Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.124
Filtrar
1.
Curr Genet ; 70(1): 13, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39101952

RESUMO

Bacillus thuringiensis is the most widely used biopesticide, targets a diversity of insect pests belonging to several orders. However, information regarding the B. thuringiensis strains and toxins targeting Zeugodacus cucurbitae is very limited. Therefore, in the present study, we isolated and identified five indigenous B. thuringiensisstrains toxic to larvae of Z. cucurbitae. However, of five strains NBAIR BtPl displayed the highest mortality (LC50 = 37.3 µg/mL) than reference strain B. thuringiensis var. israelensis (4Q1) (LC50 = 45.41 µg/mL). Therefore, the NBAIR BtPl was considered for whole genome sequencing to identify the cry genes present in it. Whole genome sequencing of our strain revealed genome size of 6.87 Mb with 34.95% GC content. Homology search through the BLAST algorithm revealed that NBAIR BtPl is 99.8% similar to B. thuringiensis serovar tolworthi, and gene prediction through Prokka revealed 7406 genes, 7168 proteins, 5 rRNAs, and 66 tRNAs. BtToxin_Digger analysis of NBAIR BtPl genome revealed four cry gene families: cry1, cry2, cry8Aa1, and cry70Aa1. When tested for the presence of these four cry genes in other indigenous strains, results showed that cry70Aa1 was absent. Thus, the study provided a basis for predicting cry70Aa1 be the possible reason for toxicity. In this study apart from novel genes, we also identified other virulent genes encoding zwittermicin, chitinase, fengycin, and bacillibactin. Thus, the current study aids in predicting potential toxin-encoding genes responsible for toxicity to Z. cucurbitae and thus paves the way for the development of B. thuringiensis-based formulations and transgenic crops for management of dipteran pests.


Assuntos
Bacillus thuringiensis , Proteínas de Bactérias , Genoma Bacteriano , Sequenciamento Completo do Genoma , Bacillus thuringiensis/genética , Animais , Proteínas de Bactérias/genética , Toxinas de Bacillus thuringiensis/genética , Endotoxinas/genética , Controle Biológico de Vetores , Tephritidae/genética , Tephritidae/microbiologia , Proteínas Hemolisinas/genética , Larva/genética , Filogenia
2.
Mol Ecol Resour ; 24(6): e13987, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38956928

RESUMO

The utility of a universal DNA 'barcode' fragment (658 base pairs of the Cytochrome C Oxidase I [COI] gene) has been established as a useful tool for species identification, and widely criticized as one for understanding the evolutionary history of a group. Large amounts of COI sequence data have been produced that hold promise for rapid species identification, for example, for biosecurity. The fruit fly tribe Dacini holds about a thousand species, of which 80 are pests of economic concern. We generated a COI reference library for 265 species of Dacini containing 5601 sequences that span most of the COI gene using circular consensus sequencing. We compared distance metrics versus monophyly assessments for species identification and although we found a 'soft' barcode gap around 2% pairwise distance, the exceptions to this rule dictate that a monophyly assessment is the only reliable method for species identification. We found that all fragments regularly used for Dacini fruit fly identification >450 base pairs long provide similar resolution. 11.3% of the species in our dataset were non-monophyletic in a COI tree, which is mostly due to species complexes. We conclude with recommendations for the future generation and use of COI libraries. We revise the generic assignment of Dacus transversus stat. rev. Hardy 1982, and Dacus perpusillus stat. rev. Drew 1971 and we establish Dacus maculipterus White 1998 syn. nov. as a junior synonym of Dacus satanas Liang et al. 1993.


Assuntos
Código de Barras de DNA Taxonômico , Complexo IV da Cadeia de Transporte de Elétrons , Animais , Código de Barras de DNA Taxonômico/métodos , Complexo IV da Cadeia de Transporte de Elétrons/genética , Filogenia , Análise de Sequência de DNA/métodos , Tephritidae/genética , Tephritidae/classificação
3.
J Insect Sci ; 24(4)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-39023176

RESUMO

Tephritis angustipennis (Diptera: Tephritidae) and Campiglossa loewiana (Diptera: Tephritidae) are phytophagous pests in China. Their damage has significantly impacted the collection and cultivation of germplasm resources of native Asteraceae plants. However, the genetic characteristics and structure of their population are unclear. This study focused on the highly damaging species of T. angustipennis and C. loewiana collected from the three-river source region (TRSR). We amplified the mitochondrial cytochrome C oxidase subunit I (mtCOI) gene sequences of these pests collected from this area and compared them with COI sequences from GenBank. We also analyzed their genetic diversity and structure. In T. angustipennis, 5 haplotypes were identified from 5 geographic locations; the genetic differentiation between France population FRPY (from Nylandia, Uusimaa) and China populations GLJZ (from Dehe Longwa Village, Maqin County), GLDR (from Zhique Village, Dari County), and GLMQ (from Rijin Village, Maqin County) was the strongest. GLJZ exhibited strong genetic differentiation from GLDR and GLMQ, with relatively low gene flow. For C. loewiana, 11 haplotypes were identified from 5 geographic locations; the genetic differentiation between the Chinese population GLMQ-YY (from Yangyu Forest Farm, Maqin County) and Finnish population FDNL (from Nylandia, Uusimaa) was the strongest, with relatively low gene flow, possibly due to geographical barriers in the Qinghai-Tibet plateau. Only 1 haplotype was identified across GLDR, GLMQ, and GLBM. High gene flow between distant locations indicates that human activities or wind dispersal may facilitate the dispersal of fruit flies and across different geographic. Geostatistical analysis suggested a recent population expansion of these 2 species in TRSR. Our findings provide technical references for identifying pests in the TRSR region and theoretical support for managing resistance, monitoring pest occurrences, analyzing environmental adaptability, and formulating biological control strategies for Tephritidae pests on Asteraceae plants.


Assuntos
Código de Barras de DNA Taxonômico , Complexo IV da Cadeia de Transporte de Elétrons , Variação Genética , Tephritidae , Animais , Tephritidae/genética , China , Complexo IV da Cadeia de Transporte de Elétrons/genética , Haplótipos , Filogenia , Proteínas de Insetos/genética
4.
PLoS One ; 19(7): e0304472, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39024335

RESUMO

Fruit flies of genus Bactrocera are important insect pests of commercially cultivated mangos in Pakistan limiting its successful production in the country. Despite the economic risk, the genetic diversity and population dynamics of this pest have remained unexplored. This study aimed to morphologically identify Bactrocera species infesting Mango in major production areas of the country and to confirm the results with insect DNA barcode techniques. Infested mango fruits from the crop of 2022, were collected from 46 locations of 11major production districts of Punjab and Sindh provinces, and first-generation flies were obtained in the laboratory. All 10,653 first generation flies were morphologically identified as two species of Bactrocera; dorsalis and zonata showing geography-based relative abundance in the two provinces; Punjab and Sindh. Morphological identification was confirmed by mitochondrial cytochrome oxidase gene subunit I (mt-COI) based DNA barcoding. Genetic analysis of mtCOI gene region of 61 selected specimens by the presence of two definite clusters and reliable intraspecific distances validated the results of morphological identification. This study by morphological identification of a large number of fruit fly specimens from the fields across Pakistan validated by insect DNA barcode reports two species of Bactrocera infesting mango in the country.


Assuntos
Código de Barras de DNA Taxonômico , Complexo IV da Cadeia de Transporte de Elétrons , Variação Genética , Mangifera , Tephritidae , Animais , Tephritidae/genética , Tephritidae/classificação , Paquistão , Mangifera/parasitologia , Mangifera/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Filogenia
5.
Neotrop Entomol ; 53(4): 854-867, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38958916

RESUMO

The genus Anastrepha contains some of the most important fruit pests in the Americas. It comprises more than 300 species, of which 129 occur in Brazil. The genus is divided into 26 species groups, including the pseudoparallela group with 31 species, whose known host plants are primarily fruits of the genus Passiflora (Passifloraceae). Fourteen species are recorded in Brazil. Here, a new species of Anastrepha reared from fruits of Passiflora actinia Hook. and Passiflora elegans Mast. from southern Brazil is described and illustrated. In addition, a synopsis of the Brazilian species of the pseudoparallela group is provided.


Assuntos
Tephritidae , Animais , Brasil , Tephritidae/classificação , Masculino , Feminino , Passiflora/parasitologia , Frutas/parasitologia
6.
J Agric Food Chem ; 72(32): 17858-17867, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39081139

RESUMO

In Bactrocera dorsalis, both males and females release chemical signals to attract mates. In our previous study, we identified ethyl laurate, ethyl myristate, and ethyl palmitate as potent female-derived pheromones that contribute to mate attraction. However, the mechanisms underlying the olfactory recognition remain unclear. In this study, we observed strong antennal and behavioral responses in male B. dorsalis to these female-derived pheromones, and further investigation revealed significant upregulation of OBP49a and OBP83b following exposure to these compounds. Through fluorescence competitive binding assays and RNA interference techniques, we demonstrated the crucial roles of OBP49a and OBP83b in detecting female-derived pheromones. Finally, molecular docking analysis identified key residues, including His134 in OBP83b and a lysine residue in OBP49a, which formed hydrogen bonds with female-derived pheromones, facilitating their binding. These findings not only advance our understanding of olfactory recognition of pheromones in B. dorsalis but also offer potential targets for developing olfaction-interfering techniques for pest control.


Assuntos
Proteínas de Insetos , Tephritidae , Animais , Feminino , Tephritidae/metabolismo , Tephritidae/química , Tephritidae/fisiologia , Tephritidae/genética , Proteínas de Insetos/metabolismo , Proteínas de Insetos/química , Proteínas de Insetos/genética , Masculino , Receptores Odorantes/metabolismo , Receptores Odorantes/química , Receptores Odorantes/genética , Atrativos Sexuais/química , Atrativos Sexuais/metabolismo , Simulação de Acoplamento Molecular , Feromônios/metabolismo , Feromônios/química , Olfato
7.
Sci Rep ; 14(1): 17521, 2024 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-39080311

RESUMO

Determining movement parameters for pest insects such as tephritid fruit flies is critical to developing models which can be used to increase the effectiveness of surveillance and control strategies. In this study, harmonic radar was used to track wild-caught male Queensland fruit flies (Qflies), Bactrocera tryoni, in papaya fields. Experiment 1 continuously tracked single flies which were prodded to induce movement. Qfly movements from this experiment showed greater mean squared displacement than predicted by both a simple random walk (RW) or a correlated random walk (CRW) model, suggesting that movement parameters derived from the entire data set do not adequately describe the movement of individual Qfly at all spatial scales or for all behavioral states. This conclusion is supported by both fractal and hidden Markov model (HMM) analysis. Lower fractal dimensions (straighter movement paths) were observed at larger spatial scales (> 2.5 m) suggesting that Qflies have qualitatively distinct movement at different scales. Further, a two-state HMM fit the observed movement data better than the CRW or RW models. Experiment 2 identified individual landing locations, twice a day, for groups of released Qflies, demonstrating that flies could be tracked over longer periods of time.


Assuntos
Carica , Movimento , Tephritidae , Animais , Tephritidae/fisiologia , Masculino , Movimento/fisiologia , Radar
8.
Pestic Biochem Physiol ; 202: 105919, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38879322

RESUMO

G-protein coupled receptors (GPCRs) are the largest and most diverse transmembrane receptor family in the cell. They are involved in regulating a wide range of biological processes, including behavior, reproduction, and development. However, GPCRs have not yet been identified in Zeugodacus cucurbitae. The current study focuses on the GPCRs identification, classification, distribution, and their expression analysis under ß-cypermethrin stress to uncover novel targets for pest management and assist in the development of effective strategies for controlling the melon fly population. We identified 80 GPCRs genes including 50 GPCRs identified in family A, 17 GPCRs identified in family B, 8 identified in family C, and 5 identified in family F. Z. cucurbitae GPCRs showed significant differences in both the number of genes in families or subfamilies, as well as the sequencing of the genes. Interestingly, newly identified GPCRs genes are expressed differently at various developmental stages of Z. cucurbitae. Further, we evaluated these 80 GPCRs using Realtime quantitative PCR to confirm their expression between ß-cypermethrin-resistant (RS) strain and susceptible strain (SS) of Z. cucurbitae. We identified 50 GPCR genes were highly overexpressed in a RS. Among these genes, eight genes were strongly induced by the 30% lethal concentration (LC) while two genes were significantly increased by the 50% LC of ß-cypermethrin. This first genome-wide profiling and characterization of GPCRs could lay foundation for unraveling detoxification mechanism and target site modifications which may improve the insect resistance and could be effective insecticide targets for Z. cucurbitae management.


Assuntos
Inseticidas , Piretrinas , Receptores Acoplados a Proteínas G , Piretrinas/farmacologia , Piretrinas/toxicidade , Animais , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Inseticidas/farmacologia , Inseticidas/toxicidade , Resistência a Inseticidas/genética , Tephritidae/genética , Tephritidae/efeitos dos fármacos , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo
9.
Microb Ecol ; 87(1): 81, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38829379

RESUMO

Koinobiont endoparasitoids regulate the physiology of their hosts through altering host immuno-metabolic responses, processes which function in tandem to shape the composition of the microbiota of these hosts. Here, we employed 16S rRNA and ITS amplicon sequencing to investigate whether parasitization by the parasitoid wasps, Diachasmimorpha longicaudata (Ashmaed) (Hymenoptera: Braconidae) and Psyttalia cosyrae (Wilkinson) (Hymenoptera: Braconidae), induces gut dysbiosis and differentially alter the gut microbial (bacteria and fungi) communities of an important horticultural pest, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae). We further investigated the composition of bacterial communities of adult D. longicaudata and P. cosyrae to ascertain whether the adult parasitoids and parasitized host larvae share microbial taxa through transmission. We demonstrated that parasitism by D. longicaudata induced significant gut perturbations, resulting in the colonization and increased relative abundance of pathogenic gut bacteria. Some pathogenic bacteria like Stenotrophomonas and Morganella were detected in both the guts of D. longicaudata-parasitized B. dorsalis larvae and adult D. longicaudata wasps, suggesting a horizontal transfer of microbes from the parasitoid to the host. The bacterial community of P. cosyrae adult wasps was dominated by Arsenophonus nasoniae, whereas that of D. longicaudata adults was dominated by Paucibater spp. and Pseudomonas spp. Parasitization by either parasitoid wasp was associated with an overall reduction in fungal diversity and evenness. These findings indicate that unlike P. cosyrae which is avirulent to B. dorsalis, parasitization by D. longicaudata induces shifts in the gut bacteriome of B. dorsalis larvae to a pathobiont-dominated community. This mechanism possibly enhances its virulence against the pest, further supporting its candidacy as an effective biocontrol agent of this frugivorous tephritid fruit fly pest.


Assuntos
Bactérias , Microbioma Gastrointestinal , Larva , RNA Ribossômico 16S , Tephritidae , Vespas , Animais , Tephritidae/microbiologia , Tephritidae/parasitologia , Vespas/microbiologia , Vespas/fisiologia , Bactérias/genética , Bactérias/classificação , Bactérias/isolamento & purificação , Larva/microbiologia , Larva/parasitologia , Larva/crescimento & desenvolvimento , RNA Ribossômico 16S/genética , Fungos/genética , Fungos/fisiologia , Interações Hospedeiro-Parasita , Microbiota , Disbiose/microbiologia , Disbiose/parasitologia
10.
J Insect Sci ; 24(3)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38913610

RESUMO

Bactrocera tryoni (Froggatt) and Bactrocera neohumeralis (Hardy) are sibling fruit fly species that are sympatric over much of their ranges. Premating isolation of these close relatives is thought to be maintained in part by allochrony-mating activity in B. tryoni peaks at dusk, whereas in B. neohumeralis, it peaks earlier in the day. To ascertain whether differences in pheromone composition may also contribute to premating isolation between them, this study used solid-phase microextraction and gas chromatography-mass spectrometry to characterize the rectal gland volatiles of a recently collected and a more domesticated strain of each species. These glands are typical production sites and reservoirs of pheromones in bactrocerans. A total of 120 peaks were detected and 50 were identified. Differences were found in the composition of the rectal gland emissions between the sexes, species, and recently collected versus domesticated strains of each species. The compositional variation included several presence/absence and many quantitative differences. Species and strain differences in males included several relatively small alcohols, esters, and aliphatic amides. Species and strain differences in females also included some of the amides but additionally involved many fatty acid esters and 3 spiroacetals. While the strain differences indicate there is also heritable variation in rectal gland emissions within each species, the species differences imply that compositional differences in pheromones emitted from rectal glands could contribute to the premating isolation between B. tryoni and B. neohumeralis. The changes during domestication could also have significant implications for the efficacy of Sterile Insect Technique control programs.


Assuntos
Feromônios , Tephritidae , Animais , Masculino , Feminino , Tephritidae/genética , Tephritidae/fisiologia , Tephritidae/metabolismo , Simpatria , Cromatografia Gasosa-Espectrometria de Massas , Especificidade da Espécie , Isolamento Reprodutivo , Comportamento Sexual Animal , Microextração em Fase Sólida
11.
J Insect Sci ; 24(3)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38703099

RESUMO

This study was carried out in 3 types of biotopes where vegetable crops are not grown to highlight their contribution to the dynamics of vegetable-infesting flies. To this end, a trapping system based on a sexual attractant, the Cuelure associated with an insecticide was set up in 18 biotopes (6 natural areas, 6 mango orchards, and 6 agroforestry parks) in the regions of Hauts Bassins and Cascades in the South-West of Burkina Faso. During the trapping monitoring, which was done every 2 wk to collect insects captured, fruits present in 3 types of biotopes were sampled and incubated for insect emergence. Ten Dacus (Fabricius) [Diptera: Tephritidae] species and Zeugodacus cucurbitae (Coquillett) [Diptera: Tephritidae] were trapped in the study area. The predominant species captured was Z. cucurbitae (52.93%) followed by Dacus punctatifrons (Karsch) [Diptera: Tephritidae] (29.89%) and Dacus humeralis (Bezzi) (12.71%). Six tephritid species were emerged from 6 wild fruit species belonging to Cucurbitaceae, Apocynaceae, and Passifloraceae families. Fruit flies were more abundant from Jul to Nov with peaks observed in Aug or Oct depending on the species. Citrullus colocynthis L. (Cucurbitaceae), Lagenaria sp. (Cucurbitaceae), Passiflora foetida L. (Passifloraceae), and Passiflora sp. acted as reservoir host plants of Dacus ciliatus (Loew), Dacus bivittatus (Bigot), Dacus vertebratus (Bezzi) [Diptera: Tephritidae], D. punctatifrons, and Z. cucurbitae, the major vegetable insect pests in West Africa. The 3 types of biotopes acted as suitable refuge areas of vegetable crop-infesting fruit flies either for the favorable microclimate or for the alternative host plants.


Assuntos
Estações do Ano , Tephritidae , Animais , Tephritidae/fisiologia , Tephritidae/crescimento & desenvolvimento , Burkina Faso , Produtos Agrícolas/crescimento & desenvolvimento , Verduras/crescimento & desenvolvimento , Dinâmica Populacional , Frutas
12.
Parasit Vectors ; 17(1): 217, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38734668

RESUMO

BACKGROUND: Gut bacteria, which serve as essential modulators, exert a significant impact on insect physiology and behavior and have substantial application potential in pest management. The dynamics of gut bacteria and their impact on Phortica okadai behavior remain unclear. METHODS: In this study, the dynamics of gut bacteria at different developmental stages in P. okadai were analyzed using 16S ribosomal RNA (rRNA) gene sequencing, and the species and abundance of gut bacteria that affect host behavior were examined via behavioral experiments. RESULTS: A total of 19 phyla, 29 classes, 74 orders, 101 species, and 169 genera were identified. The results of the behavioral experiments indicated that the species Lactiplantibacillus argentoratensis, Acetobacter tropicalis, Leuconostoc citreum, and Levilactobacillus brevis effectively influenced the feeding preference of P. okadai, and the single-bacterium-seeded P. okadai exhibited feeding preferences distinct from those of the germ-free (GF) and wild-type P. okadai. CONCLUSIONS: The species and relative abundance of gut bacteria together positively impact P. okadai behavior. Lactiplantibacillus argentoratensis, as the most attractive bacteria to P. okadai, presents opportunities for novel pest control strategies targeting this vector and agricultural pest.


Assuntos
Bactérias , Microbioma Gastrointestinal , RNA Ribossômico 16S , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , RNA Ribossômico 16S/genética , Comportamento Animal , Comportamento Alimentar , Tephritidae/microbiologia , Tephritidae/fisiologia
13.
Am Nat ; 203(6): E200-E217, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38781522

RESUMO

AbstractPhysiological time is important for understanding the development and seasonal timing of ectothermic animals but has largely been applied to developmental processes that occur during spring and summer, such as morphogenesis. There is a substantial knowledge gap in the relationship between temperature and development during winter, a season that is increasingly impacted by climate change. Most temperate insects overwinter in diapause, a developmental process with little obvious morphological change. We used principles from the physiological time literature to measure and model the thermal sensitivity of diapause development rate in the apple maggot fly Rhagoletis pomonella, a univoltine fly whose diapause duration varies substantially within and among populations. We show that diapause duration can be predicted by modeling a relationship between temperature and development rate that is shifted toward lower temperatures compared with typical models of morphogenic, nondiapause development. However, incorporating interindividual variation and ontogenetic variation in the temperature-to-development rate relationship was critical for accurately predicting fly emergence, as diapause development proceeded more quickly at high temperatures later in diapause. We conclude that the conceptual framework may be flexibly applied to other insects and discuss possible mechanisms of diapause timers and implications for phenology with warming winters.


Assuntos
Diapausa de Inseto , Tephritidae , Animais , Tephritidae/crescimento & desenvolvimento , Tephritidae/fisiologia , Temperatura , Estações do Ano , Larva/crescimento & desenvolvimento , Larva/fisiologia , Modelos Biológicos , Feminino
14.
Dalton Trans ; 53(23): 9995-10006, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38814123

RESUMO

A set of organic/inorganic layered materials was obtained by functionalizing a montmorillonite-containing bentonite natural clay with linear aliphatic C6 or C7 aldehydes through a cost-effective and technologically simple incipient-wetness deposition method. The solids were investigated by means of a multi-technique approach (X-ray powder diffraction, XRPD, scanning electron microscopy, SEM, Fourier-transform infrared spectroscopy, FT-IR, thermogravimetric analysis, TGA, elemental analysis and solid-state nuclear magnetic resonance, ssNMR) to clarify the nature of the deposited organic species and the mode of interaction between the aldehyde and the clay. Since both natural clays and short-chain linear aldehydes find application as alternative strategies in the control of the olive fruit fly, Bactrocera oleae, the hybrid layered materials were tested under real-life conditions and their insect-inhibiting capability was evaluated in open-field trials on olive tree orchards in Tuscany, Central Italy. Specific tests were conducted to evaluate the resistance of the solids to weathering and their capability to provide a constant and long-lasting release of the bioactive ingredient. Aldehyde-containing bentonite clays have shown promising performance in controlling B. oleae infestation (with up to 86-95% reduction of affected olive fruits) in open-field trials across two years in two locations with different pedological and meteo-climatic characteristics.


Assuntos
Aldeídos , Olea , Tephritidae , Aldeídos/química , Animais , Olea/química , Olea/parasitologia , Argila/química , Bentonita/química , Inseticidas/química , Inseticidas/farmacologia
15.
Insect Biochem Mol Biol ; 170: 104130, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38734116

RESUMO

Agmatine N-acetyltransferase (AgmNAT), which catalyzes the formation of N-acetylagmatine from acetyl-CoA and agmatine, is a member of the GCN5-related N-acetyltransferase family. So far, knowledge of the physiological roles of AgmNAT in insects is limited. Here, we identified one gene encoding protein homologous to that of Drosophila AgmNAT using sequence information from an activity-verified Drosophila AgmNAT in a BLAST search of the Bactrocera dorsalis genome. We expressed and purified B. dorsalis AgmNAT in Escherichia coli and used the purified enzyme to define the substrate specificity for acyl-CoA and amine substrates. Our application of the screening strategy to BdorAgmNAT led to the identification of agmatine as the best amine substrate for this enzyme, with the highest kcat/Km value. We successfully obtained a BdorAgmNAT knockout strain based on a wild-type strain (WT) using the CRISPR/Cas9 technique. The ovary development of the BdorAgmNAT knockout mutants was delayed for 10 days compared with the WT specimens. Moreover, mutants had a much smaller mature ovary size and laid far fewer eggs than WT. Loss of function of BdorAgmNAT caused by RNAi with mature WT females did not affect their fecundity. These findings indicate that BdorAgmNAT is critical for oogenesis. Our data provide the first evidence for AgmNAT in regulating ovary development.


Assuntos
Acetiltransferases , Ovário , Tephritidae , Animais , Ovário/crescimento & desenvolvimento , Ovário/metabolismo , Ovário/enzimologia , Feminino , Tephritidae/genética , Tephritidae/enzimologia , Tephritidae/crescimento & desenvolvimento , Tephritidae/metabolismo , Acetiltransferases/genética , Acetiltransferases/metabolismo , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Agmatina/metabolismo
16.
Pestic Biochem Physiol ; 200: 105816, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38582574

RESUMO

The melon fly Zeugodacus cucurbitae Coquillett (Diptera: Tephritidae) is an agricultural quarantine pest threatening fruit and vegetable production. Heat shock cognate 70 (Hsc70), which is a homolog of the heat shock protein 70 (Hsp70), was first discovered in mice testes and plays an important role in spermatogenesis. In this study, we identified and cloned five Hsc70 genes from melon fly, namely ZcHsc70_1/2/3/4/5. Phylogenetic analysis showed that these proteins are closely related to Hsc70s from other Diptera insects. Spatiotemporal expression analysis showed that ZcHsc70_1 and ZcHsc70_2 are highly expressed in Z. cucurbitae testes. Fluorescence in situ hybridization further demonstrated that ZcHsc70_1 and ZcHsc70_2 are expressed in the transformation and maturation regions of testes, respectively. Moreover, RNA interference-based suppression of ZcHsc70_1 or ZcHsc70_2 resulted in a significant decrease of 74.61% and 63.28% in egg hatchability, respectively. Suppression of ZcHsc70_1 expression delayed the transformation of sperm cells to mature sperms. Meanwhile, suppression of ZcHsc70_2 expression decreased both sperm cells and mature sperms by inhibiting the meiosis of spermatocytes. Our findings show that ZcHsc70_1/2 regulates spermatogenesis and further affects the male fertility in the melon fly, showing potential as targets for pest control in sterile insect technique by genetic manipulation of males.


Assuntos
Sementes , Tephritidae , Masculino , Animais , Camundongos , Filogenia , Hibridização in Situ Fluorescente , Tephritidae/genética , Controle de Insetos/métodos , Espermatogênese/genética , Fertilidade/genética , Resposta ao Choque Térmico
17.
Pestic Biochem Physiol ; 200: 105825, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38582589

RESUMO

Dopamine (DA) is a key regulator of associative learning and memory in both vertebrates and invertebrates, and it is widely believed that DA plays a key role in aversive conditioning in invertebrates. However, the idea that DA is involved only in aversive conditioning has been challenged in recent studies on the fruit fly (Drosophila melanogaster), ants and crabs, suggesting diverse functions of DA modulation on associative plasticity. Here, we present the results of DA modulation in aversive olfactory conditioning with DEET punishment and appetitive olfactory conditioning with sucrose reward in the oriental fruit fly, Bactrocera dorsalis. Injection of DA receptor antagonist fluphenazine or chlorpromazine into these flies led to impaired aversive learning, but had no effect on the appetitive learning. DA receptor antagonists impaired both aversive and appetitive long-term memory retention. Interestingly, the impairment on appetitive memory was rescued not only by DA but also by octopamine (OA). Blocking the OA receptors also impaired the appetitive memory retention, but this impairment could only be rescued by OA, not by DA. Thus, we conclude that in B. dorsalis, OA and DA pathways mediate independently the appetitive and aversive learning, respectively. These two pathways, however, are organized in series in mediating appetitive memory retrieval with DA pathway being at upstream. Thus, OA and DA play dual roles in associative learning and memory retrieval, but their pathways are organized differently in these two cognitive processes - parallel organization for learning acquisition and serial organization for memory retrieval.


Assuntos
Dopamina , Drosophila melanogaster , Tephritidae , Animais , Dopamina/metabolismo , Dopamina/farmacologia , Drosophila melanogaster/metabolismo , Memória , Antagonistas de Dopamina/farmacologia
18.
Int J Biol Macromol ; 267(Pt 1): 131508, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38604421

RESUMO

Polyglycylation is a post-translational modification that generates glycine side chains in the C-terminal domains of both α- and ß-tubulins. To date, the patterns and significance of polyglycylation across insect species remain largely unknown. The TTLL3B was thought to be a polyglycylase and be essential for polyglycylation in dipteran insects. In this study, the TTLL3B of Bactrocera dorsalis (BdTTLL3B) was identified and characterized. The BdTTLL3B expressed remarkably higher in adult males, especially in testes. The spatio-temporal patterns of polyglycylation were consistent with that of BdTTLL3B. Along with spermatogenesis, the intensity of polyglycylation was enhanced steadily and concentrated in elongated flagella. The expression of recombinant BdTTLL3B in Hela cells, which are genetically deficient in polyglycylation, catalyzed intracellular polyglycylation, validating the identity of BdTTLL3B as a polyglycylase. Knockout of BdTTLL3B significantly suppressed polyglycylation in testes and impaired male fertility, probably due to abnormal morphology of mitochondrial derivatives and over-accumulation of paracrystalline. Taken together, these findings indicated that the BdTTLL3B-mediated polyglycylation is involved in the spermatogenesis and play an important role in fertility of adult B. dorsalis. Therefore, the BdTTLL3B can be considered as a candidate target gene for the management of B. dorsalis, such as developing gene silencing/knockout-based sterile insect technology (SIT).


Assuntos
Espermatogênese , Tephritidae , Animais , Tephritidae/genética , Tephritidae/metabolismo , Masculino , Humanos , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Testículo/metabolismo , Processamento de Proteína Pós-Traducional , Células HeLa , Sequência de Aminoácidos , Fertilidade/genética
19.
PLoS One ; 19(4): e0300875, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38568989

RESUMO

Gut microbial communities are critical in determining the evolutive success of fruit fly phytophagous pests (Diptera, Tephritidae), facilitating their adaptation to suboptimal environmental conditions and to plant allelochemical defences. An important source of variation for the microbial diversity of fruit flies is represented by the crop on which larvae are feeding. However, a "crop effect" is not always the main driver of microbial patterns, and it is often observed in combination with other and less obvious processes. In this work, we aim at verifying if environmental stress and, by extension, changing environmental conditions, can promote microbial diversity in Zeugodacus cucurbitae (Coquillett), a cosmopolitan pest of cucurbit crops. With this objective, 16S rRNA metabarcoding was used to test differences in the microbial profiles of wild fly populations in a large experimental setup in Eastern Central Tanzania. The analysis of 2,973 unique ASV, which were assigned to 22 bacterial phyla, 221 families and 590 putative genera, show that microbial α diversity (as estimated by Abundance Coverage Estimator, Faith's Phylogenetic Diversity, Shannon-Weiner and the Inverse Simpson indexes) as well as ß microbial diversity (as estimated by Compositional Data analysis of ASVs and of aggregated genera) significantly change as the species gets closer to its altitudinal limits, in farms where pesticides and agrochemicals are used. Most importantly, the multivariate dispersion of microbial patterns is significantly higher in these stressful environmental conditions thus indicating that Anna Karenina effects contribute to the microbial diversity of Z. cucurbitae. The crop effect was comparably weaker and detected as non-consistent changes across the experimental sites. We speculate that the impressive adaptive potential of polyphagous fruit flies is, at least in part, related to the Anna Karenina principle, which promotes stochastic changes in the microbial diversity of fly populations exposed to suboptimal environmental conditions.


Assuntos
Microbiota , Tephritidae , Humanos , Animais , Tephritidae/genética , Tephritidae/microbiologia , Filogenia , RNA Ribossômico 16S/genética , Bactérias/genética , Microbiota/genética , Drosophila/genética
20.
J Agric Food Chem ; 72(14): 7784-7793, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38561632

RESUMO

The ability to recognize a host plant is crucial for insects to meet their nutritional needs and locate suitable sites for laying eggs. Bactrocera dorsalis is a highly destructive pest in fruit crops. Benzothiazole has been found to induce oviposition behavior in the gravid B. dorsalis. However, the ecological roles and the olfactory receptor responsible for benzothiazole are not yet fully understood. In this study, we found that adults were attracted to benzothiazole, which was an effective oviposition stimulant. In vitro experiments showed that BdorOR49b was narrowly tuned to benzothiazole. The electroantennogram results showed that knocking out BdorOR49b significantly reduced the antennal electrophysiological response to benzothiazole. Compared with wild-type flies, the attractiveness of benzothiazole to BdorOR49b knockout adult was significantly attenuated, and mutant females exhibited a severe decrease in oviposition behavior. Altogether, our work provides valuable insights into chemical communications and potential strategies for the control of this pest.


Assuntos
Receptores Odorantes , Tephritidae , Animais , Feminino , Receptores Odorantes/genética , Oviposição , Tephritidae/fisiologia , Benzotiazóis/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA