults also appeared to walk and recover from treadmill-induced slip perturbations with more caution. This study highlights the role of plantarflexor strength and Achilles tendon stiffness in regulating lateral gait stability in older adults, which may be targets for training protocols seeking to minimize fall risk and injury severity.


Assuntos
Tendão do Calcâneo , Transtornos Neurológicos da Marcha , Humanos , Idoso , Marcha/fisiologia , Caminhada/fisiologia , Envelhecimento/fisiologia , Fenômenos Mecânicos , Tendão do Calcâneo/fisiologia , Equilíbrio Postural , Fenômenos Biomecânicos
2.
J Biomech ; 166: 112048, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38493577

RESUMO

Tendon xanthoma and altered mechanical properties have been demonstrated in people with familial hypercholesterolaemia. However, it is unclear whether mild, untreated hypercholesterolaemia alters musculotendinous mechanical properties and muscle architecture. We conducted a case-control study of adults aged 50 years and over, without lower limb injury or history of statin medication. Based on fasting low-density lipoprotein (LDL) cholesterol levels, 6 participants had borderline high LDL (>3.33 mmol/L) and 6 had optimal LDL cholesterol (<2.56 mmol/L). Using shear wave elastography, shear wave velocity (SWV) of the Achilles tendon and gastrocnemius medialis muscle (a proxy for stiffness), along with muscle fascicle length and pennation angle were measured under four passive tensile loads (0, 0.5, 1.0, 1.5 kg) applied via a pulley system. Differences between groups were found for tendon SWV but not muscle SWV, fascicle length or pennation angle. Participants with hypercholesterolaemia showed greater SWV (mean difference, 95 % CI: 2.4 m/s, 0.9 to 4.0, P = 0.024) compared to the control group across all loads. These findings suggest that adults with mild hypercholesterolaemia have increased tendon stiffness under low passive loads, while muscle was not affected. Future research is needed to confirm findings in a larger cohort and explore the impact of hypercholesterolaemia on tendon fatigue injury and tendinopathy.


Assuntos
Tendão do Calcâneo , Hipercolesterolemia , Traumatismos dos Tendões , Adulto , Humanos , Pessoa de Meia-Idade , Idoso , Tendão do Calcâneo/fisiologia , Estudos de Casos e Controles , Ultrassonografia , Músculo Esquelético/fisiologia
3.
Exp Physiol ; 109(5): 729-737, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38488678

RESUMO

Due to Achilles tendon compliance, passive ankle stiffness is insufficient to stabilise the body when standing. This results in 'paradoxical' muscle movement, whereby calf muscles tend to shorten during forward body sway. Natural variation in stiffness may affect this movement. This may have consequences for postural control, with compliant ankles placing greater reliance upon active neural control rather than stretch reflexes. Previous research also suggests ageing reduces ankle stiffness, possibly contributing to reduced postural stability. Here we determine the relationship between ankle stiffness and calf muscle movement during standing, and whether this is associated with postural stability or age. Passive ankle stiffness was measured during quiet stance in 40 healthy volunteers ranging from 18 to 88 years of age. Medial gastrocnemius muscle length was also recorded using ultrasound. We found a significant inverse relationship between ankle stiffness and paradoxical muscle movement, that is, more compliant ankles were associated with greater muscle shortening during forward sway (r ≥ 0.33). This was seen during both quiet stance as well as voluntary sway. However, we found no significant effects of age upon stiffness, paradoxical motion or postural sway. Furthermore, neither paradoxical muscle motion nor ankle stiffness was associated with postural sway. These results show that natural variation in ankle stiffness alters the extent of paradoxical calf muscle movement during stance. However, the absence of a clear relationship to postural sway suggests that neural control mechanisms are more than capable of compensating for a lack of inherent joint stiffness.


Assuntos
Tornozelo , Músculo Esquelético , Equilíbrio Postural , Humanos , Músculo Esquelético/fisiologia , Adulto , Idoso , Pessoa de Meia-Idade , Masculino , Feminino , Equilíbrio Postural/fisiologia , Adulto Jovem , Idoso de 80 Anos ou mais , Tornozelo/fisiologia , Adolescente , Movimento/fisiologia , Tendão do Calcâneo/fisiologia , Tendão do Calcâneo/diagnóstico por imagem , Articulação do Tornozelo/fisiologia , Envelhecimento/fisiologia , Perna (Membro)/fisiologia , Postura/fisiologia
4.
Sci Rep ; 14(1): 6875, 2024 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519507

RESUMO

Human tendons adapt to mechanical loading, yet there is little information on the effect of the temporal coordination of loading and recovery or the dose-response relationship. For this reason, we assigned adult men to either a control or intervention group. In the intervention group, the two legs were randomly assigned to one of five high-intensity Achilles tendon (AT) loading protocols (i.e., 90% maximum voluntary contraction and approximately 4.5 to 6.5% tendon strain) that were systematically modified in terms of loading frequency (i.e., sessions per week) and overall loading volume (i.e., total time under loading). Before, at mid-term (8 weeks) and after completion of the 16 weeks intervention, AT mechanical properties were determined using a combination of inverse dynamics and ultrasonography. The cross-sectional area (CSA) and length of the free AT were measured using magnetic resonance imaging pre- and post-intervention. The data analysis with a linear mixed model showed significant increases in muscle strength, rest length-normalized AT stiffness, and CSA of the free AT in the intervention group (p < 0.05), yet with no marked differences between protocols. No systematic effects were found considering the temporal coordination of loading and overall loading volume. In all protocols, the major changes in normalized AT stiffness occurred within the first 8 weeks and were mostly due to material rather than morphological changes. Our findings suggest that-in the range of 2.5-5 sessions per week and 180-300 s total high strain loading-the temporal coordination of loading and recovery and overall loading volume is rather secondary for tendon adaptation.


Assuntos
Tendão do Calcâneo , Adulto , Humanos , Masculino , Tendão do Calcâneo/fisiologia , Fenômenos Biomecânicos , Contração Isométrica/fisiologia , Imageamento por Ressonância Magnética , Força Muscular , Ultrassonografia
5.
J Appl Physiol (1985) ; 136(3): 567-572, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38299222

RESUMO

The habitual use of high-heeled footwear may structurally remodel user leg muscle tendons, thereby altering their functional capabilities. High heels set users' ankles in relatively plantarflexed positions, causing calf muscle tendons to operate at relatively short lengths. Habitually operating muscle tendons at relatively short lengths induces structural remodeling that theoretically affects muscle metabolism. Because structural changes occur within the body, the user's locomotor metabolism may change in any footwear condition (e.g., conventional shoes, barefoot). Here, we studied the influence of habitual high-heel use on users' leg muscle-tendon structure and metabolism during walking in flat-soled footwear. We tested eight participants before and after 14 wk of agreeing to wear high heels as their daily shoes. Overall, participants who wore high heels >1,500 steps per day, experienced a 9% decrease in their net metabolic power during walking in flat-soled footwear (d = 1.66, P ≤ 0.049), whereas participants who took <1,000 daily steps in high heels did not (d = 0.44; P = 0.524). Across participants, for every 1,000 daily steps in high heels, net metabolic power during walking in flat-soled footwear decreased 5.3% (r = -0.73; P = 0.040). Metabolic findings were partially explained (r2 = 0.43; P = 0.478) by trending shorter medial gastrocnemius fascicle lengths (d = 0.500, P = 0.327) and increased Achilles tendon stiffness (d = 2.889, P = 0.088). The high-heel intervention did not alter user walking stride kinematics in flat-soled footwear (d ≤ 0.567, P ≥ 0.387). While our limited dataset is unable to establish the mechanisms underlying the high-heel-induced walking economy improvement, it appears that prescribing specific footwear use can be implemented to alter user muscle-tendon properties and augment their function in any shoes.NEW & NOTEWORTHY Habitually wearing high-heeled footwear structurally remodels leg muscle tendons and improves user walking economy, regardless of worn attire.


Assuntos
Tendão do Calcâneo , Calcanhar , Humanos , Calcanhar/fisiologia , Caminhada/fisiologia , Músculo Esquelético/fisiologia , Tendão do Calcâneo/fisiologia , Perna (Membro) , Sapatos , Fenômenos Biomecânicos
6.
Skeletal Radiol ; 53(7): 1381-1388, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38277027

RESUMO

PURPOSE: To report normative stiffness parameters obtained using shear wave elastography in dorsiflexion from the Achilles tendons in asymptomatic professional ballet dancers and compare them with college-level athletes. METHODS: An Institutional Review Board (IRB)-approved study consists of 28 professional ballet dancers and 64 asymptomatic collegiate athletes. The athletes were further subdivided into runner and non-runner disciplines. Shear wave elastography (SWE) measurements were made in maximum ankle dorsiflexion position. RESULTS AND DISCUSSION: Forty-eight (52%) males and 44 (48%) females were examined with an overall mean age of 22.2 (± 3.8 years). There were no significant SWE differences between dominant and non-dominant legs in both groups and comparing spin vs. non-spin leg of ballet dancers (p > 0.05). Ballet dancers had significantly higher short-axis velocity values than runners and non-runners (2.34 m/s increase and 2.79 m/s increase, respectively, p < 0.001). Long-axis velocity was significantly higher in ballet dancers compared to non-runners (by 0.80 m/s, p < 0.001), but was not different between ballet dancers and runners (p > 0.05). Short-axis modulus was significantly higher in dancers compared to runners and non-runners (by 135.2 kPa and 159.2 kPa, respectively, p < 0.001). Long-axis modulus (LAM) was not significantly different in ballet dancers when compared to runners. CONCLUSION: Asymptomatic professional ballet dancers exhibit greater short-axis tendon stiffness compared to athletes and greater long-axis tendon stiffness compared to non-runners but similar to runners. The functional benefit from elevated short-axis stiffness in dancers is not clear but may be related to greater axial loading and adaptations of the tendon matrix.


Assuntos
Tendão do Calcâneo , Atletas , Dança , Técnicas de Imagem por Elasticidade , Humanos , Masculino , Feminino , Técnicas de Imagem por Elasticidade/métodos , Dança/fisiologia , Tendão do Calcâneo/diagnóstico por imagem , Tendão do Calcâneo/fisiologia , Adulto Jovem , Adulto
7.
Med Sci Sports Exerc ; 56(6): 1077-1084, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38240495

RESUMO

PURPOSE: Understanding muscle-tendon forces (e.g., triceps surae and Achilles tendon) during locomotion may aid in the assessment of human performance, injury risk, and rehabilitation progress. Shear wave tensiometry is a noninvasive technique for assessing in vivo tendon forces that has been recently adapted to a wearable technology. However, previous laboratory-based and outdoor tensiometry studies have not evaluated running. This study was undertaken to assess the capacity for shear wave tensiometry to produce valid measures of Achilles tendon loading during running at a range of speeds. METHODS: Participants walked (1.34 m·s -1 ) and ran (2.68, 3.35, and 4.47 m·s -1 ) on an instrumented treadmill while shear wave tensiometers recorded Achilles tendon wave speeds simultaneously with whole-body kinematic and ground reaction force data. A simple isometric task allowed for the participant-specific conversion of Achilles tendon wave speeds to forces. Achilles tendon forces were compared with ankle torque measures obtained independently via inverse dynamics analyses. Differences in Achilles tendon wave speed, Achilles tendon force, and ankle torque across walking and running speeds were analyzed with linear mixed-effects models. RESULTS: Achilles tendon wave speed, Achilles tendon force, and ankle torque exhibited similar temporal patterns across the stance phase of walking and running. Significant monotonic increases in peak Achilles tendon wave speed (56.0-83.8 m·s -1 ), Achilles tendon force (44.0-98.7 N·kg -1 ), and ankle torque (1.72-3.68 N·m·(kg -1 )) were observed with increasing locomotion speed (1.34-4.47 m·s -1 ). Tensiometry estimates of peak Achilles tendon force during running (8.2-10.1 body weights) were within the range of those estimated previously via indirect methods. CONCLUSIONS: These results set the stage for using tensiometry to evaluate Achilles tendon loading during unobstructed athletic movements, such as running, performed in the field.


Assuntos
Tendão do Calcâneo , Corrida , Dispositivos Eletrônicos Vestíveis , Humanos , Tendão do Calcâneo/fisiologia , Corrida/fisiologia , Fenômenos Biomecânicos , Masculino , Adulto Jovem , Adulto , Feminino , Torque , Caminhada/fisiologia , Músculo Esquelético/fisiologia
8.
Ann Biomed Eng ; 52(3): 657-670, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38079083

RESUMO

Interest in studying neonatal development and the improved healing response observed in neonates is increasing, with the goal of using this work to create better therapeutics for tendon injury. Decorin and biglycan are two small leucine-rich proteoglycans that play important roles in collagen fibrillogenesis to develop, maintain, and repair tendon structure. However, little is known about the roles of decorin and biglycan in early neonatal development and healing. The goal of this study was to determine the effects of decorin and biglycan knockdown on Achilles tendon structure and mechanics during neonatal development and recovery of these properties after injury of the neonatal tendon. We hypothesized that knockdown of decorin and biglycan would disrupt the neonatal tendon developmental process and produce tendons with impaired mechanical and structural properties. We found that knockdown of decorin and biglycan in an inducible, compound decorin/biglycan knockdown model, both during development and after injury, in neonatal mice produced tendons with reduced mechanical properties. Additionally, the collagen fibril microstructure resembled an immature tendon with a large population of small diameter fibrils and an absence of larger diameter fibrils. Overall, this study demonstrates the importance of decorin and biglycan in facilitating tendon growth and maturation during neonatal development.


Assuntos
Tendão do Calcâneo , Animais , Camundongos , Tendão do Calcâneo/fisiologia , Biglicano/genética , Colágeno/química , Decorina/genética , Proteínas da Matriz Extracelular
9.
Clin Biomech (Bristol, Avon) ; 111: 106158, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38061205

RESUMO

BACKGROUND: The interplay between the medial gastrocnemius muscle and the Achilles tendon is crucial for efficient walking. In cerebral palsy, muscle and tendon remodelling alters the role of contractile and elastic components. The aim was to investigate the length changes of medial gastrocnemius belly and fascicles, and Achilles tendon to understand their interplay to gait propulsion in individuals with cerebral palsy. METHODS: Twelve young individuals with cerebral palsy and 12 typically developed peers were assessed during multiple gait cycles using 3D gait analysis combined with a portable ultrasound device. By mapping ultrasound image locations into the shank reference frame, the medial gastrocnemius belly, fascicle, and Achilles tendon lengths were estimated throughout the gait cycle. Participants with cerebral palsy were classified into equinus and non-equinus groups based on their sagittal ankle kinematics. FINDINGS: In typically developed participants, the Achilles tendon undertook most of the muscle-tendon unit lengthening during stance, whereas in individuals with cerebral palsy, this lengthening was shared between the medial gastrocnemius belly and Achilles tendon, which was more evident in the equinus group. The lengthening behaviour of the medial gastrocnemius fascicles resembled that of the Achilles tendon in cerebral palsy. INTERPRETATION: The findings revealed similar length changes of the medial gastrocnemius fascicles and Achilles tendon, highlighting the enhanced role of the muscle in absorbing energy during stance in cerebral palsy. These results, together with the current knowledge of increased intramuscular stiffness, suggest the exploitation of intramuscular passive forces for such energy absorption.


Assuntos
Tendão do Calcâneo , Paralisia Cerebral , Humanos , Tendão do Calcâneo/diagnóstico por imagem , Tendão do Calcâneo/fisiologia , Fenômenos Biomecânicos , Paralisia Cerebral/complicações , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/fisiologia , Marcha/fisiologia , Ultrassonografia/métodos
10.
J ISAKOS ; 9(2): 184-191, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37967617

RESUMO

IMPORTANCE: Men have a higher risk of Achilles tendon (AT) injury, and the impact of morphological and mechanical sex differences may play a role. AIM: The aim of this study is to systematically review the literature to determine whether there are sex-specific differences in AT morphological and mechanical properties and analyze how these differences may impact AT injury in both men and women. EVIDENCE REVIEW: A systematic literature search of articles published between 2001 and 2021, in the MEDLINE, EMBASE, and Cochrane databases was performed during May 2022 according to PRISMA. The primary outcome measures included sex-related differences in the mechanical and morphological properties of the Achilles tendon. Secondary outcomes included impact of sex on Achilles tendon properties and adaptation. FINDINGS: Nineteen studies with a total of 1,143 participants (613 men and 530 women) were included in this systematic review. Men had increased measurements when compared with women in the following: AT length, thickness, cross-sectional area (CSA), stiffness, peak force, loading rate, and voluntary muscle contraction. Women had an increase in CSA deformation, strain, and compliance. CONCLUSIONS AND RELEVANCE: Our study demonstrates that men have an increased AT length, thickness, and CSA, indicating that men may be subjected biomechanically to higher loads in their day-to-day activities. In addition, men have lower deformation and compliance properties, along with increased AT stiffness, reducing their capacity to adapt during loading, potentially increasing their risk of injury. LEVEL OF EVIDENCE: IV.


Assuntos
Tendão do Calcâneo , Traumatismos dos Tendões , Humanos , Masculino , Feminino , Tendão do Calcâneo/anatomia & histologia , Tendão do Calcâneo/fisiologia , Caracteres Sexuais , Traumatismos dos Tendões/epidemiologia
11.
Eur J Appl Physiol ; 124(2): 633-647, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37950761

RESUMO

PURPOSE: The aim of this study was to investigate internal Achilles tendon (AT) displacement, AT shear wave velocity (SWV), and triceps surae (TS) muscle shear modulus in athletes. METHODS: Internal AT displacement was assessed using ultrasound during isometric contraction. Shear wave elastography was used to assess AT SWV (m × s-1) at rest and TS muscle shear modulus (kPa) during passive ankle dorsiflexion. RESULTS: A total of 131 athletes participated in this study. Athletes who had not exercised within two days had greater AT non-uniformity and mean anterior tendon displacement, and lower SWV at the proximal AT measurement site (mean difference [95% CI]: 1.8 mm [0.6-2.9], p = 0.003; 1.6 mm [0.2-2.9], p = 0.021; - 0.9 m × s-1 [- 1.6 to - 0.2], p = 0.014, respectively). Male basketball players had a lower mean AT displacement compared to gymnasts (- 3.7 mm [- 6.9 to - 0.5], p = 0.042), with the difference localised in the anterior half of the tendon (- 5.1 mm [- 9.0 to - 1.1], p = 0.022). Male gymnasts had a smaller absolute difference in medial gastrocnemius-minus-soleus shear modulus than basketball players (59.6 kPa [29.0-90.2], p < 0.001) and track and field athletes (52.7 kPa [19.2-86.3], p = 0.004). Intraclass correlation coefficients of measurements ranged from 0.720 to 0.937 for internal AT displacement, from 0.696 to 0.936 for AT SWE, and from 0.570 to 0.890 for TS muscles. CONCLUSION: This study provides a reliability assessment of muscle and tendon SWV. The relative differences in passive TS muscle shear modulus suggest sport-specific adaptation. Importantly, in healthy individuals, lower AT displacement after exercise may reflect the time required for tendon recovery.


Assuntos
Tendão do Calcâneo , Técnicas de Imagem por Elasticidade , Humanos , Masculino , Tendão do Calcâneo/diagnóstico por imagem , Tendão do Calcâneo/fisiologia , Reprodutibilidade dos Testes , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/fisiologia , Perna (Membro) , Atletas
12.
J Sports Sci ; 41(13): 1317-1325, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37847798

RESUMO

The present study aimed to investigate the effects of tendon elastic energy and electromyographic activity patterns (ratio of pre-landing to concentric: mEMG PLA/CON; ratio of eccentric to concentric; mEMG ECC/CON) on jump performance. Twenty-nine males performed five kinds of unilateral jumps using only ankle joint (no-countermovement jump: noCMJ; countermovement jump: CMJ; drop jumps at 10, 20 and 30 cm drop height: DJ10, DJ20 and DJ30). Jumping height, pre-stretch augmentation and electromyographic activity of the plantar flexor muscles were measured. The elastic energy of the Achilles tendon was measured during isometric contractions. Relative tendon elastic energy (to body mass) was highly correlated with jumping heights of CMJ, DJ10 and DJ20 but not with noCMJ and DJ30, whereas that was significantly correlated with pre-stretch augmentation in CMJ, but not with three DJs. The mEMG PLA/CON was significantly correlated with the pre-stretch augmentation of DJ20 and DJ30, but not with DJ10, whereas the mEMG ECC/CON was significantly correlated with the pre-stretch augmentation of DJ20 and DJ30, but not with CMJ and DJ10. These results suggested that jumping exercises with low pre-stretch intensity benefited from tendon elastic energy, but those with high pre-stretch intensity benefited from electromyographic activity patterns.


Assuntos
Tendão do Calcâneo , Músculo Esquelético , Humanos , Masculino , Músculo Esquelético/fisiologia , Exercício Físico/fisiologia , Tendão do Calcâneo/fisiologia , Contração Isométrica/fisiologia , Poliésteres
13.
J Tissue Viability ; 32(4): 572-576, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37722941

RESUMO

OBJECTIVE: the aim of this study is to observe whether there are ultrasound changes between men and women in the Achilles tendon at rest, at maximum passive force is applied and during walking. MATERIAL AND METHODS: it was a cross-sectional study involving 27 healthy young participants recruited as volunteers between April to July 2022. A variety of data was recorded: (age, Body Mass Index, sex, smoking, current injury status, allergies, medications, previous surgeries, type of sport, and number of weekly workouts) and ultrasound measurements at rest and at passive force (Cross Sectional Area Achilles Tendon length, tendon thickness, Cross Sectional Area and pennation angle of the soleus muscle to the Achilles Tendon). RESULTS: women demonstrated a statistically significant lower proximal and median thickness both at rest (4.5 vs 5.1 mm with p < 0.001 for proximal thickness; 4.4 vs 5.3 mm with p < 0.001 for median thickness) as well as during maximum eccentric contraction (4.3 vs 4.8 mm with p=<0.001 for proximal thickness; 4.1 vs 4.8 mm with p < 0.001 for median thickness). CONCLUSION: there are significant sonoanatomical differences in vivo Achilles tendon between men and women.


Assuntos
Tendão do Calcâneo , Masculino , Humanos , Feminino , Estudos Transversais , Tendão do Calcâneo/diagnóstico por imagem , Tendão do Calcâneo/fisiologia , Ultrassonografia , Índice de Massa Corporal , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/fisiologia
14.
Percept Mot Skills ; 130(6): 2327-2342, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37654231

RESUMO

Mechanical vibration of the Achilles tendon is widely used to analyze the role of proprioception in postural control. The response to this tendon vibration (TV) has been analyzed in the upright posture, but the feet positions have varied in past research. Moreover, investigators have addressed only temporal parameters of the center of pressure (CoP). We investigated the effect of TV on both temporal and spectral characteristics of the CoP motion. Eighteen healthy young adults, stood barefoot, with one foot on each side of a dual platform, wearing glasses with opaque lenses. We applied 20 seconds of Achilles TV (bilaterally with inertial vibrators at a frequency of 80 Hz and an amplitude of .2-.5 mm). We analyzed CoP signals pre-vibration (PRE,4-seconds), during vibration (VIB,20 seconds), and after vibration cessation (REC,20 seconds). We repeated this protocol in natural and standardized positions (15° feet angular opening). For determining CoP amplitude and velocity, we divided the 20 seconds into five phases of four seconds each and calculated spectral parameters for the whole 20-second signals. There was an adaptation process in the speed of the CoP mediolateral (p < .01) and anteroposterior (p < .01) and in the displacement of the CoP anteroposterior (p < .01), with higher values in the VIB condition. Velocity and displacement decreased progressively in the REC condition. Median and peak frequencies were higher in the VIB condition when compared to the REC condition, but only in the mediolateral direction (p = .01). The standardized foot position led to increased speed in CoP mediolateral, anteroposterior, and mediolateral displacement (p < .01). CoP spectral characteristics were not affected by foot positioning. We concluded that adaptation of CoP motion in the presence of TV and after its cessation are observable both in time and frequency domains. Feet positioning influenced CoP motion in the presence of TV and after its cessation but it did not affect its spectral characteristics.


Assuntos
Tendão do Calcâneo , Adulto Jovem , Humanos , Tendão do Calcâneo/fisiologia , Vibração , Propriocepção/fisiologia , Equilíbrio Postural/fisiologia , Posição Ortostática
15.
J Physiol ; 601(17): 3869-3884, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37493407

RESUMO

The molecular events that drive post-natal tendon development are poorly characterized. In this study, we profiled morphological, mechanical, and transcriptional changes in the rat Achilles and patellar tendon before walking (P7), shortly after onset of walking (P14), and at motor maturity (P28). The Achilles and patellar tendons increased collagen content and mechanical strength similarly throughout post-natal development. However, at P28 the patellar tendon tended to display a higher maximal tensile load (MTL) (P = 0.0524) than the Achilles tendon, but a similar ultimate tensile strength (UTS; load relative to cross-sectional area) probably due to its increased cross-sectional area during development. The tendons started transcriptionally similar, with overlapping PCA clusters at P7 and P14, before becoming transcriptionally distinct at P28. In both tendons, there was an increase in extracellular matrix (ECM) gene expression and a concomitant decrease in cell cycle and mitochondrial gene expression. The transcriptional divergence at P28 suggested that STAT signalling was lower in the patellar tendon where MTL increased the most. Treating engineered human ligaments with the STAT inhibitor itacitinib increased collagen content and MTL. Our results suggest that during post-natal development, cellular resources are initially allocated towards cell proliferation before shifting towards extracellular matrix development following the onset of mechanical load and provide potential targets for improving tendon function. KEY POINTS: Little is known about mechanisms of post-natal tendon growth. We characterized morphological, mechanical, and transcriptional changes that occur before (P7), and early (P14) and late after (P28) rats begin to walk. From P7 to P28, the Achilles tendon increased in length, whereas the patellar tendon increased in cross-sectional area. Mechanical and material properties of the Achilles and patellar tendon increased from P7 to P28. From P7 to P28, the Achilles and patellar tendons increased expression of ECM genes and decreased mitochondrial and cell cycle gene expression. Ribosomal gene expression also significantly decreased in the Achilles and tended to decrease in the patellar tendon. At P28, STAT1 signalling tended to be lower in the patellar tendon which had grown by increasing cross-sectional area and inhibiting STAT activation in vitro improved mechanical properties in engineered human ligaments.


Assuntos
Tendão do Calcâneo , Ligamento Patelar , Tendinopatia , Ratos , Humanos , Animais , Tendão do Calcâneo/fisiologia , Ligamento Patelar/metabolismo , Colágeno/metabolismo , Matriz Extracelular/metabolismo
16.
Acta Biomater ; 168: 264-276, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37479155

RESUMO

Tendons are collagen-based connective tissues where the composition, structure and mechanics respond and adapt to the local mechanical environment. Adaptation to prolonged inactivity can result in stiffer tendons that are more prone to injury. However, the complex relation between reduced loading, structure, and mechanical performance is still not fully understood. This study combines mechanical testing with high-resolution synchrotron X-ray imaging, scattering techniques and histology to elucidate how reduced loading affects the structural properties and mechanical response of rat Achilles tendons on multiple length scales. The results show that reduced in vivo loading leads to more crimped and less organized fibers and this structural inhomogeneity could be the reason for the altered mechanical response. Unloading also seems to change the fibril response, possibly by altering the strain partitioning between hierarchical levels, and to reduce cell density. This study elucidates the relation between in vivo loading, the Achilles tendon nano-, meso­structure and mechanical response. The results provide fundamental insights into the mechanoregulatory mechanisms guiding the intricate biomechanics, tissue structural organization, and performance of complex collagen-based tissues. STATEMENT OF SIGNIFICANCE: Achilles tendon properties allow a dynamic interaction between muscles and tendon and influence force transmission during locomotion. Lack of physiological loading can have dramatic effects on tendon structure and mechanical properties. We have combined the use of cutting-edge high-resolution synchrotron techniques with mechanical testing to show how reduced loading affects the tendon on multiple hierarchical levels (from nanoscale up to whole organ) clarifying the relation between structural changes and mechanical performance. Our findings set the first step to address a significant healthcare challenge, such as the design of tailored rehabilitations that take into consideration structural changes after tendon immobilization.


Assuntos
Tendão do Calcâneo , Traumatismos dos Tendões , Ratos , Animais , Tendão do Calcâneo/fisiologia , Tecido Conjuntivo/patologia , Traumatismos dos Tendões/patologia , Colágeno , Fibras Musculares Esqueléticas , Fenômenos Biomecânicos
17.
J Sports Sci ; 41(5): 495-501, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37314093

RESUMO

Running has a high incidence of overuse injuries. Achilles tendon (AT) injuries may occur due to high forces and repetitive loading during running. Foot strike pattern and cadence have been linked to the magnitude of AT loading. The effect of running speed on AT stress and strain, muscle forces, gait parameters and running kinematics is not well addressed in recreational runners with lower pace of running. Twenty-two female participants ran on an instrumented treadmill between 2.0 and 5.0 m/s. Kinetic and kinematic data were obtained. AT cross-sectional area data were collected using ultrasound imaging. Inverse dynamics with static optimization was used to calculate muscle forces and AT loading. AT stress, strain and cadence increased with greater running speed. Foot inclination angle indicated a rearfoot strike pattern among all participants, which increased as running speed increased but the latter plateaued after 4.0 m/s. The soleus contributed more force in running compared to the gastrocnemius throughout all speeds. Highest running speeds had the most stress on the AT, with changes to foot inclination angle and cadence. Understanding the relation of AT loading variables with running speed may aid in understanding how applied load may influence injury.


Assuntos
Tendão do Calcâneo , Traumatismos do Tornozelo , Corrida , Humanos , Feminino , Tendão do Calcâneo/diagnóstico por imagem , Tendão do Calcâneo/fisiologia , Pé/fisiologia , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/fisiologia , Corrida/fisiologia , Fenômenos Biomecânicos , Marcha/fisiologia
18.
PLoS One ; 18(6): e0286847, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37327246

RESUMO

The importance of the muscle-tendon complex in sport and for activities of everyday living is well recognised. The free oscillation technique is frequently used to determine the musculo-articular "apparent" stiffness (obtained from vertical ground reaction force) and other parameters. However, an in-depth understanding of the muscle-tendon complex can be gained by separating the muscle (soleus) and the tendon (Achilles tendon) components and studying the "true" stiffness for each of these components (by considering the ankle joint moment arms), which can be valuable in improving our understanding of training, injury prevention, and recovery programs. Hence, this study aimed to investigate if muscle and tendon stiffness (i.e., "true" stiffness) are similarly affected by different impulse magnitudes when using the free-oscillation technique. Three impulse magnitudes (impulse 1, 2 and 3), corresponding to peak forces of 100, 150 and 200 N, were used to estimate the stiffness of the ankle joint in 27 males, using multiple loads (10, 15, 20, 25, 30, 35, and 40 kg). A significant decrease (p < 0.0005) was found in musculo-articular "apparent" stiffness (29224 ± 5087 N.m-1; 27839 ± 4914 N.m-1; 26835 ± 4880 N.m-1) between impulses 1, 2 and 3 respectively, when loads were collapsed across groups. However, significant differences (p < 0.001) were only found between the median (Mdn) of impulse 1 (Mdn = 564.31 (kN/m)/kN) and 2 (Mdn = 468.88 (kN/m)/kN) and between impulse 1 (Mdn = 564.31 (kN/m)/kN) and 3 (Mdn = 422.19 (kN/m)/kN), for "true" muscle stiffness, but not for "true" tendon stiffness (Mdn = 197.35 kN/m; Mdn = 210.26 kN/m; Mdn = 201.60 kN/m). The results suggest that the musculo-articular "apparent" stiffness around the ankle joint is influenced by the magnitude of the impulse applied. Interestingly, this is driven by muscle stiffness, whereas tendon stiffness appears to be unaffected.


Assuntos
Tendão do Calcâneo , Esportes , Masculino , Humanos , Articulação do Tornozelo/fisiologia , Tornozelo , Músculo Esquelético/fisiologia , Tendão do Calcâneo/fisiologia , Amplitude de Movimento Articular/fisiologia
19.
J Physiol Anthropol ; 42(1): 9, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37264461

RESUMO

BACKGROUND: In endurance running, elite Kenyan runners are characterized by longer thigh, shank, and Achilles tendon (AT) lengths combined with shorter fascicles and larger medial gastrocnemius (MG) pennation angles than elite Japanese runners. These muscle-tendon characteristics may contribute to the running performance of Kenyans. Furthermore, these specific lower-leg musculoskeletal architectures have been confirmed not only in elite Kenyan runners but also in non-athletic Kenyans since early childhood. However, it remains questionable whether the differences in muscle-tendon architecture between Kenyans and Japanese differ from those of European Caucasians. Therefore, this study aimed to compare anthropometry and muscle-tendon architecture of young non-athletic Kenyan males with their Japanese and French counterparts. METHODS: A total of 235 young non-athletic males, aged 17-22 years, volunteered. The anthropometric measures, thigh, and shank lengths, as well as AT and MG muscle architecture, were measured using ultrasonography and a tape measure. Inter-group differences in anthropometry and muscle-tendon architecture were tested using one-way ANOVA and ANCOVA analyses controlling for shank length and muscle thickness. RESULTS: The anthropometric and muscle-tendon characteristics of the non-athletic French were closer to those of the Kenyans than to those of the Japanese. However, the ultrasonography analysis confirmed that the non-athletic Kenyans had the longest AT as well as the shortest MG fascicles and the largest pennation angle compared to the French and Japanese, even after controlling for shank length and muscle thickness with ANCOVA, respectively. CONCLUSIONS: These results confirmed the specificity of the muscle-tendon architecture of the triceps surae in Kenyans in comparison to their Japanese and French counterparts in non-athletic adults. This study provides additional support to the fact that Kenyans may have musculotendinous advantages in endurance running.


Assuntos
Tendão do Calcâneo , Músculo Esquelético , Corrida , Humanos , Masculino , Tendão do Calcâneo/anatomia & histologia , Tendão do Calcâneo/fisiologia , População do Leste Asiático , Quênia , Perna (Membro)/fisiologia , Músculo Esquelético/anatomia & histologia , Músculo Esquelético/fisiologia , Ultrassonografia , Adolescente , Adulto Jovem , População da África Oriental , Corrida/fisiologia , Resistência Física
20.
J Biomech ; 156: 111664, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37302164

RESUMO

Tendinopathy is thought to be caused by repeated overload of the tendon with insufficient recovery time, leading to an inadequate healing response and incomplete recovery of preinjury material strength and function. The etiology of tendinopathy induced by mechanical load is being explored with a variety of mechanical load scenarios in small animals. This study establishes a testing system that applies passive ankle dorsiflexion to a rat hindlimb, estimates the force applied to the tendon during cyclic loading and enables the assessment of subsequent structural and biological changes. We demonstrated that the system had no drift in the applied angle, and the registered maximum angle and torque inputs and outputs were consistent between tests. We showed that cyclic loading decreased hysteresis and loading and unloading moduli with increasing cycles applied to the tendon. Histology showed gross changes to tendon structure. This work establishes a system for passively loading the rat Achilles tendon in-vivo in a physiological manner, facilitating future studies that will explore how mechanics, structure, and biology are altered by mechanical repetitive loading.


Assuntos
Tendão do Calcâneo , Tendinopatia , Ratos , Animais , Tendão do Calcâneo/fisiologia , Tornozelo , Articulação do Tornozelo/fisiologia , Fenômenos Mecânicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...