Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Mol Ecol ; 32(22): 6059-6069, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37837269

RESUMO

Host-associated microbiota can be affected by factors related to environmental change, such as urbanization and invasive species. For example, urban areas often affect food availability for animals, which can change their gut microbiota. Invasive parasites can also influence microbiota through competition or indirectly through a change in the host immune response. These interacting factors can have complex effects on host fitness, but few studies have disentangled the relationship between urbanization and parasitism on an organism's gut microbiota. To address this gap in knowledge, we investigated the effects of urbanization and parasitism by the invasive avian vampire fly (Philornis downsi) on the gut microbiota of nestling small ground finches (Geospiza fuliginosa) on San Cristóbal Island, Galápagos. We conducted a factorial study in which we experimentally manipulated parasite presence in an urban and nonurban area. Faeces were then collected from nestlings to characterize the gut microbiota (i.e. bacterial diversity and community composition). Although we did not find an interactive effect of urbanization and parasitism on the microbiota, we did find main effects of each variable. We found that urban nestlings had lower bacterial diversity and different relative abundances of taxa compared to nonurban nestlings, which could be mediated by introduction of the microbiota of the food items or changes in host physiology. Additionally, parasitized nestlings had lower bacterial richness than nonparasitized nestlings, which could be mediated by a change in the immune system. Overall, this study advances our understanding of the complex effects of anthropogenic stressors on the gut microbiota of birds.


Assuntos
Tentilhões , Microbioma Gastrointestinal , Muscidae , Passeriformes , Animais , Urbanização , Tentilhões/microbiologia , Bactérias
2.
PLoS Pathog ; 19(6): e1011408, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37294834

RESUMO

Animal hosts can adapt to emerging infectious disease through both disease resistance, which decreases pathogen numbers, and disease tolerance, which limits damage during infection without limiting pathogen replication. Both resistance and tolerance mechanisms can drive pathogen transmission dynamics. However, it is not well understood how quickly host tolerance evolves in response to novel pathogens or what physiological mechanisms underlie this defense. Using natural populations of house finches (Haemorhous mexicanus) across the temporal invasion gradient of a recently emerged bacterial pathogen (Mycoplasma gallisepticum), we find rapid evolution of tolerance (<25 years). In particular, populations with a longer history of MG endemism have less pathology but similar pathogen loads compared with populations with a shorter history of MG endemism. Further, gene expression data reveal that more-targeted immune responses early in infection are associated with tolerance. These results suggest an important role for tolerance in host adaptation to emerging infectious diseases, a phenomenon with broad implications for pathogen spread and evolution.


Assuntos
Doenças das Aves , Doenças Transmissíveis Emergentes , Tentilhões , Mycoplasma gallisepticum , Animais , Tentilhões/microbiologia , Tolerância Imunológica , Mycoplasma gallisepticum/genética
3.
ACS Synth Biol ; 11(3): 1060-1067, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35167277

RESUMO

Mycoplasma gallisepticum (Mgal) is a common pathogen of poultry worldwide that has recently spread to North American house finches after a single host shift in 1994. The molecular determinants of Mgal virulence and host specificity are still largely unknown, mostly due to the absence of efficient methods for functional genomics. After evaluating two exogenous recombination systems derived from phages found in the phylogenetically related Spiroplasma phoeniceum and the more distant Bacillus subtilis, the RecET-like system from B. subtilis was successfully used for gene inactivation and targeted replacement in Mgal. In a second step, the Cre-lox recombination system was used for the removal of the antibiotic resistance marker in recombinant mutants. This study therefore describes the first genetic tool for targeted genome engineering of Mgal and demonstrates the efficiency of heterologous recombination systems in minimal bacteria.


Assuntos
Doenças das Aves , Tentilhões , Infecções por Mycoplasma , Mycoplasma gallisepticum , Animais , Doenças das Aves/microbiologia , Tentilhões/microbiologia , Infecções por Mycoplasma/microbiologia , Mycoplasma gallisepticum/genética , Recombinação Genética/genética
4.
Sci Rep ; 11(1): 8209, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33859241

RESUMO

Quantifying variation in the ability to fight infection among free-living hosts is challenging and often constrained to one or a few measures of immune activity. While such measures are typically taken to reflect host resistance, they can also be shaped by pathogen effects, for example, if more virulent strains trigger more robust immune responses. Here, we test the extent to which pathogen-specific antibody levels, a commonly used measure of immunocompetence, reflect variation in host resistance versus pathogen virulence, and whether these antibodies effectively clear infection. House finches (Haemorhous mexicanus) from resistant and susceptible populations were inoculated with > 50 isolates of their novel Mycoplasma gallisepticum pathogen collected over a 20-year period during which virulence increased. Serum antibody levels were higher in finches from resistant populations and increased with year of pathogen sampling. Higher antibody levels, however, did not subsequently give rise to greater reductions in pathogen load. Our results show that antibody responses can be shaped by levels of host resistance and pathogen virulence, and do not necessarily signal immune clearance ability. While the generality of this novel finding remains unclear, particularly outside of mycoplasmas, it cautions against using antibody levels as implicit proxies for immunocompetence and/or host resistance.


Assuntos
Formação de Anticorpos/fisiologia , Infecções Bacterianas/imunologia , Tentilhões , Virulência/fisiologia , Animais , Infecções Bacterianas/patologia , Comportamento Animal/fisiologia , Doenças das Aves/imunologia , Doenças das Aves/microbiologia , Progressão da Doença , Resistência à Doença/imunologia , Feminino , Tentilhões/imunologia , Tentilhões/microbiologia , Interações Hospedeiro-Patógeno/imunologia , Masculino , Infecções por Mycoplasma/imunologia , Infecções por Mycoplasma/microbiologia , Mycoplasma gallisepticum/imunologia , Mycoplasma gallisepticum/patogenicidade
5.
Artigo em Inglês | MEDLINE | ID: mdl-33480837

RESUMO

Four novel strains isolated from the cloacal contents of snow finches (Montifringilla taczanowskii) were characterized as aerobic, Gram-stain-negative, slightly motile, and rod-shaped. Analysis of the 16S rRNA gene sequence revealed that strain CF-458T had the highest similarities of 96.9 and 96.4 % with Limnobaculum parvum HYN0051T and Pragia fontium DSM 5563T, while strain CF-1111T shared the highest similarities of 96.4 and 96.1 % with Pantoea rodasii LMG 26273T and Pectobacterium punjabense SS95T. Phylogenomic analysis showed the four isolates were separated into group Ⅰ (CF-458T and CF-917) and group Ⅱ (CF-1111T and CF-509), and clustered independently in the vicinity of the genera Limnobaculum and Pragia. Summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c, 23.9 and 17.2 %, respectively), C16 : 0 (21.8 and 22.1 %, respectively) and C14 : 0 (10.6 and 17.7 %, respectively) were the common major fatty acids, and summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c, 12.3 %) was also a major fatty acid for strain CF-458T while cyclo-C17 : 0 (13.1%) was for strain CF-1111T. Both had Q-8 as the sole quinone and contained phosphatidylethanolamine, phosphatidylglycerol, and diphosphatidylglycerol as the major polar lipids. The DNA G+C content of strains CF-458T and CF-1111T was 45.7 and 45.4 mol%, respectively. Based on taxonomic position in the phylogenomic tree and phenotypic properties, two novel species of a new genus within the family Budviciaceae are thus proposed, with the name Jinshanibacter gen. nov., zhutongyuii sp. nov. (type strain CF-458T=CGMCC 1.16483T=GDMCC 1.1586T=JCM 33489T) and Jinshanibacter xujianqingii sp. nov. (type strain CF-1111T=CGMCC 1.16786T=GDMCC 1.1587T=JCM 33490T), respectively.


Assuntos
Cloaca/microbiologia , Tentilhões/microbiologia , Gammaproteobacteria/classificação , Filogenia , Animais , Técnicas de Tipagem Bacteriana , Composição de Bases , China , DNA Bacteriano/genética , Ácidos Graxos/química , Gammaproteobacteria/isolamento & purificação , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Ubiquinona/química
6.
Vet Microbiol ; 251: 108891, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33120088

RESUMO

Mycoplasma gallisepticum, a significant poultry pathogen, has evolved rapidly in its new passerine host since its first reported isolation from house finches in the US in 1994. In poultry, M. gallisepticum infects the upper respiratory tract, causing tracheal mucosal thickening and inflammation, in addition to inflammation of the reproductive tract. However, in house finches M. gallisepticum primarily causes inflammation of the conjunctiva. Given that different tissues are primarily affected by the same pathogen in different hosts, we have compared the early changes in gene expression of the phase-variable lipoproteins (vlhA) gene family of M. gallisepticum collected directly from target tissues in both hosts. Previous data have demonstrated that vlhA genes may be related to virulence, exhibiting changes in expression in a non-stochastic, temporal progression and we hypothesize that this may be influenced by differences in the target host tissue. If this is true, we would expect M. gallisepticum to display a different vlhA gene expression pattern in the chicken trachea compared to its expression pattern in house finch conjunctiva. Here we report significant differences in vlhA gene expression patterns between M. gallisepticum collected from chicken tracheas compared to those collected from house finch conjunctiva. While many of the predominant vlhA genes expressed in the input population showed an increase in expression in the chicken trachea at day one postinfection, those same vlhA genes decreased in expression in the house finch. These data suggest that discrete suites of vlhA genes may be involved in M. gallisepticum pathogenesis and tropism for unique tissues in two disparate avian hosts.


Assuntos
Proteínas de Bactérias/genética , Expressão Gênica , Interações entre Hospedeiro e Microrganismos/genética , Infecções por Mycoplasma/veterinária , Mycoplasma gallisepticum/genética , Doenças das Aves Domésticas/microbiologia , Animais , Galinhas/microbiologia , Túnica Conjuntiva/microbiologia , Feminino , Tentilhões/microbiologia , Doenças das Aves Domésticas/patologia , Análise de Sequência de RNA , Organismos Livres de Patógenos Específicos , Traqueia/microbiologia , Virulência
7.
Microbiome ; 8(1): 129, 2020 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-32917256

RESUMO

BACKGROUND: Knowledge is growing on how gut microbiota are established, but the effects of maternal symbiotic microbes throughout early microbial successions in birds remain elusive. In this study, we examined the contributions and transmission modes of maternal microbes into the neonatal microbiota of a passerine, the zebra finch (Taeniopygia guttata), based on fostering experiments. RESULTS: Using 16S rRNA amplicon sequencing, we found that zebra finch chicks raised by their biological or foster parents (the society finch Lonchura striata domestica) had gut microbial communities converging with those of the parents that reared them. Moreover, source-tracking models revealed high contribution of zebra finches' oral cavity/crop microbiota to their chicks' early gut microbiota, which were largely replaced by the parental gut microbiota at later stages. The results suggest that oral feeding only affects the early stage of hatchling gut microbial development. CONCLUSIONS: Our study indicates that passerine chicks mainly acquire symbionts through indirect maternal transmission-passive environmental uptake from nests that were smeared with the intestinal and cloacal microbes of parents that raised them. Gut microbial diversity was low in hand-reared chicks, emphasizing the importance of parental care in shaping the gut microbiota. In addition, several probiotics were found in chicks fostered by society finches, which are excellent foster parents for other finches in bird farms and hosts of brood parasitism by zebra finches in aviaries; this finding implies that avian species that can transfer probiotics to chicks may become selectively preferred hosts of brood parasitism in nature. Video Abstract.


Assuntos
Envelhecimento , Animais Recém-Nascidos/microbiologia , Tentilhões/microbiologia , Microbioma Gastrointestinal , Comportamento de Nidação , Animais , Feminino , Microbioma Gastrointestinal/genética , Masculino , RNA Ribossômico 16S/genética
8.
Microbiol Res ; 241: 126597, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32979783

RESUMO

The gastrointestinal tract (GIT) hosts a large number of diverse microorganisms, with mutualistic interactions with the host. Here, in two separate experiments, we investigated whether light at night (LAN) would affect GIT microbiota and, in turn, the host physiology in diurnal zebra finches (Taeniopygia guttata). Experiment I assessed the effects of no-night (LL) and dimly illuminated night (dim light at night, dLAN) on fecal microbiota diversity and host physiology of birds born and raised under 12 h photoperiod (LD; 12 h light: 12 h darkness). Under LL and dLAN, compared to LD, we found a significant increase in the body mass, subcutaneous fat deposition and hepatic accumulation of lipids. Although we found no difference in total 24 h food consumption, LL/ dLAN birds ate also at night, suggesting LAN-induced alteration in daily feeding times. Concurrently, there were marked differences in amplicon sequence and bacterial species richness between LD and LAN, with notable decline in Lactobacillus richness in birds under LL and dLAN. We attributed declined Lactobacillus population as causal (at least partially) to negative effects on the host metabolism. Therefore, in experiment II with similar protocol, birds under LL and dLAN were fed on diet with or without Lactobacillus rhamnosus GG (LGG) supplement. Clearly, LGG supplement ameliorated LL- and dLAN-induced negative effects in zebra finches. These results demonstrate adverse effects of unnatural lighting on GIT bacterial diversity and host physiology, and suggest the role of GIT microbiota in the maintenance of metabolic homeostasis in response to LAN environment in diurnal animals.


Assuntos
Ritmo Circadiano/fisiologia , Tentilhões/microbiologia , Microbioma Gastrointestinal/fisiologia , Lacticaseibacillus rhamnosus/crescimento & desenvolvimento , Animais , Biodiversidade , Luz , Fotoperíodo , Simbiose/fisiologia
9.
Parasitol Res ; 119(10): 3535-3539, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32681193

RESUMO

Parasites co-infecting hosts can interact directly and indirectly to affect parasite growth and disease manifestation. We examined potential interactions between two common parasites of house finches: the bacterium Mycoplasma gallisepticum that causes conjunctivitis and the intestinal coccidian parasite Isospora sp. We quantified coccidia burdens prior to and following experimental infection with M. gallisepticum, exploiting the birds' range of natural coccidia burdens. Birds with greater baseline coccidia burdens developed higher M. gallisepticum loads and longer lasting conjunctivitis following inoculation. However, experimental inoculation with M. gallisepticum did not appear to alter coccidia shedding. Our study suggests that differences in immunocompetence or condition may predispose some finches to more severe infections with both pathogens.


Assuntos
Doenças das Aves/patologia , Tentilhões , Isospora/fisiologia , Infecções por Mycoplasma/veterinária , Mycoplasma gallisepticum/fisiologia , Carga Parasitária/veterinária , Animais , Doenças das Aves/microbiologia , Doenças das Aves/parasitologia , Coinfecção/microbiologia , Coinfecção/parasitologia , Coinfecção/patologia , Coinfecção/veterinária , Conjuntivite Bacteriana/microbiologia , Conjuntivite Bacteriana/parasitologia , Conjuntivite Bacteriana/patologia , Conjuntivite Bacteriana/veterinária , Suscetibilidade a Doenças/microbiologia , Suscetibilidade a Doenças/parasitologia , Suscetibilidade a Doenças/veterinária , Tentilhões/microbiologia , Tentilhões/parasitologia , Infecções por Mycoplasma/microbiologia , Infecções por Mycoplasma/parasitologia , Infecções por Mycoplasma/patologia
10.
Avian Pathol ; 49(4): 342-354, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32270701

RESUMO

Leukocyte differentials are a useful tool for assessing systemic immunological changes during pathogen infections, particularly for non-model species. To date, no study has explored how experimental infection with a common bacterial pathogen, Mycoplasma gallisepticum (MG), influences the course and strength of haematological changes in the natural songbird host, house finches. Here we experimentally inoculated house finches with MG isolates known to vary in virulence, and quantified the proportions of circulating leukocytes over the entirety of infection. First, we found significant temporal effects of MG infection on the proportions of most cell types, with strong increases in heterophil and monocyte proportions during infection. Marked decreases in lymphocyte proportions also occurred during infection, though these proportional changes may simply be driven by correlated increases in other leukocytes. Second, we found significant effects of isolate virulence, with the strongest changes in cell proportions occurring in birds inoculated with the higher virulence isolates, and almost no detectable changes relative to sham treatment groups in birds inoculated with the lowest virulence isolate. Finally, we found that variation in infection severity positively predicted the proportion of circulating heterophils and lymphocytes, but the strength of these correlations was dependent on isolate. Taken together, these results indicate strong haematological changes in house finches during MG infection, with markedly different responses to MG isolates of varying virulence. These results are consistent with the possibility that evolved virulence in house finch MG results in higher degrees of immune stimulation and associated immunopathology, with potential direct benefits for MG transmission. RESEARCH HIGHLIGHTS House finches show a marked pro-inflammatory response to M. gallisepticum infection. Virulent pathogen isolates produce stronger finch white blood cell responses. Among birds, stronger white blood cell responses are associated with higher infection severity.


Assuntos
Doenças das Aves/prevenção & controle , Tentilhões/microbiologia , Infecções por Mycoplasma/veterinária , Mycoplasma gallisepticum/patogenicidade , Animais , Doenças das Aves/microbiologia , Feminino , Leucócitos/imunologia , Masculino , Infecções por Mycoplasma/microbiologia , Infecções por Mycoplasma/prevenção & controle , Mycoplasma gallisepticum/imunologia , Virulência
11.
Sci Rep ; 10(1): 6779, 2020 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-32322086

RESUMO

Novel disease emergence is often associated with changes in pathogen traits that enable pathogen colonisation, persistence and transmission in the novel host environment. While understanding the mechanisms underlying disease emergence is likely to have critical implications for preventing infectious outbreaks, such knowledge is often based on studies of viral pathogens, despite the fact that bacterial pathogens may exhibit very different life histories. Here, we investigate the ability of epizootic outbreak strains of the bacterial pathogen, Mycoplasma gallisepticum, which jumped from poultry into North American house finches (Haemorhous mexicanus), to interact with model avian cells. We found that house finch epizootic outbreak strains of M. gallisepticum displayed a greater ability to adhere to, invade, persist within and exit from cultured chicken embryonic fibroblasts, than the reference virulent (R_low) and attenuated (R_high) poultry strains. Furthermore, unlike the poultry strains, the house finch epizootic outbreak strain HF_1994 displayed a striking lack of cytotoxicity, even exerting a cytoprotective effect on avian cells. Our results suggest that, at epizootic outbreak in house finches, M. gallisepticum was particularly adept at using the intra-cellular environment, which may have facilitated colonisation, dissemination and immune evasion within the novel finch host. Whether this high-invasion phenotype is similarly displayed in interactions with house finch cells, and whether it contributed to the success of the host shift, remains to be determined.


Assuntos
Tentilhões/imunologia , Especificidade de Hospedeiro/imunologia , Mycoplasma gallisepticum/imunologia , Aves Domésticas/imunologia , Animais , Linhagem Celular , Tentilhões/microbiologia , Interações entre Hospedeiro e Microrganismos/imunologia , Infecções por Mycoplasma/imunologia , Infecções por Mycoplasma/microbiologia , Mycoplasma gallisepticum/fisiologia , Aves Domésticas/microbiologia
12.
Int J Syst Evol Microbiol ; 70(4): 2493-2498, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32195646

RESUMO

A Gram-stain-positive, coccus-shaped, non-motile bacterium, designated CF-49T, was isolated from the cloacal content of a snow finch, which was incidentally captured in a plateau pika burrow on the Qinghai-Tibet Plateau, PR China. Analysis of the 16S rRNA gene sequence showed that strain CF-49T was closely related to Vagococcus elongatus CCUG 51432T (96.5 % similarity), Vagococcus fluvialis NCFB 2497T (96.0 %) and Vagococcus lutrae CCUG 39187T (95.9 %), whereas the similarity to another isolate (CF-210) was 99.9 %. Strains CF-49T and CF-210 grew optimally at 37 °C and pH 7.0 and in the presence of 0.5 % (w/v) NaCl. Acid was produced from N-acetylglucosamine, cellobiose, d-fructose, d-glucose, d-mannose, d-mannitol, maltose, d-ribose and salicin. The cell-wall peptidoglycan type was A4α (l-Lys-d-Asp). The major cellular fatty acids (>10 %) were C16 : 0 (35.6 %), C14 : 0 (17.3 %), C18 : 1 ω9c (16.2 %) and C16 : 1 ω9c (10.6 %). The predominant respiratory quinone was menaquinone MK-7 (68.8 %). The G+C content of the genomic DNA was 35.9 mol%. Digital DNA-DNA hybridization of strain CF-49T with V. fluvialis DSM 5731T, V. elongatus CCUG 51432Tand V. lutrae CCUG 39187T resulted in relatedness values of 21.4, 23.3 and 24.6 %, respectively. Based on results from polyphasic analyses, our two isolates are proposed to represent a novel species in the genus Vagococcus, with the name Vagococcus xieshaowenii. The type strain is CF-49T (=CGMCC 1.6436T=GDMCC 1.1588T=JCM 33477T).


Assuntos
Cloaca/microbiologia , Enterococcaceae/classificação , Tentilhões/microbiologia , Filogenia , Animais , Técnicas de Tipagem Bacteriana , Composição de Bases , Parede Celular/química , DNA Bacteriano/genética , Enterococcaceae/isolamento & purificação , Ácidos Graxos/química , Hibridização de Ácido Nucleico , Peptidoglicano/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Tibet , Vitamina K 2/análogos & derivados , Vitamina K 2/química
13.
PLoS One ; 14(12): e0226432, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31834908

RESUMO

Darwin's finch species in the Galapagos Archipelago are an iconic adaptive radiation that offer a natural experiment to test for the various factors that influence gut microbiome composition. The island of Floreana has the longest history of human settlement within the archipelago and offers an opportunity to compare island and habitat effects on Darwin's finch microbiomes. In this study, we compare gut microbiomes in Darwin's finch species on Floreana Island to test for effects of host phylogeny, habitat (lowlands, highlands), and island (Floreana, Santa Cruz). We used 16S rRNA Illumina sequencing of fecal samples to assess the gut microbiome composition of Darwin's finches, complemented by analyses of stable isotope values and foraging data to provide ecological context to the patterns observed. Overall bacterial composition of the gut microbiome demonstrated co-phylogeny with Floreana hosts, recapitulated the effect of habitat and diet, and showed differences across islands. The finch phylogeny uniquely explained more variation in the microbiome than did foraging data. Finally, there were interaction effects for island × habitat, whereby the same Darwin's finch species sampled on two islands differed in microbiome for highland samples (highland finches also had different diets across islands) but not lowland samples (lowland finches across islands had comparable diet). Together, these results corroborate the influence of phylogeny, age, diet, and sampling location on microbiome composition and emphasize the necessity for comprehensive sampling given the multiple factors that influence the gut microbiome in Darwin's finches, and by extension, in animals broadly.


Assuntos
Bactérias/classificação , Ecossistema , Tentilhões/microbiologia , Microbioma Gastrointestinal , Filogenia , Animais , Bactérias/genética , Fezes/microbiologia , Tentilhões/genética , Humanos , Ilhas , RNA Ribossômico 16S
14.
Sci Rep ; 9(1): 18781, 2019 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-31827126

RESUMO

Darwin's finches are an iconic example of an adaptive radiation with well-characterized evolutionary history, dietary preferences, and biogeography, offering an unparalleled opportunity to disentangle effects of evolutionary history on host microbiome from other factors like diet and habitat. Here, we characterize the gut microbiome in Darwin's finches, comparing nine species that occupy diverse ecological niches on Santa Cruz island. The finch phylogeny showed moderate congruence with the microbiome, which was comprised mostly of the bacterial phyla Firmicutes, Actinobacteria, and Proteobacteria. Diet, as measured with stable isotope values and foraging observations, also correlated with microbiome differentiation. Additionally, each gut microbial community could easily be classified by the habitat of origin independent of host species. Altogether, these findings are consistent with a model of microbiome assembly in which environmental filtering via diet and habitat are primary determinants of the bacterial taxa present with lesser influence from the evolutionary history between finch species.


Assuntos
Tentilhões/microbiologia , Microbioma Gastrointestinal , Animais , Bactérias/classificação , Bactérias/isolamento & purificação , Biodiversidade , Evolução Biológica , Dieta , Equador , Tentilhões/fisiologia , Filogeografia , Especificidade da Espécie
15.
Mol Ecol ; 28(9): 2441-2450, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31021499

RESUMO

The gut microbiota of animal hosts can be influenced by environmental factors, such as unnatural food items that are introduced by humans. Over the past 30 years, human presence has grown exponentially in the Galapagos Islands, which are home to endemic Darwin's finches. Consequently, humans have changed the environment and diet of Darwin's finches, which in turn, could affect their gut microbiota. In this study, we compared the gut microbiota of two species of Darwin's finches, small ground finches (Geospiza fuliginosa) and medium ground finches (Geospiza fortis), across sites with and without human presence, where finches prefer human-processed and natural food, respectively. We predicted that: (a) finch microbiota would differ between sites with and without humans due to differences in diet, and (b) gut microbiota of each finch species would be most similar where finches have the highest niche overlap (areas with humans) compared to the lowest niche overlap (areas without humans). We found that gut bacterial community structure differed across sites and host species. Gut bacterial diversity was most distinct between the two species at the site with human presence compared to the site without human presence, which contradicted our predictions. Within host species, medium ground finches had lower bacterial diversity at the site with human presence compared to the site without human presence and bacterial diversity of small ground finches did not differ between sites. Our results show that the gut microbiota of Darwin's finches is affected differently across sites with varying human presence.


Assuntos
Microbioma Gastrointestinal/fisiologia , Passeriformes/microbiologia , Fenômenos Fisiológicos da Nutrição Animal , Animais , Biodiversidade , Peso Corporal , Ecossistema , Equador , Feminino , Tentilhões/microbiologia , Microbioma Gastrointestinal/genética , Humanos
16.
Microbiome ; 6(1): 167, 2018 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-30231937

RESUMO

BACKGROUND: Darwin's finches are a clade of 19 species of passerine birds native to the Galápagos Islands, whose biogeography, specialized beak morphologies, and dietary choices-ranging from seeds to blood-make them a classic example of adaptive radiation. While these iconic birds have been intensely studied, the composition of their gut microbiome and the factors influencing it, including host species, diet, and biogeography, has not yet been explored. RESULTS: We characterized the microbial community associated with 12 species of Darwin's finches using high-throughput 16S rRNA sequencing of fecal samples from 114 individuals across nine islands, including the unusual blood-feeding vampire finch (Geospiza septentrionalis) from Darwin and Wolf Islands. The phylum-level core gut microbiome for Darwin's finches included the Firmicutes, Gammaproteobacteria, and Actinobacteria, with members of the Bacteroidetes at conspicuously low abundance. The gut microbiome was surprisingly well conserved across the diversity of finch species, with one exception-the vampire finch-which harbored bacteria that were either absent or extremely rare in other finches, including Fusobacterium, Cetobacterium, Ureaplasma, Mucispirillum, Campylobacter, and various members of the Clostridia-bacteria known from the guts of carnivorous birds and reptiles. Complementary stable isotope analysis of feathers revealed exceptionally high δ15N isotope values in the vampire finch, resembling top marine predators. The Galápagos archipelago is also known for extreme wet and dry seasons, and we observed a significant seasonal shift in the gut microbial community of five additional finch species sampled during both seasons. CONCLUSIONS: This study demonstrates the overall conservatism of the finch gut microbiome over short (< 1 Ma) divergence timescales, except in the most extreme case of dietary specialization, and elevates the evolutionary importance of seasonal shifts in driving not only species adaptation, but also gut microbiome composition.


Assuntos
Bactérias/isolamento & purificação , Tentilhões/microbiologia , Microbioma Gastrointestinal , Animais , Bactérias/classificação , Bactérias/genética , Evolução Biológica , Clima , DNA Bacteriano/genética , Equador , Fezes/microbiologia , Tentilhões/classificação , Tentilhões/genética , Trato Gastrointestinal/microbiologia , Filogenia , RNA Ribossômico 16S/genética , Estações do Ano
17.
Artigo em Inglês | MEDLINE | ID: mdl-29531145

RESUMO

Anthropogenic food provisioning of wildlife can alter the frequency of contacts among hosts and between hosts and environmental sources of pathogens. Despite the popularity of garden bird feeding, few studies have addressed how feeders influence host contact rates and disease dynamics. We experimentally manipulated feeder density in replicate aviaries containing captive, pathogen-naive, groups of house finches (Haemorhous mexicanus) and continuously tracked behaviours at feeders using radio-frequency identification devices. We then inoculated one bird per group with Mycoplasma gallisepticum (Mg), a common bacterial pathogen for which feeders are fomites of transmission, and assessed effects of feeder density on house finch behaviour and pathogen transmission. We found that pathogen transmission was significantly higher in groups with the highest density of bird feeders, despite a significantly lower rate of intraspecific aggressive interactions relative to the low feeder density groups. Conversely, among naive group members that never showed signs of disease, we saw significantly higher concentrations of Mg-specific antibodies in low feeder density groups, suggesting that birds in low feeder density treatments had exposure to subclinical doses of Mg. We discuss ways in which the density of garden bird feeders could play an important role in mediating the intensity of Mg epidemics.This article is part of the theme issue 'Anthropogenic resource subsidies and host-parasite dynamics in wildlife'.


Assuntos
Ração Animal/estatística & dados numéricos , Doenças das Aves/epidemiologia , Epidemias , Tentilhões/imunologia , Infecções por Mycoplasma/veterinária , Agressão , Ração Animal/provisão & distribuição , Animais , Anticorpos Antibacterianos/sangue , Doenças das Aves/imunologia , Doenças das Aves/microbiologia , Doenças das Aves/transmissão , Comportamento Competitivo/fisiologia , Feminino , Tentilhões/microbiologia , Interações Hospedeiro-Patógeno/imunologia , Humanos , Masculino , Modelos Animais , Infecções por Mycoplasma/imunologia , Infecções por Mycoplasma/microbiologia , Infecções por Mycoplasma/transmissão , Mycoplasma gallisepticum/imunologia , Virginia/epidemiologia
18.
Front Immunol ; 9: 13, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29403495

RESUMO

The recent emergence of the poultry bacterial pathogen Mycoplasma gallisepticum (MG) in free-living house finches (Haemorhous mexicanus), which causes mycoplasmal conjunctivitis in this passerine bird species, resulted in a rapid coevolutionary arms-race between MG and its novel avian host. Despite extensive research on the ecological and evolutionary dynamics of this host-pathogen system over the past two decades, the immunological responses of house finches to MG infection remain poorly understood. We developed seven new probe-based one-step quantitative reverse transcription polymerase chain reaction assays to investigate mRNA expression of house finch cytokine genes (IL1B, IL6, IL10, IL18, TGFB2, TNFSF15, and CXCLi2, syn. IL8L). These assays were then used to describe cytokine transcription profiles in a panel of 15 house finch tissues collected at three distinct time points during MG infection. Based on initial screening that indicated strong pro-inflammatory cytokine expression during MG infection at the periorbital sites in particular, we selected two key house finch tissues for further characterization: the nictitating membrane, i.e., the internal eyelid in direct contact with MG, and the Harderian gland, the secondary lymphoid tissue responsible for regulation of periorbital immunity. We characterized cytokine responses in these two tissues for 60 house finches experimentally inoculated either with media alone (sham) or one of two MG isolates: the earliest known pathogen isolate from house finches (VA1994) or an evolutionarily more derived isolate collected in 2006 (NC2006), which is known to be more virulent. We show that the more derived and virulent isolate NC2006, relative to VA1994, triggers stronger local inflammatory cytokine signaling, with peak cytokine expression generally occurring 3-6 days following MG inoculation. We also found that the extent of pro-inflammatory interleukin 1 beta signaling was correlated with conjunctival MG loads and the extent of clinical signs of conjunctivitis, the main pathological effect of MG in house finches. These results suggest that the pathogenicity caused by MG infection in house finches is largely mediated by host pro-inflammatory immune responses, with important implications for the dynamics of host-pathogen coevolution.


Assuntos
Doenças das Aves/imunologia , Conjuntivite Bacteriana/imunologia , Citocinas/análise , Citocinas/biossíntese , Tentilhões/imunologia , Mycoplasma gallisepticum/imunologia , Animais , Doenças das Aves/microbiologia , Doenças Transmissíveis Emergentes/microbiologia , Doenças Transmissíveis Emergentes/veterinária , Túnica Conjuntiva/microbiologia , Túnica Conjuntiva/patologia , Conjuntivite Bacteriana/microbiologia , Citocinas/genética , Feminino , Tentilhões/microbiologia , Interações Hospedeiro-Parasita/imunologia , Masculino , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Transdução de Sinais/genética
19.
Microb Ecol ; 76(2): 518-529, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29282519

RESUMO

An animals' body is densely populated with bacteria. Although a large number of investigations on physiological microbial colonisation have emerged in recent years, our understanding of the composition, ecology and function of the microbiota remains incomplete. Here, we investigated whether songbirds have an individual-specific skin microbiome that is similar across different body regions. We collected skin microbe samples from three different bird species (Taeniopygia gutatta, Lonchura striata domestica and Stagonopleura gutatta) at two body locations (neck region, preen gland area). To characterise the skin microbes and compare the bacterial composition, we used high-throughput 16S rRNA amplicon sequencing. This method proved suitable for identifying the skin microbiome of birds, even though the bacterial load on the skin appeared to be relatively low. We found that across all species, the two evaluated skin areas of each individual harboured very similar microbial communities, indicative of an individual-specific skin microbiome. Despite experiencing the same environmental conditions and consuming the same diet, significant differences in the skin microbe composition were identified among the three species. The bird species differed both quantitatively and qualitatively regarding the observed bacterial taxa. Although each species harboured its own unique set of skin microbes, we identified a core skin microbiome among the studied species. As microbes are known to influence the host's body odour, our findings of an individual-specific skin microbiome might suggest that the skin microbiome in birds is involved in the odour production and could encode information on the host's genotype.


Assuntos
Bactérias/classificação , Tentilhões/microbiologia , Especificidade de Hospedeiro , Microbiota , Filogenia , Pele/microbiologia , Animais , Bactérias/genética , Carga Bacteriana , Biodiversidade , DNA Bacteriano/genética , Microbiota/genética , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
20.
J Clin Microbiol ; 56(1)2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29070657

RESUMO

Mycoplasma gallisepticum is the most virulent and economically important Mycoplasma species for poultry worldwide. Currently, M. gallisepticum strain differentiation based on sequence analysis of 5 loci remains insufficient for accurate outbreak investigation. Recently, whole-genome sequences (WGS) of many human and animal pathogens have been successfully used for microbial outbreak investigations. However, the massive sequence data and the diverse properties of different genes within bacterial genomes results in a lack of standard reproducible methods for comparisons among M. gallisepticum whole genomes. Here, we proposed the development of a core genome multilocus sequence typing (cgMLST) scheme for M. gallisepticum strains and field isolates. For development of this scheme, a diverse collection of 37 M. gallisepticum genomes was used to identify cgMLST targets. A total of 425 M. gallisepticum conserved genes (49.85% of M. gallisepticum genome) were selected as core genome targets. A total of 81 M. gallisepticum genomes from 5 countries on 4 continents were typed using M. gallisepticum cgMLST. Analyses of phylogenetic trees generated by cgMLST displayed a high degree of agreement with geographical and temporal information. Moreover, the high discriminatory power of cgMLST allowed differentiation between M. gallisepticum strains of the same outbreak. M. gallisepticum cgMLST represents a standardized, accurate, highly discriminatory, and reproducible method for differentiation among M. gallisepticum isolates. cgMLST provides stable and expandable nomenclature, allowing for comparison and sharing of typing results among laboratories worldwide. cgMLST offers an opportunity to harness the tremendous power of next-generation sequencing technology in applied avian mycoplasma epidemiology at both local and global levels.


Assuntos
Doenças das Aves/microbiologia , Epidemiologia Molecular/métodos , Tipagem de Sequências Multilocus/veterinária , Infecções por Mycoplasma/veterinária , Mycoplasma gallisepticum/classificação , Mycoplasma gallisepticum/genética , Filogenia , Animais , Doenças das Aves/epidemiologia , DNA Bacteriano/genética , Surtos de Doenças , Tentilhões/microbiologia , Genes Bacterianos/genética , Genoma Bacteriano/genética , Infecções por Mycoplasma/epidemiologia , Infecções por Mycoplasma/microbiologia , Aves Domésticas/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...