Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.099
Filtrar
1.
J Insect Sci ; 24(3)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38703099

RESUMO

This study was carried out in 3 types of biotopes where vegetable crops are not grown to highlight their contribution to the dynamics of vegetable-infesting flies. To this end, a trapping system based on a sexual attractant, the Cuelure associated with an insecticide was set up in 18 biotopes (6 natural areas, 6 mango orchards, and 6 agroforestry parks) in the regions of Hauts Bassins and Cascades in the South-West of Burkina Faso. During the trapping monitoring, which was done every 2 wk to collect insects captured, fruits present in 3 types of biotopes were sampled and incubated for insect emergence. Ten Dacus (Fabricius) [Diptera: Tephritidae] species and Zeugodacus cucurbitae (Coquillett) [Diptera: Tephritidae] were trapped in the study area. The predominant species captured was Z. cucurbitae (52.93%) followed by Dacus punctatifrons (Karsch) [Diptera: Tephritidae] (29.89%) and Dacus humeralis (Bezzi) (12.71%). Six tephritid species were emerged from 6 wild fruit species belonging to Cucurbitaceae, Apocynaceae, and Passifloraceae families. Fruit flies were more abundant from Jul to Nov with peaks observed in Aug or Oct depending on the species. Citrullus colocynthis L. (Cucurbitaceae), Lagenaria sp. (Cucurbitaceae), Passiflora foetida L. (Passifloraceae), and Passiflora sp. acted as reservoir host plants of Dacus ciliatus (Loew), Dacus bivittatus (Bigot), Dacus vertebratus (Bezzi) [Diptera: Tephritidae], D. punctatifrons, and Z. cucurbitae, the major vegetable insect pests in West Africa. The 3 types of biotopes acted as suitable refuge areas of vegetable crop-infesting fruit flies either for the favorable microclimate or for the alternative host plants.


Assuntos
Estações do Ano , Tephritidae , Animais , Tephritidae/fisiologia , Tephritidae/crescimento & desenvolvimento , Burkina Faso , Produtos Agrícolas/crescimento & desenvolvimento , Verduras/crescimento & desenvolvimento , Dinâmica Populacional , Frutas
2.
Parasit Vectors ; 17(1): 217, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38734668

RESUMO

BACKGROUND: Gut bacteria, which serve as essential modulators, exert a significant impact on insect physiology and behavior and have substantial application potential in pest management. The dynamics of gut bacteria and their impact on Phortica okadai behavior remain unclear. METHODS: In this study, the dynamics of gut bacteria at different developmental stages in P. okadai were analyzed using 16S ribosomal RNA (rRNA) gene sequencing, and the species and abundance of gut bacteria that affect host behavior were examined via behavioral experiments. RESULTS: A total of 19 phyla, 29 classes, 74 orders, 101 species, and 169 genera were identified. The results of the behavioral experiments indicated that the species Lactiplantibacillus argentoratensis, Acetobacter tropicalis, Leuconostoc citreum, and Levilactobacillus brevis effectively influenced the feeding preference of P. okadai, and the single-bacterium-seeded P. okadai exhibited feeding preferences distinct from those of the germ-free (GF) and wild-type P. okadai. CONCLUSIONS: The species and relative abundance of gut bacteria together positively impact P. okadai behavior. Lactiplantibacillus argentoratensis, as the most attractive bacteria to P. okadai, presents opportunities for novel pest control strategies targeting this vector and agricultural pest.


Assuntos
Bactérias , Microbioma Gastrointestinal , RNA Ribossômico 16S , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , RNA Ribossômico 16S/genética , Comportamento Animal , Comportamento Alimentar , Tephritidae/microbiologia , Tephritidae/fisiologia
3.
Int J Biol Macromol ; 267(Pt 1): 131508, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38604421

RESUMO

Polyglycylation is a post-translational modification that generates glycine side chains in the C-terminal domains of both α- and ß-tubulins. To date, the patterns and significance of polyglycylation across insect species remain largely unknown. The TTLL3B was thought to be a polyglycylase and be essential for polyglycylation in dipteran insects. In this study, the TTLL3B of Bactrocera dorsalis (BdTTLL3B) was identified and characterized. The BdTTLL3B expressed remarkably higher in adult males, especially in testes. The spatio-temporal patterns of polyglycylation were consistent with that of BdTTLL3B. Along with spermatogenesis, the intensity of polyglycylation was enhanced steadily and concentrated in elongated flagella. The expression of recombinant BdTTLL3B in Hela cells, which are genetically deficient in polyglycylation, catalyzed intracellular polyglycylation, validating the identity of BdTTLL3B as a polyglycylase. Knockout of BdTTLL3B significantly suppressed polyglycylation in testes and impaired male fertility, probably due to abnormal morphology of mitochondrial derivatives and over-accumulation of paracrystalline. Taken together, these findings indicated that the BdTTLL3B-mediated polyglycylation is involved in the spermatogenesis and play an important role in fertility of adult B. dorsalis. Therefore, the BdTTLL3B can be considered as a candidate target gene for the management of B. dorsalis, such as developing gene silencing/knockout-based sterile insect technology (SIT).


Assuntos
Espermatogênese , Tephritidae , Animais , Tephritidae/genética , Tephritidae/metabolismo , Masculino , Humanos , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Testículo/metabolismo , Processamento de Proteína Pós-Traducional , Células HeLa , Sequência de Aminoácidos , Fertilidade/genética
4.
PLoS One ; 19(4): e0300875, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38568989

RESUMO

Gut microbial communities are critical in determining the evolutive success of fruit fly phytophagous pests (Diptera, Tephritidae), facilitating their adaptation to suboptimal environmental conditions and to plant allelochemical defences. An important source of variation for the microbial diversity of fruit flies is represented by the crop on which larvae are feeding. However, a "crop effect" is not always the main driver of microbial patterns, and it is often observed in combination with other and less obvious processes. In this work, we aim at verifying if environmental stress and, by extension, changing environmental conditions, can promote microbial diversity in Zeugodacus cucurbitae (Coquillett), a cosmopolitan pest of cucurbit crops. With this objective, 16S rRNA metabarcoding was used to test differences in the microbial profiles of wild fly populations in a large experimental setup in Eastern Central Tanzania. The analysis of 2,973 unique ASV, which were assigned to 22 bacterial phyla, 221 families and 590 putative genera, show that microbial α diversity (as estimated by Abundance Coverage Estimator, Faith's Phylogenetic Diversity, Shannon-Weiner and the Inverse Simpson indexes) as well as ß microbial diversity (as estimated by Compositional Data analysis of ASVs and of aggregated genera) significantly change as the species gets closer to its altitudinal limits, in farms where pesticides and agrochemicals are used. Most importantly, the multivariate dispersion of microbial patterns is significantly higher in these stressful environmental conditions thus indicating that Anna Karenina effects contribute to the microbial diversity of Z. cucurbitae. The crop effect was comparably weaker and detected as non-consistent changes across the experimental sites. We speculate that the impressive adaptive potential of polyphagous fruit flies is, at least in part, related to the Anna Karenina principle, which promotes stochastic changes in the microbial diversity of fly populations exposed to suboptimal environmental conditions.


Assuntos
Microbiota , Tephritidae , Humanos , Animais , Tephritidae/genética , Tephritidae/microbiologia , Filogenia , RNA Ribossômico 16S/genética , Bactérias/genética , Microbiota/genética , Drosophila/genética
5.
J Agric Food Chem ; 72(14): 7784-7793, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38561632

RESUMO

The ability to recognize a host plant is crucial for insects to meet their nutritional needs and locate suitable sites for laying eggs. Bactrocera dorsalis is a highly destructive pest in fruit crops. Benzothiazole has been found to induce oviposition behavior in the gravid B. dorsalis. However, the ecological roles and the olfactory receptor responsible for benzothiazole are not yet fully understood. In this study, we found that adults were attracted to benzothiazole, which was an effective oviposition stimulant. In vitro experiments showed that BdorOR49b was narrowly tuned to benzothiazole. The electroantennogram results showed that knocking out BdorOR49b significantly reduced the antennal electrophysiological response to benzothiazole. Compared with wild-type flies, the attractiveness of benzothiazole to BdorOR49b knockout adult was significantly attenuated, and mutant females exhibited a severe decrease in oviposition behavior. Altogether, our work provides valuable insights into chemical communications and potential strategies for the control of this pest.


Assuntos
Receptores Odorantes , Tephritidae , Animais , Feminino , Receptores Odorantes/genética , Oviposição , Tephritidae/fisiologia , Benzotiazóis/farmacologia
6.
Pestic Biochem Physiol ; 200: 105816, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38582574

RESUMO

The melon fly Zeugodacus cucurbitae Coquillett (Diptera: Tephritidae) is an agricultural quarantine pest threatening fruit and vegetable production. Heat shock cognate 70 (Hsc70), which is a homolog of the heat shock protein 70 (Hsp70), was first discovered in mice testes and plays an important role in spermatogenesis. In this study, we identified and cloned five Hsc70 genes from melon fly, namely ZcHsc70_1/2/3/4/5. Phylogenetic analysis showed that these proteins are closely related to Hsc70s from other Diptera insects. Spatiotemporal expression analysis showed that ZcHsc70_1 and ZcHsc70_2 are highly expressed in Z. cucurbitae testes. Fluorescence in situ hybridization further demonstrated that ZcHsc70_1 and ZcHsc70_2 are expressed in the transformation and maturation regions of testes, respectively. Moreover, RNA interference-based suppression of ZcHsc70_1 or ZcHsc70_2 resulted in a significant decrease of 74.61% and 63.28% in egg hatchability, respectively. Suppression of ZcHsc70_1 expression delayed the transformation of sperm cells to mature sperms. Meanwhile, suppression of ZcHsc70_2 expression decreased both sperm cells and mature sperms by inhibiting the meiosis of spermatocytes. Our findings show that ZcHsc70_1/2 regulates spermatogenesis and further affects the male fertility in the melon fly, showing potential as targets for pest control in sterile insect technique by genetic manipulation of males.


Assuntos
Sementes , Tephritidae , Masculino , Animais , Camundongos , Filogenia , Hibridização in Situ Fluorescente , Tephritidae/genética , Controle de Insetos/métodos , Espermatogênese/genética , Fertilidade/genética , Resposta ao Choque Térmico
7.
Pestic Biochem Physiol ; 200: 105825, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38582589

RESUMO

Dopamine (DA) is a key regulator of associative learning and memory in both vertebrates and invertebrates, and it is widely believed that DA plays a key role in aversive conditioning in invertebrates. However, the idea that DA is involved only in aversive conditioning has been challenged in recent studies on the fruit fly (Drosophila melanogaster), ants and crabs, suggesting diverse functions of DA modulation on associative plasticity. Here, we present the results of DA modulation in aversive olfactory conditioning with DEET punishment and appetitive olfactory conditioning with sucrose reward in the oriental fruit fly, Bactrocera dorsalis. Injection of DA receptor antagonist fluphenazine or chlorpromazine into these flies led to impaired aversive learning, but had no effect on the appetitive learning. DA receptor antagonists impaired both aversive and appetitive long-term memory retention. Interestingly, the impairment on appetitive memory was rescued not only by DA but also by octopamine (OA). Blocking the OA receptors also impaired the appetitive memory retention, but this impairment could only be rescued by OA, not by DA. Thus, we conclude that in B. dorsalis, OA and DA pathways mediate independently the appetitive and aversive learning, respectively. These two pathways, however, are organized in series in mediating appetitive memory retrieval with DA pathway being at upstream. Thus, OA and DA play dual roles in associative learning and memory retrieval, but their pathways are organized differently in these two cognitive processes - parallel organization for learning acquisition and serial organization for memory retrieval.


Assuntos
Dopamina , Drosophila melanogaster , Tephritidae , Animais , Dopamina/metabolismo , Dopamina/farmacologia , Drosophila melanogaster/metabolismo , Memória , Antagonistas de Dopamina/farmacologia
8.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38618721

RESUMO

The gut microbiota of insects has been shown to regulate host detoxification enzymes. However, the potential regulatory mechanisms involved remain unknown. Here, we report that gut bacteria increase insecticide resistance by activating the cap "n" collar isoform-C (CncC) pathway through enzymatically generated reactive oxygen species (ROS) in Bactrocera dorsalis. We demonstrated that Enterococcus casseliflavus and Lactococcus lactis, two lactic acid-producing bacteria, increase the resistance of B. dorsalis to ß-cypermethrin by regulating cytochrome P450 (P450) enzymes and α-glutathione S-transferase (GST) activities. These gut symbionts also induced the expression of CncC and muscle aponeurosis fibromatosis. BdCncC knockdown led to a decrease in resistance caused by gut bacteria. Ingestion of the ROS scavenger vitamin C in resistant strain affected the expression of BdCncC/BdKeap1/BdMafK, resulting in reduced P450 and GST activity. Furthermore, feeding with E. casseliflavus or L. lactis showed that BdNOX5 increased ROS production, and BdNOX5 knockdown affected the expression of the BdCncC/BdMafK pathway and detoxification genes. Moreover, lactic acid feeding activated the ROS-associated regulation of P450 and GST activity. Collectively, our findings indicate that symbiotic gut bacteria modulate intestinal detoxification pathways by affecting physiological biochemistry, thus providing new insights into the involvement of insect gut microbes in the development of insecticide resistance.


Assuntos
Microbioma Gastrointestinal , Resistência a Inseticidas , Piretrinas , Espécies Reativas de Oxigênio , Tephritidae , Animais , Espécies Reativas de Oxigênio/metabolismo , Piretrinas/farmacologia , Piretrinas/metabolismo , Resistência a Inseticidas/genética , Tephritidae/microbiologia , Tephritidae/genética , Inseticidas/farmacologia , Inseticidas/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Lactococcus lactis/genética , Lactococcus lactis/metabolismo , Lactobacillales/genética , Lactobacillales/metabolismo , Lactobacillales/efeitos dos fármacos , Lactobacillales/fisiologia , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Enterococcus/genética , Enterococcus/metabolismo , Enterococcus/efeitos dos fármacos , Glutationa Transferase/genética , Glutationa Transferase/metabolismo
9.
PLoS One ; 19(3): e0300866, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38512951

RESUMO

The Male Annihilation Technique (also termed the Male Attraction Technique; "MAT") is often used to eradicate pestiferous tephritid fruit flies, such as Bactrocera dorsalis (Hendel). MAT involves the application of male-specific attractants combined with an insecticide in spots or stations across an area to reduce the male population to such a low level that suppression or eradication is achieved. Currently, implementations of MAT in California and Florida targeting B. dorsalis utilize the male attractant methyl eugenol (ME) accompanied with a toxicant, such as spinosad, mixed into a waxy, inert emulsion STATIC ME (termed here "SPLAT-MAT-ME"). While highly effective against ME-responding species, such applications are expensive owing largely to the high cost of the carrier matrix and labor for application. Until recently the accepted protocol called for the application of approximately 230 SPLAT-MAT-ME spots per km2; however, findings from Hawaii suggest a lower density may be more effective. The present study adopted the methods of that earlier work and estimated kill rates of released B. dorsalis under varying spot densities in areas of California and Florida that have had recent incursions of this invasive species. Specifically, we directly compared trap captures of sterilized marked B. dorsalis males released in different plots under three experimental SPLAT-MAT-ME densities (50, 110, and 230 per km2) in Huntington Beach, CA; Anaheim, CA; and Sarasota-Bradenton, FL. The plots with a density of 110 sites per km2 had a significantly higher recapture proportion than plots with 50 or 230 sites per km2. This result suggests that large amounts of male attractant may reduce the ability of males to locate the source of the odor, thus lowering kill rates and the effectiveness of eradication efforts. Eradication programs would directly benefit from reduced costs and improved eradication effectiveness by reducing the application density of SPLAT-MAT-ME.


Assuntos
Eugenol/análogos & derivados , Inseticidas , Tephritidae , Animais , Masculino , Controle de Insetos/métodos , Inseticidas/farmacologia , Drosophila
10.
Int J Biol Macromol ; 263(Pt 1): 130607, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38447848

RESUMO

Bactrocera dorsalis is a notorious pest widely distributed across most Asian countries. With the rapid development of pesticide resistance, new pest control methods are urgently needed. RNAi-based sterile insect technique (SIT) is a species-specific pest management strategy for B. dorsalis control. It is of great significance to identify more target genes from B. dorsalis, and improve the RNAi efficiency. In this study, microinjection-based RNAi results showed that six 20E response genes were necessary for male fertility of B. dorsalis, of which E75 was identified as the key target according to the lowest egg-laying number and hatching rate after E75 knockdown. Three nanoparticles chitosan (CS), chitosan­sodium tripolyphosphate (CS-TPP), and star polycation (SPc) were used to encapsulate dsE75 expressed by HT115 strain. Properties analysis of nanoparticle-dsRNA complexes showed that both CS-TPP-dsRNA and SPc-dsRNA exhibited better properties (smaller size and polydispersity index) than CS-dsRNA. Moreover, oral administration of CS-TPP-dsE75 and SPc-dsE75 by males resulted in more abnormal testis and significantly lower fertility than feeding naked dsE75. Semi-field trials further confirmed that the number of hatched larvae was dramatically reduced in these two groups. Our study not only provides more valuable targets for RNAi-based SIT, but also promotes the application of environment-friendly management against B. dorsalis in the field.


Assuntos
Quitosana , Infertilidade , Nanopartículas , Tephritidae , Animais , Masculino , Interferência de RNA , Ecdisona , Insetos , Controle de Pragas
11.
J Insect Physiol ; 154: 104632, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38531436

RESUMO

The maxillary palp is an auxiliary olfactory organ in insects, which, different from the antennae, is equipped with only a few olfactory sensory neuron (OSN) types. We postulated that these derived mouthpart structures, positioned at the base of the proboscis, may be particularly important in mediating feeding behaviors. As feeding is spatio-temporally segregated from oviposition in most Tephritidae, this taxonomic group appears quite suitable to parse out sensory breadth and potential functional divergence of palps and antennae. Scanning electron microscopy and anterograde staining underlined the limited palpal olfactory circuit in Tephritidae: only three morphological subtypes of basiconic sensilla were found, each with two neurons, and project to a total of six antennal lobe glomeruli in Bactrocera dorsalis. Accordingly, the palps detected only few volatiles from the headspace of food (fermentation and protein lures) and fruit (guava and mango) compared to the antennae (17 over 77, using gas-chromatography coupled electrophysiology). Interestingly, functionally the antennae were more tuned to fruit volatiles, detecting eight times more fruit than food volatiles (63 over 8), whereas the number of fruit and food volatile detection was more comparable in the palps (14 over 8). As tephritids diverge in oviposition preferences, but converge on food substrates, we postulated that the receptive ranges of palpal circuits would be more conserved compared to the antennae. However, palpal responses of three tephritid species that differed in phylogenetic relatedness and ecologically niche, diverged across ecological rather than phylogenetic rifts. Two species with strongly overlapping ecology, B. dorsalis and Ceratitis capitata, showed inseparable response profiles, whereas the cucurbit specialist Zeugodacus cucurbitae strongly diverged. As Z. cucurbitae is phylogenetically placed between B. dorsalis and C. capitata, the results indicate that ecology overrides phylogeny in the evolution of palpal tuning, in spite of being predisposed to detecting food volatiles.


Assuntos
Ceratitis capitata , Tephritidae , Feminino , Animais , Filogenia , Tephritidae/fisiologia , Sensilas
12.
J Agric Food Chem ; 72(11): 5725-5733, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38452362

RESUMO

The destructive agricultural pest oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae), has been causing huge damage to the fruits and vegetable industry. Although many pertinent studies have been conducted on B. dorsalis, the functions of fat body still remain largely unknown. To this end, the comparative transcriptome analysis between fat body and carcass was performed in an attempt to provide insights into functions of fat body of B. dorsalis in the present study. A total of 1431 upregulated and 2511 downregulated unigenes were discovered in the fat body vs carcass comparison, respectively. The enrichment analysis of differentially expressed genes (DEG) revealed that most of the enriched pathways were related to metabolism. The reliability of DEG analysis was validated by qRT-PCR measurements of 12 genes in starch and sucrose metabolism pathway, including the trehalose-6-phosphate synthase (BdTPS) which was highly expressed in eggs, 5 d-old adults, and fat body. The RNAi of BdTPS significantly affected trehalose and chitin metabolism, larval growth, and larva-pupa metamorphosis. Collectively, the findings in this study enriched our understanding of fat body functions in metabolism and demonstrated the indispensable roles of BdTPS in trehalose-related physiological pathways.


Assuntos
Corpo Adiposo , Glucosiltransferases , Tephritidae , Animais , Reprodutibilidade dos Testes , Trealose/metabolismo , Perfilação da Expressão Gênica , Tephritidae/genética , Tephritidae/metabolismo , Transcriptoma
13.
Ecol Lett ; 27(3): e14407, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38504478

RESUMO

As urbanization expands, it is becoming increasingly important to understand how anthropogenic activity is affecting ecological and evolutionary processes. Few studies have examined how human social patterns within cities can modify eco-evolutionary dynamics. We tested how socioeconomic variation corresponds with changes in trophic interactions and natural selection on prey phenotypes using the classic interaction between goldenrod gall flies (Eurosta solidaginis) and their natural enemies: birds, beetles, and parasitoid wasps. We sampled galls from 84 sites across neighbourhoods with varying socioeconomic levels, and quantified the frequency of predation/parasitism on flies and natural selection by each enemy. We found that bird predation was higher in the highest income neighbourhoods, increasing the strength of selection for smaller galls. Wasp and beetle attack, but not their strength of selection, increased in lower income neighbourhoods. We show that socioeconomic variation in cities can have strong unintended consequences for the ecology and evolution of trophic interactions.


Assuntos
Besouros , Tephritidae , Vespas , Animais , Humanos , Evolução Biológica , Interações Hospedeiro-Parasita , Aves , Fatores Socioeconômicos
14.
J Insect Sci ; 24(2)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38491950

RESUMO

The Sudano-Sahelian and the high Guinea savannahs agroecological zones of Cameroon are suitable for the full development of tree crops, including mango. Unfortunately, fresh fruits exported to local and international markets are frequently rejected due to the presence of fruit fly larvae (Diptera: Tephritidae), resulting in drastic income losses and overuse of chemical control products. To promote sustainable management strategies, a 2-yr study (2020-2021) was conducted in 4 and 3 mixed orchards, respectively. Attacked mangoes showing signs of fruit fly damage were collected and taken to the laboratory to rear and identify fruit flies. Repeated grafting and agroclimatic differences were responsible for dissimilarities between the 2 zones, with 18 and 16 cultivars, respectively. From 2,857 attacked mangoes, 26,707 fruit flies belonging to 4 species were identified: Bactrocera dorsalis, Ceratitis cosyra, Ceratitis fasciventris, and Ceratitis anonae. Climate change was the factor determining the distribution of the 2 most important mango fruit flies: B. dorsalis was a wetland species (dominance/occurrence > 70%), while C. cosyra was a dry-land species (dominance/occurrence > 75%). Both species were responsible for high levels of infestations. Bactrocera dorsalis preferred 3 mango cultivars, namely Palmer and Smith in Zone 1, and Ifack 1 in Zone 2 (infestation > 20 individuals/100 g of mango). The host-plant spectrum of C. cosyra was modified by alternative host plants. Both C. fasciventris and C. anonae were rare. Findings from this study could guide researchers in the development of monitoring tools for fruit fly populations and, subsequently, in reducing the damage they cause to mangoes.


Assuntos
Anacardiaceae , Mangifera , Tephritidae , Humanos , Animais , Camarões , Drosophila , Larva
15.
BMC Genom Data ; 25(1): 26, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443818

RESUMO

YABBY gene family is a plant-specific transcription factor with DNA binding domain involved in various functions i.e. regulation of style, length of flowers, and polarity development of lateral organs in flowering plants. Computational methods were utilized to identify members of the YABBY gene family, with Carrot (Daucus carota) 's genome as a foundational reference. The structure of genes, location of the chromosomes, protein motifs and phylogenetic investigation, syntony and transcriptomic analysis, and miRNA targets were analyzed to unmask the hidden structural and functional characteristics YABBY gene family in Carrots. In the following research, it has been concluded that 11 specific YABBY genes irregularly dispersed on all 9 chromosomes and proteins assembled into five subgroups i.e. AtINO, AtCRC, AtYAB5, AtAFO, and AtYAB2, which were created on the well-known classification of Arabidopsis. The wide ranges of YABBY genes in carrots were dispersed due to segmental duplication, which was detected as prevalent when equated to tandem duplication. Transcriptomic analysis showed that one of the DcYABBY genes was highly expressed during anthocyanin pigmentation in carrot taproots. The cis-regulatory elements (CREs) analysis unveiled elements that particularly respond to light, cell cycle regulation, drought induce ability, ABA hormone, seed, and meristem expression. Furthermore, a relative study among Carrot and Arabidopsis genes of the YABBY family indicated 5 sub-families sharing common characteristics. The comprehensive evaluation of YABBY genes in the genome provides a direction for the cloning and understanding of their functional properties in carrots. Our investigations revealed genome-wide distribution and role of YABBY genes in the carrots with best-fit comparison to Arabidopsis thaliana.


Assuntos
Arabidopsis , Daucus carota , Tephritidae , Animais , Daucus carota/genética , Arabidopsis/genética , Filogenia , Sementes
16.
J Agric Food Chem ; 72(13): 6954-6963, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38512330

RESUMO

The oriental fruit fly,Bactrocera dorsalis (Hendel), is a notorious pest of fruit crops, causing severe damage to fleshy fruits during oviposition and larval feeding. Gravid females locate suitable oviposition sites by detecting the host volatiles. Here, the oviposition preference of antenna-removed females and the electrophysiological response of ovipositors to benzothiazole indicated that both antennae and ovipositors are involved in perceiving benzothiazole. Subsequently, odorant receptors (ORs) expressed in both antennae and ovipositors were screened, and BdorOR43a-1 was further identified to respond to benzothiazole using voltage-clamp recording. Furthermore, BdorOR43a-1-/- mutants were obtained using the CRISPR/Cas9 system and their oviposition preference to benzothiazole was found to be significantly altered compared to WT females, suggesting that BdorOR43a-1 is one of the important ORs for benzothiazole perception. Our results not only demonstrate the important role of antennae and ovipositors in benzothiazole-induced oviposition but also elucidate on the OR responsible for benzothiazole perception in B. dorsalis.


Assuntos
Receptores Odorantes , Tephritidae , Feminino , Animais , Oviposição , Tephritidae/fisiologia , Receptores Odorantes/genética , Benzotiazóis/farmacologia
17.
Sci Rep ; 14(1): 6010, 2024 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472384

RESUMO

The Mediterranean fruit fly (medfly) (Ceratitis capitata, Diptera: Tephritidae), is an extremely polyphagous pest that threatens the fruit production and trading industry worldwide. Monitoring C. capitata populations and analysing its dynamics and phenology is considered of outmost importance for designing and implementing sound management approaches. The aim of this study was to investigate the factors regulating the population dynamics of the C. capitata in a coastal and semi-mountainous area. We focused on effects of topography (e.g. elevation), host presence and seasonal patterns of ripening on the phenological patterns considering data collected in 2008. The experimental area is characterized by mixed fruit orchards, and Mediterranean climate with mild winters. Two trap types were used for population monitoring. The female targeted McPhail type and the male targeted Jackson type. Traps were placed in farms located at different elevations and landscape morphology (coastal and semi-mountainous areas). The main crops included citrus, apples, peaches, plums, pears, figs, quinces and apricots. Adult captures were first recorded in May, peaked in mid-summer and mid-autumn and almost ceased at the end of the season (January 2008). Captures in the coastal areas preceded that of highlands by 15 days. Most of the adults detected during the fruit ripening of late stone fruit cultivars (first peak) and citrus (second peak). The probability of capturing the first adults preceded almost three weeks the peak of adult captures either considering the elevation or host focus analyses. The results provide valuable information on the seasonal population trend of C. capitata in mixed fruit Mediterranean orchards and can support the set-up of IPM systems in areas with various landscapes and different hosts throughout the fruit growing season.


Assuntos
Ceratitis capitata , Citrus , Malus , Tephritidae , Feminino , Masculino , Animais , Ceratitis capitata/fisiologia , Estações do Ano , Clima
18.
Pestic Biochem Physiol ; 199: 105763, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38458663

RESUMO

The oriental fruit fly, Bactrocera dorsalis (Hendel), an invasive insect pest infesting fruits and vegetables, possesses a remarkable capacity for environmental adaptation. The investigation of behind mechanisms of the stress adaptability in B. dorsalis holds significantly practical relevance. Previous studies on the molecular mechanism underlying stress resistance in B. dorsalis have predominantly focused on nuclear-coding genes, with limited exploration on organelle-coding genes. In this study, we assessed alterations in the mitochondrial physiological parameters of B. dorsalis under exposure to malathion, avermectin, and beta-cypermethrin at LD50 dosages. The results showed that all three insecticides were capable of reducing mitochondrial complex IV activity and ATP content. Expression patterns of mitochondrial coding genes across different developmental stages, tissues and insecticide exposures were analyzed by RT-qPCR. The results revealed that these mitochondrial coding genes were expressed in various tissues and at different developmental stages. Particularly noteworthy, atp6, cox2, and cytb exhibited substantial up-regulation in response to malathion and avermectin treatment. Furthermore, RNAi-mediated knockdown of atp6 and cox2 resulted in the increased toxicity of malathion and avermectin against B. dorsalis, and cox2 silencing was also associated with the decreased complex IV activity. These findings suggest that atp6 and cox2 most likely play pivotal roles in mediating tolerance or resistance to malathion and avermectin in B. dorsalis. Our results provide novel insights into the role of mitochondrial coding genes in conferring tolerance to insecticides in B. dorsalis, with practical implications for controlling this pest in the field.


Assuntos
Inseticidas , Ivermectina/análogos & derivados , Tephritidae , Animais , Inseticidas/farmacologia , Malation/toxicidade , Ciclo-Oxigenase 2 , Resistência a Inseticidas/genética , Tephritidae/genética
19.
Bull Entomol Res ; 114(2): 260-270, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38425077

RESUMO

Aspongopus chinensis Dallas 1851, an insect of important economic value, faces challenges in artificial breeding due to mandatory diapause and limited access to wild resources. Heat shock proteins (Hsps) are thought to influence diapause in insects, but little is known about their role in A. chinensis during diapause. This study used genomic methods to identify 25 Hsp genes in A. chinensis, including two Hsp90, 14 Hsp70, four Hsp60 and five small Hsp genes, were located on seven chromosomes, respectively. The gene structures among the same families are relatively conserved. Meanwhile, the motif compositions and secondary structures of A. chinensis Hsps (AcHsps) were predicted. RNA-seq data and fluorescence quantitative PCR analysis showed that there were differences in the expression patterns of AcHsps in diapause and non-diapause stages, and AcHsp70-5 was significantly differentially expressed in both analysis, which was enriched in the pathway of response to hormone. All the results showed that Hsps play an important role in the diapause mechanism of A. chinensis. Our observations highlight the molecular evolution of the Hsp gene and their effect on diapause in A. chinensis.


Assuntos
Diapausa de Inseto , Proteínas de Choque Térmico , Animais , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Diapausa de Inseto/genética , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Filogenia , Família Multigênica , Tephritidae/genética , Tephritidae/metabolismo , Tephritidae/crescimento & desenvolvimento
20.
Bull Entomol Res ; 114(2): 237-243, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38356354

RESUMO

Calling males of Anastrepha obliqua release volatile compounds to attract conspecific males to form leks and females to mate. Male volatiles from Mexican and Brazilian populations of A. obliqua have been previously identified. However, there are differences in the number and identity of volatile compounds between the populations. These differences in volatile profiles may be due to male origin (e.g. wild or mass-reared flies) or methodological issues (e.g. sampling techniques). In this study, we evaluated the attractiveness of wild, laboratory non-irradiated, and laboratory-irradiated flies under semi-field conditions. Male volatiles were collected using dynamic headspace sampling (DHS) and solid-phase microextraction (SPME) techniques, and identified using gas chromatography-coupled mass spectrometry. The results showed no difference in the attractiveness of wild, laboratory non-irradiated, and irradiated males to females. However, the number of captured females differed according to the origin; wild and non-irradiated females were captured more frequently than the irradiated flies. A total of 21 compounds were found using SPME, whereas only 12 were collected using DHS, although the relative amounts of these compounds were higher than those obtained using the former sampling technique. In addition, only laboratory non-irradiated males released α-pinene and menthol, which have not been previously reported in this fruit fly species. Additionally, we identified novel compounds in A. obliqua; however, certain compounds previously reported were not detected. This study suggests that despite the qualitative and quantitative variations in the volatile profiles of A. obliqua males, their attractiveness was unaffected.


Assuntos
Tephritidae , Compostos Orgânicos Voláteis , Animais , Masculino , Compostos Orgânicos Voláteis/análise , Tephritidae/efeitos da radiação , Tephritidae/fisiologia , Feminino , Comportamento Sexual Animal , Microextração em Fase Sólida , México
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...