Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.040
Filtrar
1.
Int J Mol Sci ; 25(9)2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38732225

RESUMO

Oncolytic viruses (OVs) are characterised by their preference for infecting and replicating in tumour cells either naturally or after genetic modification, resulting in oncolysis. Furthermore, OVs can elicit both local and systemic anticancer immune responses while specifically infecting and lysing tumour cells. These characteristics render them a promising therapeutic approach for paediatric brain tumours (PBTs). PBTs are frequently marked by a cold tumour immune microenvironment (TIME), which suppresses immunotherapies. Recent preclinical and clinical studies have demonstrated the capability of OVs to induce a proinflammatory immune response, thereby modifying the TIME. In-depth insights into the effect of OVs on different cell types in the TIME may therefore provide a compelling basis for using OVs in combination with other immunotherapy modalities. However, certain limitations persist in our understanding of oncolytic viruses' ability to regulate the TIME to enhance anti-tumour activity. These limitations primarily stem from the translational limitations of model systems, the difficulties associated with tracking reliable markers of efficacy throughout the course of treatment and the role of pre-existing viral immunity. In this review, we describe the different alterations observed in the TIME in PBTs due to OV treatment, combination therapies of OVs with different immunotherapies and the hurdles limiting the development of effective OV therapies while suggesting future directions based on existing evidence.


Assuntos
Neoplasias Encefálicas , Terapia Viral Oncolítica , Vírus Oncolíticos , Microambiente Tumoral , Humanos , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/imunologia , Terapia Viral Oncolítica/métodos , Microambiente Tumoral/imunologia , Vírus Oncolíticos/fisiologia , Vírus Oncolíticos/genética , Criança , Imunoterapia/métodos , Terapia Combinada/métodos , Animais
2.
J Immunother Cancer ; 12(5)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38719544

RESUMO

OBJECTIVE: To evaluate the safety and preliminary efficacy of YSCH-01 (Recombinant L-IFN adenovirus) in subjects with advanced solid tumors. METHODS: In this single-center, open-label, investigator-initiated trial of YSCH-01, 14 patients with advanced solid tumors were enrolled. The study consisted of two distinct phases: (1) the dose escalation phase and (2) the dose expansion phase; with three dose groups in the dose escalation phase based on dose levels (5.0×109 viral particles (VP)/subject, 5.0×1010 VP/subject, and 5.0×1011 VP/subject). Subjects were administered YSCH-01 injection via intratumoral injections. The safety was assessed using National Cancer Institute Common Terminology Criteria for Adverse Events V.5.0, and the efficacy evaluation was performed using Response Evaluation Criteria in Solid Tumor V.1.1. RESULTS: 14 subjects were enrolled in the study, including 9 subjects in the dose escalation phase and 5 subjects in the dose expansion phase. Of the 13 subjects included in the full analysis set, 4 (30.8%) were men and 9 (69.2%) were women. The most common tumor type was lung cancer (38.5%, 5 subjects), followed by breast cancer (23.1%, 3 subjects) and melanoma (23.1%, 3 subjects). During the dose escalation phase, no subject experienced dose-limiting toxicities. The content of recombinant L-IFN adenovirus genome and recombinant L-IFN protein in blood showed no trend of significant intergroup changes. No significant change was observed in interleukin-6 and interferon-gamma. For 11 subjects evaluated for efficacy, the overall response rate with its 95% CI was 27.3% (6.02% to 60.97%) and the disease control rate with its 95% CI was 81.8% (48.22% to 97.72%). The median progression-free survival was 4.97 months, and the median overall survival was 8.62 months. In addition, a tendency of decrease in the sum of the diameters of target lesions was observed. For 13 subjects evaluated for safety, the overall incidence of adverse events (AEs) was 92.3%, the overall incidence of adverse drug reactions (ADRs) was 84.6%, and the overall incidence of >Grade 3 AEs was 7.7%, while no AEs/ADRs leading to death occurred. The most common AEs were fever (69.2%), nausea (30.8%), vomiting (30.8%), and hypophagia (23.1%). CONCLUSIONS: The study shows that YSCH-01 injections were safe and well tolerated and exhibited preliminary efficacy in patients with advanced solid tumors, supporting further investigation to evaluate its efficacy and safety. TRIAL REGISTRATION NUMBER: NCT05180851.


Assuntos
Neoplasias , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adenoviridae/genética , Neoplasias/tratamento farmacológico , Terapia Viral Oncolítica/métodos , Terapia Viral Oncolítica/efeitos adversos , Resultado do Tratamento
3.
Int J Oral Sci ; 16(1): 36, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730256

RESUMO

N1-methyladenosine (m1A) RNA methylation is critical for regulating mRNA translation; however, its role in the development, progression, and immunotherapy response of head and neck squamous cell carcinoma (HNSCC) remains largely unknown. Using Tgfbr1 and Pten conditional knockout (2cKO) mice, we found the neoplastic transformation of oral mucosa was accompanied by increased m1A modification levels. Analysis of m1A-associated genes identified TRMT61A as a key m1A writer linked to cancer progression and poor prognosis. Mechanistically, TRMT61A-mediated tRNA-m1A modification promotes MYC protein synthesis, upregulating programmed death-ligand 1 (PD-L1) expression. Moreover, m1A modification levels were also elevated in tumors treated with oncolytic herpes simplex virus (oHSV), contributing to reactive PD-L1 upregulation. Therapeutic m1A inhibition sustained oHSV-induced antitumor immunity and reduced tumor growth, representing a promising strategy to alleviate resistance. These findings indicate that m1A inhibition can prevent immune escape after oHSV therapy by reducing PD-L1 expression, providing a mutually reinforcing combination immunotherapy approach.


Assuntos
Antígeno B7-H1 , Vírus Oncolíticos , Proteínas Proto-Oncogênicas c-myc , Transdução de Sinais , Animais , Camundongos , Proteínas Proto-Oncogênicas c-myc/metabolismo , Humanos , Adenosina/análogos & derivados , Regulação para Baixo , Carcinoma de Células Escamosas de Cabeça e Pescoço/imunologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/terapia , Terapia Viral Oncolítica/métodos , PTEN Fosfo-Hidrolase , Camundongos Knockout , Neoplasias de Cabeça e Pescoço/imunologia , Neoplasias de Cabeça e Pescoço/terapia , Simplexvirus , Linhagem Celular Tumoral
4.
Int J Mol Sci ; 25(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38731910

RESUMO

Oncolytic virotherapy is a promising immunotherapy approach for cancer treatment that utilizes viruses to preferentially infect and eliminate cancer cells while stimulating the immune response. In this review, we synthesize the current literature on the molecular circuits of immune sensing and response to oncolytic virotherapy, focusing on viral DNA or RNA sensing by infected cells, cytokine and danger-associated-signal sensing by neighboring cells, and the subsequent downstream activation of immune pathways. These sequential sense-and-response mechanisms involve the triggering of molecular sensors by viruses or infected cells to activate transcription factors and related genes for a breadth of immune responses. We describe how the molecular signals induced in the tumor upon virotherapy can trigger diverse immune signaling pathways, activating both antigen-presenting-cell-based innate and T cell-based adaptive immune responses. Insights into these complex mechanisms provide valuable knowledge for enhancing oncolytic virotherapy strategies.


Assuntos
Neoplasias , Terapia Viral Oncolítica , Vírus Oncolíticos , Humanos , Terapia Viral Oncolítica/métodos , Neoplasias/terapia , Neoplasias/imunologia , Vírus Oncolíticos/genética , Vírus Oncolíticos/imunologia , Animais , Transdução de Sinais , Imunidade Inata , Imunoterapia/métodos
5.
Signal Transduct Target Ther ; 9(1): 118, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702343

RESUMO

Antitumor therapies based on adoptively transferred T cells or oncolytic viruses have made significant progress in recent years, but the limited efficiency of their infiltration into solid tumors makes it difficult to achieve desired antitumor effects when used alone. In this study, an oncolytic virus (rVSV-LCMVG) that is not prone to induce virus-neutralizing antibodies was designed and combined with adoptively transferred T cells. By transforming the immunosuppressive tumor microenvironment into an immunosensitive one, in B16 tumor-bearing mice, combination therapy showed superior antitumor effects than monotherapy. This occurred whether the OV was administered intratumorally or intravenously. Combination therapy significantly increased cytokine and chemokine levels within tumors and recruited CD8+ T cells to the TME to trigger antitumor immune responses. Pretreatment with adoptively transferred T cells and subsequent oncolytic virotherapy sensitizes refractory tumors by boosting T-cell recruitment, down-regulating the expression of PD-1, and restoring effector T-cell function. To offer a combination therapy with greater translational value, mRNA vaccines were introduced to induce tumor-specific T cells instead of adoptively transferred T cells. The combination of OVs and mRNA vaccine also displays a significant reduction in tumor burden and prolonged survival. This study proposed a rational combination therapy of OVs with adoptive T-cell transfer or mRNA vaccines encoding tumor-associated antigens, in terms of synergistic efficacy and mechanism.


Assuntos
Terapia Viral Oncolítica , Vírus Oncolíticos , Animais , Camundongos , Vírus Oncolíticos/genética , Vírus Oncolíticos/imunologia , Terapia Viral Oncolítica/métodos , Terapia Combinada , Vacinas de mRNA/imunologia , Melanoma Experimental/terapia , Melanoma Experimental/imunologia , Microambiente Tumoral/imunologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T/imunologia , Humanos , Linhagem Celular Tumoral , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/genética , Vacinas Anticâncer/administração & dosagem
6.
Front Immunol ; 15: 1379613, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38698850

RESUMO

Onco-virotherapy is an emergent treatment for cancer based on viral vectors. The therapeutic activity is based on two different mechanisms including tumor-specific oncolysis and immunostimulatory properties. In this study, we evaluated onco-virotherapy in vitro responses on immunocompetent non-small cell lung cancer (NSCLC) patient-derived tumoroids (PDTs) and healthy organoids. PDTs are accurate tools to predict patient's clinical responses at the in vitro stage. We showed that onco-virotherapy could exert specific antitumoral effects by producing a higher number of viral particles in PDTs than in healthy organoids. In the present work, we used multiplex protein screening, based on proximity extension assay to highlight different response profiles. Our results pointed to the increase of proteins implied in T cell activation, such as IFN-γ following onco-virotherapy treatment. Based on our observation, oncolytic viruses-based therapy responders are dependent on several factors: a high PD-L1 expression, which is a biomarker of greater immune response under immunotherapies, and the number of viral particles present in tumor tissue, which is dependent to the metabolic state of tumoral cells. Herein, we highlight the use of PDTs as an alternative in vitro model to assess patient-specific responses to onco-virotherapy at the early stage of the preclinical phases.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Descoberta de Drogas , Neoplasias Pulmonares , Terapia Viral Oncolítica , Proteômica , Humanos , Proteômica/métodos , Carcinoma Pulmonar de Células não Pequenas/imunologia , Carcinoma Pulmonar de Células não Pequenas/terapia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/metabolismo , Terapia Viral Oncolítica/métodos , Organoides , Vírus Oncolíticos/imunologia , Proteoma , Biomarcadores Tumorais/metabolismo , Antígeno B7-H1/metabolismo
7.
Nat Commun ; 15(1): 3669, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38693119

RESUMO

Oncolytic viruses (OVs) show promise as a cancer treatment by selectively replicating in tumor cells and promoting antitumor immunity. However, the current immunogenicity induced by OVs for tumor treatment is relatively weak, necessitating a thorough investigation of the mechanisms underlying its induction of antitumor immunity. Here, we show that HSV-1-based OVs (oHSVs) trigger ZBP1-mediated PANoptosis (a unique innate immune inflammatory cell death modality), resulting in augmented antitumor immune effects. Mechanistically, oHSV enhances the expression of interferon-stimulated genes, leading to the accumulation of endogenous Z-RNA and subsequent activation of ZBP1. To further enhance the antitumor potential of oHSV, we conduct a screening and identify Fusobacterium nucleatum outer membrane vesicle (Fn-OMV) that can increase the expression of PANoptosis execution proteins. The combination of Fn-OMV and oHSV demonstrates potent antitumor immunogenicity. Taken together, our study provides a deeper understanding of oHSV-induced antitumor immunity, and demonstrates a promising strategy that combines oHSV with Fn-OMV.


Assuntos
Fusobacterium nucleatum , Herpesvirus Humano 1 , Terapia Viral Oncolítica , Vírus Oncolíticos , Proteínas de Ligação a RNA , Herpesvirus Humano 1/imunologia , Herpesvirus Humano 1/genética , Vírus Oncolíticos/genética , Vírus Oncolíticos/imunologia , Animais , Humanos , Terapia Viral Oncolítica/métodos , Camundongos , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/imunologia , Linhagem Celular Tumoral , Fusobacterium nucleatum/imunologia , Neoplasias/terapia , Neoplasias/imunologia , Feminino , Imunidade Inata , Camundongos Endogâmicos BALB C
8.
J Immunother Cancer ; 12(5)2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724464

RESUMO

BACKGROUND: Glioblastoma (GBM) almost invariably becomes resistant towards conventional treatment of radiotherapy and temozolomide (TMZ) chemotherapy, partly due to subpopulations of intrinsically resistant glioma stem-like cells (GSC). The oncolytic herpes simplex virus-1 G207 is a promising approach for GBM virotherapy although its efficacy in patients with GBM is often limited. Natural killer group 2 member D ligands (NKG2DLs) are minimally expressed by healthy cells but are upregulated by the DNA damage response (DDR) and in malignant cells with chronic DDR signaling, resulting in innate immune activation. METHODS: We have designed a bispecific T-cell engager (BiTE) capable of cross-linking CD3 on T cells with NKG2DL-expressing GBM cells. We then engineered the G207 virus to express the NKG2D BiTE and secrete it from infected cells. The efficacy of the free BiTE and BiTE delivered by G207 was evaluated in combination with conventional therapies in GBM cells and against patient-derived GSCs in the context of T-cell activation and target cell viability. RESULTS: NKG2D BiTE-mediated cross-linking of GBM cells and T cells causes antigen-independent T-cell activation, pro-inflammatory cytokine release, and tumor cell death, thereby combining direct viral oncolysis with BiTE-mediated cytotoxicity. Surface NKG2DL expression was further elevated on GBM cells following pretreatment with sublethal doses of TMZ and radiation to induce the DDR, increasing sensitivity towards G207-NKG2D BiTE and achieving synergistic cytotoxicity. We also demonstrate a novel strategy for targeting GSCs that are non-permissive to G207 infection but remain sensitive to NKG2D BiTE. CONCLUSIONS: We propose a potential model for targeting GSCs in heterogeneous tumors, whereby differentiated GBM cells infected with G207-NKG2D BiTE produce NKG2D BiTE locally, directing T-cell cytotoxicity towards the GSC subpopulations in the tumor microenvironment.


Assuntos
Glioblastoma , Subfamília K de Receptores Semelhantes a Lectina de Células NK , Células-Tronco Neoplásicas , Terapia Viral Oncolítica , Humanos , Glioblastoma/terapia , Glioblastoma/imunologia , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Células-Tronco Neoplásicas/metabolismo , Terapia Viral Oncolítica/métodos , Linfócitos T/imunologia , Linfócitos T/metabolismo , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral
9.
Biochem Biophys Res Commun ; 718: 149931, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38723415

RESUMO

Oncolytic viruses (OVs) have shown potential in converting a "cold" tumor into a "hot" one and exhibit effectiveness in various cancer types. However, only a subset of patients respond to oncolytic virotherapy. It is important to understand the resistance mechanisms to OV treatment in pancreatic ductal adenocarcinoma (PDAC) to engineer oncolytic viruses. In this study, we used transcriptome RNA sequencing (RNA-seq) to identify Visfatin, which was highly expressed in the responsive tumors following OV treatment. To explore the antitumor efficacy, we modified OV-mVisfatin, which effectively inhibited tumor growth. For the first time, we revealed that Visfatin promoted the antitumor efficacy of OV by remodeling the tumor microenvironment, which involved enhancing CD8+ T cell and DC cell infiltration and activation, repolarizing macrophages towards the M1-like phenotype, and decreasing Treg cells using single-cell RNA sequencing (scRNA-seq) and flow cytometry. Furthermore, PD-1 blockade significantly enhanced OV-mVisfatin antitumor efficacy, offering a promising new therapeutic strategy for PDAC.


Assuntos
Herpesvirus Humano 1 , Nicotinamida Fosforribosiltransferase , Terapia Viral Oncolítica , Vírus Oncolíticos , Neoplasias Pancreáticas , Microambiente Tumoral , Animais , Neoplasias Pancreáticas/terapia , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/genética , Camundongos , Terapia Viral Oncolítica/métodos , Nicotinamida Fosforribosiltransferase/genética , Nicotinamida Fosforribosiltransferase/metabolismo , Herpesvirus Humano 1/genética , Linhagem Celular Tumoral , Vírus Oncolíticos/genética , Carcinoma Ductal Pancreático/terapia , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/imunologia , Camundongos Endogâmicos C57BL , Humanos , Linfócitos T CD8-Positivos/imunologia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/metabolismo , Feminino
10.
Front Immunol ; 15: 1383978, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38756774

RESUMO

Pancreatic cancer is a highly aggressive malignant tumor, that is becoming increasingly common in recent years. Despite advances in intensive treatment modalities including surgery, radiotherapy, biological therapy, and targeted therapy, the overall survival rate has not significantly improved in patients with pancreatic cancer. This may be attributed to the insidious onset, unknown pathophysiology, and poor prognosis of the disease. It is therefore essential to identify and develop more effective and safer treatments for pancreatic cancer. Tumor immunotherapy is the new and fourth pillar of anti-tumor therapy after surgery, radiotherapy, and chemotherapy. Significant progress has made in the use of immunotherapy for a wide variety of malignant tumors in recent years; a breakthrough has also been made in the treatment of pancreatic cancer. This review describes the advances in immune checkpoint inhibitors, cancer vaccines, adoptive cell therapy, oncolytic virus, and matrix-depletion therapies for the treatment of pancreatic cancer. At the same time, some new potential biomarkers and potential immunotherapy combinations for pancreatic cancer are discussed. The molecular mechanisms of various immunotherapies have also been elucidated, and their clinical applications have been highlighted. The current challenges associated with immunotherapy and proposed strategies that hold promise in overcoming these limitations have also been discussed, with the aim of offering new insights into immunotherapy for pancreatic cancer.


Assuntos
Vacinas Anticâncer , Imunoterapia , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/terapia , Neoplasias Pancreáticas/imunologia , Imunoterapia/métodos , Vacinas Anticâncer/uso terapêutico , Vacinas Anticâncer/imunologia , Animais , Inibidores de Checkpoint Imunológico/uso terapêutico , Terapia Viral Oncolítica/métodos , Biomarcadores Tumorais , Terapia Combinada
11.
Mol Med Rep ; 30(1)2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38757346

RESUMO

Ovarian cancer is a multifactorial and deadly disease. Despite significant advancements in ovarian cancer therapy, its incidence is on the rise and the molecular mechanisms underlying ovarian cancer invasiveness, metastasis and drug resistance remain largely elusive, resulting in poor prognosis. Oncolytic viruses armed with therapeutic transgenes of interest offer an attractive alternative to chemical drugs, which often face innate and acquired drug resistance. The present study constructed a novel oncolytic adenovirus carrying ERCC1 short interfering (si)RNA, regulated by hTERT and HIF promoters, termed Ad­siERCC1. The findings demonstrated that this oncolytic adenovirus effectively inhibits the proliferation, migration and invasion of ovarian cancer cells. Furthermore, the downregulation of ERCC1 expression by siRNA ameliorates drug resistance to cisplatin (DDP) chemotherapy. It was found that Ad­siERCC1 blocks the cell cycle in the G1 phase and enhances apoptosis through the PI3K/AKT­caspase­3 signaling pathways in SKOV3 cells. The results of the present study highlighted the critical effect of oncolytic virus Ad­siERCC1 in inhibiting the survival of ovarian cancer cells and increasing chemotherapy sensitivity to DDP. These findings underscore the potent antitumor effect of Ad­siERCC1 on ovarian cancers in vivo.


Assuntos
Adenoviridae , Apoptose , Proliferação de Células , Cisplatino , Proteínas de Ligação a DNA , Endonucleases , Terapia Viral Oncolítica , Vírus Oncolíticos , Neoplasias Ovarianas , RNA Interferente Pequeno , Humanos , Feminino , Neoplasias Ovarianas/terapia , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/metabolismo , Adenoviridae/genética , Linhagem Celular Tumoral , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Endonucleases/genética , Endonucleases/metabolismo , Apoptose/genética , Terapia Viral Oncolítica/métodos , Vírus Oncolíticos/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Movimento Celular/genética , Resistencia a Medicamentos Antineoplásicos/genética , Vetores Genéticos/genética , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
12.
Adv Protein Chem Struct Biol ; 140: 419-492, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38762277

RESUMO

Discovering a therapeutic that can counteract the aggressiveness of this disease's mechanism is crucial for improving survival rates for cancer patients and for better understanding the most different types of cancer. In recent years, using these viruses as an anticancer therapy has been thought to be successful. They mostly work by directly destroying cancer cells, activating the immune system to fight cancer, and expressing exogenous effector genes. For the treatment of tumors, oncolytic viruses (OVs), which can be modified to reproduce only in tumor tissues and lyse them while preserving the healthy non-neoplastic host cells and reinstating antitumor immunity which present a novel immunotherapeutic strategy. OVs can exist naturally or be created in a lab by altering existing viruses. These changes heralded the beginning of a new era of less harmful virus-based cancer therapy. We discuss three different types of oncolytic viruses that have already received regulatory approval to treat cancer as well as clinical research using oncolytic adenoviruses. The primary therapeutic applications, mechanism of action of oncolytic virus updates, future views of this therapy will be covered in this chapter.


Assuntos
Imunoterapia , Neoplasias , Terapia Viral Oncolítica , Vírus Oncolíticos , Humanos , Vírus Oncolíticos/imunologia , Vírus Oncolíticos/genética , Neoplasias/terapia , Neoplasias/imunologia , Imunoterapia/métodos , Terapia Viral Oncolítica/métodos , Animais
13.
Nat Commun ; 15(1): 4096, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750019

RESUMO

The presence of heterogeneity in responses to oncolytic virotherapy poses a barrier to clinical effectiveness, as resistance to this treatment can occur through the inhibition of viral spread within the tumor, potentially leading to treatment failures. Here we show that 4-octyl itaconate (4-OI), a chemical derivative of the Krebs cycle-derived metabolite itaconate, enhances oncolytic virotherapy with VSVΔ51 in various models including human and murine resistant cancer cell lines, three-dimensional (3D) patient-derived colon tumoroids and organotypic brain tumor slices. Furthermore, 4-OI in combination with VSVΔ51 improves therapeutic outcomes in a resistant murine colon tumor model. Mechanistically, we find that 4-OI suppresses antiviral immunity in cancer cells through the modification of cysteine residues in MAVS and IKKß independently of the NRF2/KEAP1 axis. We propose that the combination of a metabolite-derived drug with an oncolytic virus agent can greatly improve anticancer therapeutic outcomes by direct interference with the type I IFN and NF-κB-mediated antiviral responses.


Assuntos
Terapia Viral Oncolítica , Vírus Oncolíticos , Succinatos , Animais , Humanos , Terapia Viral Oncolítica/métodos , Succinatos/farmacologia , Camundongos , Linhagem Celular Tumoral , Interferon Tipo I/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Neoplasias do Colo/terapia , Neoplasias do Colo/imunologia , Neoplasias do Colo/tratamento farmacológico , Antivirais/farmacologia , NF-kappa B/metabolismo , Quinase I-kappa B/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Inflamação/tratamento farmacológico , Feminino , Vírus da Estomatite Vesicular Indiana/fisiologia , Vírus da Estomatite Vesicular Indiana/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
14.
Eur J Pharm Biopharm ; 199: 114300, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38697488

RESUMO

Triple-negative breast cancer (TNBC) is considered one of the most incurable malignancies due to its clinical characteristics, including high invasiveness, high metastatic potential, proneness to relapse, and poor prognosis. Therefore, it remains a critical unmet medical need. On the other hand, poor delivery efficiency continues to reduce the efficacy of anti-cancer therapeutics developed against solid tumours using various strategies, such as genetically engineered oncolytic vectors used as nanocarriers. The study was designed to evaluate the anti-tumour efficacy of a novel combinatorial therapy based on oncolytic adenovirus AdV5/3-D24-ICOSL-CD40L with an anti-PD-1 (pembrolizumab) and paclitaxel (PTX). Here, we first tested the antineoplastic effect in two-dimensional (2D) and three-dimensional (3D) breast cancer models in MDA-MB-231, MDA-MB-468 and MCF-7 cells. Then, to further evaluate the efficacy of combinatorial therapy, including immunological aspects, we established a three-dimensional (3D) co-culture model based on MDA-MB-231 cells with peripheral blood mononuclear cells (PBMCs) to create an integrated system that more closely mimics the complexity of the tumour microenvironment and interacts with the immune system. Treatment with OV as a priming agent, followed by pembrolizumab and then paclitaxel, was the most effective in reducing the tumour volume in TNBC co-cultured spheroids. Further, T-cell phenotyping analyses revealed significantly increased infiltration of CD8+, CD4+ T and Tregs cells. Moreover, the observed anti-tumour effects positively correlated with the level of CD4+ T cell infiltrates, suggesting the development of anti-cancer immunity. Our study demonstrated that combining different immunotherapeutic agents (virus, pembrolizumab) with PTX reduced the tumour volume of the TNBC co-cultured spheroids compared to relevant controls. Importantly, sequential administration of the investigational agents (priming with the vector) further enhanced the anti-cancer efficacy in 3D culture over other groups tested. Taken together, these results support further evaluation of the virus in combination with anti-PD-1 and PTX for the treatment of triple-negative breast cancer patients. Importantly, further studies with in vivo models should be conducted to better understand the translational aspects of tested therapy.


Assuntos
Adenoviridae , Anticorpos Monoclonais Humanizados , Terapia Viral Oncolítica , Paclitaxel , Receptor de Morte Celular Programada 1 , Neoplasias de Mama Triplo Negativas , Paclitaxel/administração & dosagem , Paclitaxel/farmacologia , Humanos , Neoplasias de Mama Triplo Negativas/terapia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/imunologia , Feminino , Adenoviridae/genética , Anticorpos Monoclonais Humanizados/farmacologia , Anticorpos Monoclonais Humanizados/administração & dosagem , Terapia Viral Oncolítica/métodos , Linhagem Celular Tumoral , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Vírus Oncolíticos , Células MCF-7 , Terapia Combinada/métodos , Microambiente Tumoral/efeitos dos fármacos , Animais , Camundongos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/administração & dosagem
15.
Breast Cancer Res ; 26(1): 78, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750591

RESUMO

BACKGROUND: Metastatic breast cancer is a leading cause of cancer death in woman. Current treatment options are often associated with adverse side effects and poor outcomes, demonstrating the need for effective new treatments. Immunotherapies can provide durable outcomes in many cancers; however, limited success has been achieved in metastatic triple negative breast cancer. We tested whether combining different immunotherapies can target metastatic triple negative breast cancer in pre-clinical models. METHODS: Using primary and metastatic 4T1 triple negative mammary carcinoma models, we examined the therapeutic effects of oncolytic vesicular stomatitis virus (VSVΔM51) engineered to express reovirus-derived fusion associated small transmembrane proteins p14 (VSV-p14) or p15 (VSV-p15). These viruses were delivered alone or in combination with natural killer T (NKT) cell activation therapy mediated by adoptive transfer of α-galactosylceramide-loaded dendritic cells. RESULTS: Treatment of primary 4T1 tumors with VSV-p14 or VSV-p15 alone increased immunogenic tumor cell death, attenuated tumor growth, and enhanced immune cell infiltration and activation compared to control oncolytic virus (VSV-GFP) treatments and untreated mice. When combined with NKT cell activation therapy, oncolytic VSV-p14 and VSV-p15 reduced metastatic lung burden to undetectable levels in all mice and generated immune memory as evidenced by enhanced in vitro recall responses (tumor killing and cytokine production) and impaired tumor growth upon rechallenge. CONCLUSION: Combining NKT cell immunotherapy with enhanced oncolytic virotherapy increased anti-tumor immune targeting of lung metastasis and presents a promising treatment strategy for metastatic breast cancer.


Assuntos
Células T Matadoras Naturais , Terapia Viral Oncolítica , Vírus Oncolíticos , Animais , Feminino , Camundongos , Células T Matadoras Naturais/imunologia , Terapia Viral Oncolítica/métodos , Humanos , Linhagem Celular Tumoral , Vírus Oncolíticos/genética , Vírus Oncolíticos/imunologia , Imunoterapia/métodos , Vírus da Estomatite Vesicular Indiana/genética , Vírus da Estomatite Vesicular Indiana/imunologia , Neoplasias de Mama Triplo Negativas/terapia , Neoplasias de Mama Triplo Negativas/imunologia , Neoplasias de Mama Triplo Negativas/patologia , Terapia Combinada , Metástase Neoplásica , Vesiculovirus/genética , Células Dendríticas/imunologia , Neoplasias da Mama/terapia , Neoplasias da Mama/imunologia , Neoplasias da Mama/patologia , Modelos Animais de Doenças
16.
Virology ; 595: 110093, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38692134

RESUMO

Oncolytic virotherapy stands out as a burgeoning and promising therapeutic paradigm, harnessing the intrinsic cytotoxicity of oncolytic viruses for selective replication and dissemination within tumors. The primary mode of action revolves around the direct eradication of tumor cells. In our previous investigations, we formulated an oncolytic herpes simplex virus type 2 (OH2) and substantiated its anti-tumor efficacy both in vivo and in vitro. Subsequently, we embarked on a phase I/II clinical trial in China (NMPA, 2018L02743) and the USA (FDA, IND 27137) to assess OH2's safety, biodistribution, and anti-tumor activity as a standalone agent in patients with advanced solid tumors. In this investigation, our primary focus was to comprehend the influence of the major capsid protein VP5 of OH2 on its efficacy as an antitumor agent. Our findings underscore that the VP5 protein significantly amplifies OH2's oncolytic impact on A549 cells. Additionally, we observed that VP5 actively promotes the induction of apoptosis in A549 cells, both in vivo and in vitro. Through comprehensive transcriptional sequencing, we further authenticated that the VP5 protein triggers apoptosis-related signaling pathways and Gene Ontology (GO) terms in A549 cells. Moreover, we scrutinized differentially expressed genes in the p53-dependent apoptosis pathway and conducted meticulous in vitro validation of these genes. Subsequently, we delved deeper into unraveling the functional significance of the TP53I3 gene and conclusively affirmed that the VP5 protein induces apoptosis in A549 cells through the TP53I3 gene. These revelations illuminate the underlying mechanisms of OH2's antitumor activity and underscore the pivotal role played by the VP5 protein. The outcomes of our study harbor promising implications for the formulation of effective oncolytic virotherapy strategies in cancer treatment.


Assuntos
Apoptose , Herpesvirus Humano 2 , Terapia Viral Oncolítica , Vírus Oncolíticos , Humanos , Vírus Oncolíticos/genética , Vírus Oncolíticos/fisiologia , Células A549 , Terapia Viral Oncolítica/métodos , Animais , Herpesvirus Humano 2/fisiologia , Herpesvirus Humano 2/genética , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Camundongos , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Mol Oncol ; 18(4): 781-784, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38561242

RESUMO

Oncolytic viruses (OVs) are biological therapeutic agents that selectively destroy cancer cells while sparing normal healthy cells. Besides direct oncolysis, OV infection induces a proinflammatory shift in the tumor microenvironment and the release of tumor-associated antigens (TAAs) that might induce an anti-tumor immunity. Due to their immunostimulatory effect, OVs have been explored for cancer vaccination against specific TAAs. However, this approach usually requires genetic modification of the virus and the production of a new viral vector for each target, which is difficult to implement for low prevalent antigens. In a recent study, Chiaro et al. presented an elegant proof of concept on how to implement the PeptiCRAd vaccination platform to overcome this limitation for the treatment of mesothelioma. Authors showed the feasibility of identifying immunogenic TAAs in human mesothelioma and using them to coat oncolytic adenovirus particles. The result was a customized virus-based cancer vaccine that circumvents time and resource-consuming steps incurred from genetically engineering viruses. Although some questions remain to be addressed, this interesting approach suggests novel strategies for personalized cancer medicine using oncolytic virotherapy.


Assuntos
Mesotelioma Maligno , Mesotelioma , Neoplasias , Terapia Viral Oncolítica , Vírus Oncolíticos , Humanos , Adenoviridae/genética , Casamento , Vírus Oncolíticos/genética , Mesotelioma/terapia , Antígenos de Neoplasias , Microambiente Tumoral
18.
Front Immunol ; 15: 1375433, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38576614

RESUMO

Oncolytic virus (OV) therapy has emerged as a promising frontier in cancer treatment, especially for solid tumours. While immunotherapies like immune checkpoint inhibitors and CAR-T cells have demonstrated impressive results, their limitations in inducing complete tumour regression have spurred researchers to explore new approaches targeting tumours resistant to current immunotherapies. OVs, both natural and genetically engineered, selectively replicate within cancer cells, inducing their lysis while sparing normal tissues. Recent advancements in clinical research and genetic engineering have enabled the development of targeted viruses that modify the tumour microenvironment, triggering anti-tumour immune responses and exhibiting synergistic effects with other cancer therapies. Several OVs have been studied for breast cancer treatment, including adenovirus, protoparvovirus, vaccinia virus, reovirus, and herpes simplex virus type I (HSV-1). These viruses have been modified or engineered to enhance their tumour-selective replication, reduce toxicity, and improve oncolytic properties.Newer generations of OVs, such as Oncoviron and Delta-24-RGD adenovirus, exhibit heightened replication selectivity and enhanced anticancer effects, particularly in breast cancer models. Clinical trials have explored the efficacy and safety of various OVs in treating different cancers, including melanoma, nasopharyngeal carcinoma, head and neck cancer, and gynecologic malignancies. Notably, Talimogene laherparepvec (T-VEC) and Oncorine have. been approved for advanced melanoma and nasopharyngeal carcinoma, respectively. However, adverse effects have been reported in some cases, including flu-like symptoms and rare instances of severe complications such as fistula formation. Although no OV has been approved specifically for breast cancer treatment, ongoing preclinical clinical trials focus on four groups of viruses. While mild adverse effects like low-grade fever and nausea have been observed, the effectiveness of OV monotherapy in breast cancer remains insufficient. Combination strategies integrating OVs with chemotherapy, radiotherapy, or immunotherapy, show promise in improving therapeutic outcomes. Oncolytic virus therapy holds substantial potential in breast cancer treatment, demonstrating safety in trials. Multi-approach strategies combining OVs with conventional therapies exhibit more promising therapeutic effects than monotherapy, signalling a hopeful future for OV-based breast cancer treatments.


Assuntos
Neoplasias da Mama , Melanoma , Neoplasias Nasofaríngeas , Terapia Viral Oncolítica , Vírus Oncolíticos , Feminino , Humanos , Terapia Viral Oncolítica/efeitos adversos , Terapia Viral Oncolítica/métodos , Melanoma/terapia , Vírus Oncolíticos/genética , Neoplasias da Mama/terapia , Neoplasias da Mama/etiologia , Carcinoma Nasofaríngeo/terapia , Neoplasias Nasofaríngeas/terapia , Microambiente Tumoral
20.
Front Immunol ; 15: 1272351, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38558795

RESUMO

In recent years, oncolytic viruses have emerged as promising agents for treating various cancers. An oncolytic virus is a non-pathogenic virus that, due to genetic manipulation, tends to replicate in and cause lysis of cancerous cells while leaving healthy cells unaffected. Among these viruses, vaccinia virus is an attractive platform for use as an oncolytic platform due to its 190 Kb genome with a high capacity for encoding therapeutic payloads. Combining oncolytic VV therapy with other conventional cancer treatments has been shown to be synergistic and more effective than monotherapies. Additionally, OVV can be used as a vector to deliver therapeutic payloads, alone or in combination with other treatments, to increase overall efficacy. Here, we present a comprehensive analysis of preclinical and clinical studies that have evaluated the efficacy of oncolytic vaccinia viruses in cancer immunotherapy. We discuss the outcomes of these studies, including tumor regression rates, overall survival benefits, and long-term responses. Moreover, we provide insights into the challenges and limitations associated with oncolytic vaccinia virus- based therapies, including immune evasion mechanisms, potential toxicities, and the development of resistance.


Assuntos
Neoplasias , Terapia Viral Oncolítica , Vírus Oncolíticos , Humanos , Vírus Oncolíticos/genética , Vaccinia virus/genética , Neoplasias/terapia , Neoplasias/genética , Imunoterapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...