Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmacol Ther ; 240: 108297, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36202261

RESUMO

Chronic pain is a major burden for the society and remains more prevalent and severe in females. The presence of chronic pain is linked to persistent alterations in the peripheral and the central nervous system. One of the main types of peripheral pain transducers are the transient receptor potential channels (TRP), also known as thermoTRP channels, which intervene in the perception of hot and cold external stimuli. These channels, and especially TRPV1, TRPA1 and TRPM8, have been subjected to profound investigation because of their role as thermosensors and also because of their implication in acute and chronic pain. Surprisingly, their sensitivity to endogenous signaling has been far less studied. Cumulative evidence suggests that the function of these channels may be differently modulated in males and females, in part through sexual hormones, and this could constitute a significant contributor to the sex differences in chronic pain. Here, we review the exciting advances in thermoTRP pharmacology for males and females in two paradigmatic types of chronic pain with a strong peripheral component: chronic migraine and chemotherapy-induced peripheral neuropathy (CIPN). The possibilities of peripheral druggability offered by these channels and the differential exploitation for men and women represent a development opportunity that will lead to a significant increment of the armamentarium of analgesic medicines for personalized chronic pain treatment.


Assuntos
Dor Crônica , Transtornos de Enxaqueca , Doenças do Sistema Nervoso Periférico , Termorreceptores , Canais de Potencial de Receptor Transitório , Feminino , Humanos , Masculino , Analgésicos/uso terapêutico , Dor Crônica/tratamento farmacológico , Transtornos de Enxaqueca/tratamento farmacológico , Caracteres Sexuais , Canais de Potencial de Receptor Transitório/metabolismo , Antineoplásicos/efeitos adversos , Termorreceptores/metabolismo
2.
J Inorg Biochem ; 229: 111745, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35121188

RESUMO

A conservative characteristic of manganese superoxide dismutase is the rapid formation of product inhibition at high temperatures. At lower temperatures, the enzyme is less inhibited and undergoes more catalytic fast cycles before being product-inhibited. The temperature-dependent kinetics could be rationalized by the temperature-dependent coordination in the conserved center of manganese superoxide dismutase. As temperature decreases, a water molecule (WAT2) approaches or even coordinates Mn as the sixth ligand to interfere with O2•--Mn coordination and reduce product inhibition, so the dismutation should mainly proceed in the fast outer-sphere pathway at low temperatures. Cold-activation is an adaptive response to low temperature rather than a passive adaptation to excess superoxide levels since the cold-activated dismutase activity significantly exceeds the amount of superoxide in the cell or mitochondria. Physiologically speaking, cold activation of manganese superoxide dismutase mediates cold stress signaling and transduces temperature (physical signal) degree into H2O2 fluxes (chemical signal), which in turn may act as a second messenger to induce a series of physiological responses such as cold shock.


Assuntos
Superóxido Dismutase/metabolismo , Termorreceptores/metabolismo , Bactérias/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Temperatura Baixa , Resposta ao Choque Frio/fisiologia , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Fungos/enzimologia , Humanos , Peróxido de Hidrogênio/metabolismo , Manganês/química , Estresse Oxidativo/fisiologia , Conformação Proteica , Transdução de Sinais/fisiologia , Superóxido Dismutase/química , Superóxidos/química , Superóxidos/metabolismo , Termorreceptores/química
3.
J Laryngol Otol ; 135(2): 104-109, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33612130

RESUMO

BACKGROUND: The mechanism of nasal airflow sensation is poorly understood. This study aimed to examine the role of nasal mucosal temperature change in the subjective perception of nasal patency and the methods by which it can be quantified. METHOD: Medline and PubMed database searches were performed to retrieve literature relevant to the topic. RESULTS: The primary mechanism producing the sensation of nasal patency is thought to be the activation of transient receptor potential melastatin family member 8 ('TRPM8'), a thermoreceptor that is activated by nasal mucosal cooling. Computational fluid dynamics studies have demonstrated that increased airflow and heat flux are correlated with better patient-reported outcome measure scores. Similarly, physical measurements of the nasal cavity using temperature probes have shown a correlation between lower nasal mucosal temperatures and better patient-reported outcome measure scores. CONCLUSION: Nasal mucosal temperature change may be correlated with the perception of improved nasal patency. Future research should quantify the impact of mucosal cooling on the perception of nasal airway obstruction.


Assuntos
Temperatura Baixa/efeitos adversos , Mucosa Nasal/fisiologia , Obstrução Nasal/psicologia , Percepção/fisiologia , Resistência das Vias Respiratórias/fisiologia , Simulação por Computador , Humanos , Hidrodinâmica , Cavidade Nasal/anatomia & histologia , Cavidade Nasal/diagnóstico por imagem , Cavidade Nasal/fisiologia , Mucosa Nasal/metabolismo , Obstrução Nasal/diagnóstico , Obstrução Nasal/fisiopatologia , Obstrução Nasal/cirurgia , Medidas de Resultados Relatados pelo Paciente , Ventilação Pulmonar/fisiologia , Canais de Cátion TRPM/metabolismo , Temperatura , Termorreceptores/metabolismo
4.
Mol Cell Endocrinol ; 518: 110986, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32835783

RESUMO

Thermoregulation is critical for survival and animals therefore employ strategies to keep their body temperature within a physiological range. As ectotherms, fish exclusively rely on behavioral strategies for thermoregulation. Different species of fish seek out their specific optimal temperatures through thermal navigation by biasing behavioral output based on experienced environmental temperatures. Like other vertebrates, fish sense water temperature using thermoreceptors in trigeminal and dorsal root ganglia neurons that innervate the skin. Recent research in larval zebrafish has revealed how neural circuits subsequently transform this sensation of temperature into thermoregulatory behaviors. Across fish species, thermoregulatory strategies rely on a modulation of swim vigor based on current temperature and a modulation of turning based on temperature change. Interestingly, temperature preferences are not fixed but depend on other environmental cues and internal states. The following review is intended as an overview on the current knowledge as well as open questions in fish thermoregulation.


Assuntos
Peixes/fisiologia , Termorreceptores/metabolismo , Animais , Comportamento Animal , Regulação da Temperatura Corporal
5.
Curr Biol ; 30(16): 3167-3182.e4, 2020 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-32619476

RESUMO

Animals exhibit innate and learned preferences for temperature and humidity-conditions critical for their survival and reproduction. Leveraging a whole-brain electron microscopy volume, we studied the adult Drosophila melanogaster circuitry associated with antennal thermo- and hygrosensory neurons. We have identified two new target glomeruli in the antennal lobe, in addition to the five known ones, and the ventroposterior projection neurons (VP PNs) that relay thermo- and hygrosensory information to higher brain centers, including the mushroom body and lateral horn, seats of learned and innate behavior. We present the first connectome of a thermo- and hygrosensory neuropil, the lateral accessory calyx (lACA), by reconstructing neurons downstream of heating- and cooling-responsive VP PNs. A few mushroom body-intrinsic neurons solely receive thermosensory input from the lACA, while most receive additional olfactory and thermo- and/or hygrosensory PN inputs. Furthermore, several classes of lACA-associated neurons form a local network with outputs to other brain neuropils, suggesting that the lACA serves as a hub for thermo- and hygrosensory circuitry. For example, DN1a neurons link thermosensory PNs in the lACA to the circadian clock via the accessory medulla. Finally, we survey strongly connected downstream partners of VP PNs across the protocerebrum; these include a descending neuron targeted by dry-responsive VP PNs, meaning that just two synapses might separate hygrosensory inputs from motor circuits. These data provide a comprehensive first- and second-order layer analysis of Drosophila thermo- and hygrosensory systems and an initial survey of third-order neurons that could directly modulate behavior.


Assuntos
Conectoma , Drosophila melanogaster/fisiologia , Neurônios/metabolismo , Neurópilo/metabolismo , Células Receptoras Sensoriais/metabolismo , Sinapses/fisiologia , Termorreceptores/metabolismo , Animais , Feminino , Neurônios/citologia , Condutos Olfatórios
6.
Int J Mol Sci ; 21(12)2020 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-32580281

RESUMO

TRPM8 is the main molecular entity responsible for cold sensing. This polymodal ion channel is activated by cold, cooling compounds such as menthol, voltage, and rises in osmolality. In corneal cold thermoreceptor neurons (CTNs), TRPM8 expression determines not only their sensitivity to cold, but also their role as neural detectors of ocular surface wetness. Several reports suggest that Protein Kinase C (PKC) activation impacts on TRPM8 function; however, the molecular bases of this functional modulation are still poorly understood. We explored PKC-dependent regulation of TRPM8 using Phorbol 12-Myristate 13-Acetate to activate this kinase. Consistently, recombinant TRPM8 channels, cultured trigeminal neurons, and free nerve endings of corneal CTNs revealed a robust reduction of TRPM8-dependent responses under PKC activation. In corneal CTNs, PKC activation decreased ongoing activity, a key parameter in the role of TRPM8-expressing neurons as humidity detectors, and also the maximal cold-evoked response, which were validated by mathematical modeling. Biophysical analysis indicated that PKC-dependent downregulation of TRPM8 is mainly due to a decreased maximal conductance value, and complementary noise analysis revealed a reduced number of functional channels at the cell surface, providing important clues to understanding the molecular mechanisms of how PKC activity modulates TRPM8 channels in CTNs.


Assuntos
Temperatura Baixa , Neurônios/metabolismo , Proteína Quinase C/metabolismo , Canais de Cátion TRPM/metabolismo , Termorreceptores/metabolismo , Sensação Térmica , Nervo Trigêmeo/metabolismo , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/citologia , Células Receptoras Sensoriais/metabolismo , Nervo Trigêmeo/citologia
7.
Cell Rep ; 30(13): 4505-4517.e5, 2020 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-32234483

RESUMO

TRPM8 is the main ion channel responsible for cold transduction in the somatosensory system. Nerve terminal availability of TRPM8 determines cold sensitivity, but how axonal secretory organelles control channel delivery remains poorly understood. Here we examine the distribution of TRPM8 and trafficking organelles in cold-sensitive peripheral axons and disrupt trafficking by targeting the ARF-GEF GBF1 pharmacologically or the small GTPase RAB6 by optogenetics. In axons of the sciatic nerve, inhibition of GBF1 interrupts TRPM8 trafficking and increases association with the trans-Golgi network, LAMP1, and Golgi satellites, which distribute profusely along the axonal shaft. Accordingly, both TRPM8-dependent ongoing activity and cold-evoked responses reversibly decline upon GBF1 inhibition in nerve endings of corneal cold thermoreceptors. Inhibition of RAB6, which also associates to Golgi satellites, decreases cold-induced responses in vivo. Our results support a non-conventional axonal trafficking mechanism controlling the availability of TRPM8 in axons and cold sensitivity in the peripheral nervous system.


Assuntos
Axônios/metabolismo , Temperatura Baixa , Organelas/metabolismo , Canais de Cátion TRPM/metabolismo , Animais , Axônios/efeitos dos fármacos , Complexo de Golgi/efeitos dos fármacos , Complexo de Golgi/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Células HEK293 , Células HeLa , Humanos , Masculino , Mentol/farmacologia , Camundongos , Optogenética , Organelas/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Nervo Isquiático/efeitos dos fármacos , Nervo Isquiático/metabolismo , Termorreceptores/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo
8.
Mol Microbiol ; 113(3): 588-592, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31971637

RESUMO

An outstanding question regards the ability of organisms to sense their environments and respond in a suitable way. Pathogenic bacteria in particular exploit host-temperature sensing as a cue for triggering virulence gene expression. This micro-review does not attempt to fully cover the field of bacterial thermosensors and in detail describe each identified case. Instead, the review focus on the time-period at the end of the 1990's and beginning of the 2000's when several key discoveries were made, identifying protein, DNA and RNA as potential thermosensors controlling gene expression in several different bacterial pathogens in general and on the prfA thermosensor of Listeria monocytogenes in particular.


Assuntos
Bactérias/metabolismo , Interações entre Hospedeiro e Microrganismos/fisiologia , Termorreceptores/fisiologia , Bactérias/patogenicidade , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica/genética , Temperatura Alta , Listeria monocytogenes/metabolismo , Fatores de Terminação de Peptídeos/genética , Fatores de Terminação de Peptídeos/metabolismo , RNA/genética , RNA/metabolismo , Termorreceptores/metabolismo , Sensação Térmica/genética , Sensação Térmica/fisiologia , Transativadores/metabolismo , Virulência/genética , Fatores de Virulência/genética
9.
Physiol Rev ; 100(2): 725-803, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31670612

RESUMO

The transient receptor potential ankyrin (TRPA) channels are Ca2+-permeable nonselective cation channels remarkably conserved through the animal kingdom. Mammals have only one member, TRPA1, which is widely expressed in sensory neurons and in non-neuronal cells (such as epithelial cells and hair cells). TRPA1 owes its name to the presence of 14 ankyrin repeats located in the NH2 terminus of the channel, an unusual structural feature that may be relevant to its interactions with intracellular components. TRPA1 is primarily involved in the detection of an extremely wide variety of exogenous stimuli that may produce cellular damage. This includes a plethora of electrophilic compounds that interact with nucleophilic amino acid residues in the channel and many other chemically unrelated compounds whose only common feature seems to be their ability to partition in the plasma membrane. TRPA1 has been reported to be activated by cold, heat, and mechanical stimuli, and its function is modulated by multiple factors, including Ca2+, trace metals, pH, and reactive oxygen, nitrogen, and carbonyl species. TRPA1 is involved in acute and chronic pain as well as inflammation, plays key roles in the pathophysiology of nearly all organ systems, and is an attractive target for the treatment of related diseases. Here we review the current knowledge about the mammalian TRPA1 channel, linking its unique structure, widely tuned sensory properties, and complex regulation to its roles in multiple pathophysiological conditions.


Assuntos
Sinalização do Cálcio , Mecanotransdução Celular , Nociceptividade , Células Receptoras Sensoriais/metabolismo , Canal de Cátion TRPA1/metabolismo , Sensação Térmica , Animais , Canalopatias/metabolismo , Canalopatias/fisiopatologia , Células Quimiorreceptoras/metabolismo , Humanos , Inflamação/metabolismo , Inflamação/fisiopatologia , Mecanorreceptores/metabolismo , Nociceptores/metabolismo , Dor/metabolismo , Dor/fisiopatologia , Termorreceptores/metabolismo
10.
Invest Ophthalmol Vis Sci ; 60(1): 209-217, 2019 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30641549

RESUMO

Purpose: There is a substantial body of evidence indicating that corneal sensory innervation is affected by pathology in a range of diseases. However, there are no published studies that have directly assessed whether the nerve fiber density of the different subpopulations of corneal sensory neurons are differentially affected. The present study explored the possibility that the intraepithelial nerve fiber density of corneal polymodal nociceptors and cold thermoreceptors are differentially affected in mice fed with a high-fat high cholesterol (HFHC; 21% fat, 2% cholesterol) diet and in those that also have diabetes. Methods: The mice were fed the HFHC diet for the duration of the experiment (up to 40 weeks). Mice in the diabetes group had hyperglycaemia induced with streptozotocin after 15 weeks on the HFHC diet. Age-matched control animals were fed a standard diet. All corneal nerve fibers were labeled with a pan neuronal antibody (antiprotein gene product 9.5), and polymodal nociceptors and cold thermoreceptors were labeled with antibodies directed against transient receptor potential cation channel, subfamily V, member 1 and transient receptor potential cation channel subfamily M member 8, respectively. Results: The mice fed a HFHC diet and those that in addition have hyperglycemia have similar reductions in corneal nerve fiber density consistent with small fiber neuropathy. Importantly, both treatments more markedly affected the intraepithelial axons of cold thermoreceptors than those of polymodal nociceptors. Conclusions: The results provide evidence that distinct subpopulations of corneal sensory neurons can be differentially affected by pathology.


Assuntos
Diabetes Mellitus Tipo 2/complicações , Dieta Hiperlipídica/efeitos adversos , Epitélio Corneano/inervação , Nociceptores/metabolismo , Termorreceptores/metabolismo , Doenças do Nervo Trigêmeo/etiologia , Nervo Trigêmeo/metabolismo , Animais , Glicemia/metabolismo , Diabetes Mellitus Experimental/complicações , Hiperglicemia/etiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência , Terminações Nervosas/fisiologia , Fibras Nervosas/patologia , Estreptozocina , Canais de Cátion TRPM/metabolismo , Canais de Cátion TRPV/metabolismo , Doenças do Nervo Trigêmeo/metabolismo
11.
Exp Physiol ; 103(10): 1302-1308, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30070742

RESUMO

NEW FINDINGS: What is the central question of this study? How do gastric stretch and gastric cooling stimuli affect cardiac autonomic control? What is the main finding and its importance? Gastric stretch causes an increase in cardiac sympathetic activity. Stretch combined with cold stimulation result in an elimination of the sympathetic response to stretch and an increase in cardiac parasympathetic activity, in turn resulting in a reduction in heart rate. Gastric cold stimulation causes a shift in sympathovagal balance towards parasympathetic dominance. The cold-induced bradycardia has the potential to decrease cardiac workload, which might be significant in individuals with cardiovascular pathologies. ABSTRACT: Gastric distension increases blood pressure and heart rate in young, healthy humans, but little is known about the effect of gastric stretch combined with cooling. We used a randomized crossover study to assess the cardiovascular responses to drinking 300 ml of ispaghula husk solution at either 6 or 37°C in nine healthy humans (age 24.08 ± 9.36 years) to establish the effect of gastric stretch with and without cooling. The effect of consuming peppermint oil capsules to activate cold thermoreceptors was also investigated. The ECG, respiratory movements and continuous blood pressure were recorded during a 5 min baseline period, followed by a 115 min post-drink period, during which 5 min epochs of data were recorded. Cardiac autonomic activity was assessed using time and frequency domain analyses of respiratory sinus arrhythmia to quantify parasympathetic autonomic activity, and corrected QT (QTc) interval analysis to quantify sympathetic autonomic activity. Gastric stretch only caused a significant reduction in QTc interval lasting up to 15 min, with a concomitant but non-significant increase in heart rate, indicating an increased sympathetic cardiac tone. The additional effect of gastric cold stimulation was significantly to reduce heart rate for up to 15 min, elevate indicators of cardiac parasympathetic tone and eliminate the reduction in QTc interval seen with gastric stretch only. Stimulation of gastric cold thermoreceptors with menthol also caused a significant reduction in heart rate and concomitant increase in the root mean square of successive differences. These findings indicate that gastric cold stimulation causes a shift in the sympathovagal balance of cardiac control towards a more parasympathetic dominant pattern.


Assuntos
Frequência Cardíaca/efeitos dos fármacos , Coração/efeitos dos fármacos , Mentol/administração & dosagem , Adulto , Sistema Nervoso Autônomo/efeitos dos fármacos , Pressão Sanguínea/efeitos dos fármacos , Bradicardia/metabolismo , Temperatura Baixa , Estudos Cross-Over , Eletrocardiografia/efeitos dos fármacos , Voluntários Saudáveis , Humanos , Mentha piperita , Óleos de Plantas/administração & dosagem , Psyllium/administração & dosagem , Termorreceptores/metabolismo , Adulto Jovem
12.
Diabetes ; 67(8): 1650-1662, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29875100

RESUMO

The mechanisms responsible for painful and insensate diabetic neuropathy are not completely understood. Here, we have investigated sensory neuropathy in the Ins2+/Akita mouse, a hereditary model of diabetes. Akita mice become diabetic soon after weaning, and we show that this is accompanied by an impaired mechanical and thermal nociception and a significant loss of intraepidermal nerve fibers. Electrophysiological investigations of skin-nerve preparations identified a reduced rate of action potential discharge in Ins2+/Akita mechanonociceptors compared with wild-type littermates, whereas the function of low-threshold A-fibers was essentially intact. Studies of isolated sensory neurons demonstrated a markedly reduced heat responsiveness in Ins2+/Akita dorsal root ganglion (DRG) neurons, but a mostly unchanged function of cold-sensitive neurons. Restoration of normal glucose control by islet transplantation produced a rapid recovery of nociception, which occurred before normoglycemia had been achieved. Islet transplantation also restored Ins2+/Akita intraepidermal nerve fiber density to the same level as wild-type mice, indicating that restored insulin production can reverse both sensory and anatomical abnormalities of diabetic neuropathy in mice. The reduced rate of action potential discharge in nociceptive fibers and the impaired heat responsiveness of Ins2+/Akita DRG neurons suggest that ionic sensory transduction and transmission mechanisms are modified by diabetes.


Assuntos
Neuropatias Diabéticas/metabolismo , Epiderme/inervação , Gânglios Espinais/metabolismo , Insulina/metabolismo , Fibras Nervosas Amielínicas/metabolismo , Distúrbios Somatossensoriais/metabolismo , Termorreceptores/metabolismo , Potenciais de Ação , Substituição de Aminoácidos , Animais , Comportamento Animal , Células Cultivadas , Diabetes Mellitus/sangue , Diabetes Mellitus/cirurgia , Neuropatias Diabéticas/patologia , Neuropatias Diabéticas/fisiopatologia , Neuropatias Diabéticas/prevenção & controle , Epiderme/metabolismo , Epiderme/patologia , Epiderme/fisiopatologia , Gânglios Espinais/patologia , Gânglios Espinais/fisiopatologia , Heterozigoto , Insulina/genética , Transplante das Ilhotas Pancreáticas , Rim , Masculino , Mecanorreceptores/metabolismo , Mecanorreceptores/patologia , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Fibras Nervosas Amielínicas/patologia , Medição da Dor , Distúrbios Somatossensoriais/complicações , Distúrbios Somatossensoriais/fisiopatologia , Distúrbios Somatossensoriais/prevenção & controle , Termorreceptores/patologia , Termorreceptores/fisiopatologia , Transplante Heterotópico
14.
Nature ; 555(7694): 98-102, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29466329

RESUMO

Circadian clocks coordinate behaviour, physiology and metabolism with Earth's diurnal cycle. These clocks entrain to both light and temperature cycles, and daily environmental temperature oscillations probably contribute to human sleep patterns. However, the neural mechanisms through which circadian clocks monitor environmental temperature and modulate behaviour remain poorly understood. Here we elucidate how the circadian clock neuron network of Drosophila melanogaster processes changes in environmental temperature. In vivo calcium-imaging techniques demonstrate that the posterior dorsal neurons 1 (DN1ps), which are a discrete subset of sleep-promoting clock neurons, constantly monitor modest changes in environmental temperature. We find that these neurons are acutely inhibited by heating and excited by cooling; this is an unexpected result when considering the strong correlation between temperature and light, and the fact that light excites clock neurons. We demonstrate that the DN1ps rely on peripheral thermoreceptors located in the chordotonal organs and the aristae. We also show that the DN1ps and their thermosensory inputs are required for the normal timing of sleep in the presence of naturalistic temperature cycles. These results identify the DN1ps as a major gateway for temperature sensation into the circadian neural network, which continuously integrates temperature changes to coordinate the timing of sleep and activity.


Assuntos
Relógios Circadianos/fisiologia , Ritmo Circadiano/fisiologia , Drosophila melanogaster/fisiologia , Neurônios/fisiologia , Sono/fisiologia , Temperatura , Sensação Térmica/fisiologia , Animais , Temperatura Baixa , Drosophila melanogaster/anatomia & histologia , Drosophila melanogaster/citologia , Feminino , Temperatura Alta , Locomoção/fisiologia , Masculino , Rede Nervosa/citologia , Rede Nervosa/fisiologia , Inibição Neural , Termorreceptores/metabolismo , Fatores de Tempo
15.
Radiat Res ; 189(1): 95-103, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29059001

RESUMO

The existence of effects of radiofrequency field exposure at environmental levels on living tissues and organisms remains controversial, in particular regarding potential "nonthermal" effects produced in the absence of temperature elevation. Therefore, we investigated whether TRPV1, one of the most studied thermosensitive channels, can be activated by the heat produced by radiofrequency fields and by some specific nonthermal interaction with the fields. We have recently shown that TRPV1 activation can be assessed in real-time on live cells using the bioluminescence resonance energy transfer technique. Taking advantage of this innovative assay, we monitored TRPV1 thermal and chemical modes of activation under radiofrequency exposure at 1800 MHz using different signals (CW, GSM, UMTS, LTE, Wi-Fi and WiMAX) at specific absorption rates between 8 and 32 W/kg. We showed that, as expected, TRPV1 channels were activated by the heat produced by radiofrequency field exposure of transiently-transfected HEK293T cells, but found no evidence of TRPV1 activation in the absence of temperature elevation under radiofrequency field exposure. There was no evidence either that, at fixed temperature, radiofrequency exposure altered the maximal efficacy of the agonist Capsaicin to activate TRPV1.


Assuntos
Ondas de Rádio/efeitos adversos , Canais de Cátion TRPV/metabolismo , Termorreceptores/metabolismo , Termorreceptores/efeitos da radiação , Calmodulina/metabolismo , Capsaicina/farmacologia , Células HEK293 , Humanos , Termorreceptores/efeitos dos fármacos
16.
Adv Exp Med Biol ; 1015: 265-277, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29080031

RESUMO

In primary sensory neurons of the spinal and trigeminal somatosensory system, cold-sensitivity is strongly dependent on the functional balance between TRPM8 channels, the main molecular entity responsible for the cold-activated excitatory current, and Shaker-like Kv1.1-1.2 potassium channels, the molecular counterpart underlying the excitability brake current IKD. This slow-inactivating outward K+ current reduces the excitability of cold thermoreceptor neurons increasing their thermal threshold, and prevents unspecific activation by cold of neurons of other somatosensory modalities. Here we examine the main biophysical properties of this current in primary sensory neurons, its central role in cold thermotransduction, and its contribution to alterations in cold sensitivity triggered by peripheral nerve damage.


Assuntos
Síndromes Periódicas Associadas à Criopirina/metabolismo , Canal de Potássio Kv1.1/metabolismo , Células Receptoras Sensoriais/metabolismo , Termorreceptores/metabolismo , Animais , Temperatura Baixa , Canais de Cátion TRPM/metabolismo
17.
Sci Rep ; 7(1): 5031, 2017 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-28694517

RESUMO

Thermoregulatory behaviour, such as migration to a comfortable thermal environment, is a representative innate animal behaviour and facilitates effective autonomic regulation of body temperature with a reduced cost of resources. Here we determine the central thermosensory ascending pathway that transmits information on environmental temperature from cutaneous thermoreceptors to elicit thermoregulatory behaviour. To examine the contribution of the spinothalamocortical pathway, which is known to mediate thermosensory transmission for perception of skin temperature, we lesioned thalamic regions mediating this pathway in rats. Thalamic-lesioned rats showed compromised electroencephalographic responses in the primary somatosensory cortex to changes in skin temperature, indicating functional ablation of the spinothalamocortical pathway. However, these lesioned rats subjected to a two-floor innocuous thermal plate preference test displayed intact heat- and cold-avoidance thermoregulatory behaviours. We then examined the involvement of the lateral parabrachial nucleus (LPB), which mediates cutaneous thermosensory signaling to the thermoregulatory center for autonomic thermoregulation. Inactivation of neurons in the LPB eliminated both heat- and cold-avoidance thermoregulatory behaviours and ablated heat defense. These results demonstrate that the LPB, but not the thalamus, mediates the cutaneous thermosensory neural signaling required for behavioural thermoregulation, contributing to understanding of the central circuit that generates thermal comfort and discomfort underlying thermoregulatory behaviours.


Assuntos
Regulação da Temperatura Corporal , Núcleos Parabraquiais/fisiologia , Tálamo/fisiologia , Termorreceptores/metabolismo , Animais , Aprendizagem da Esquiva , Eletroencefalografia , Masculino , Ratos , Transdução de Sinais , Córtex Somatossensorial/fisiologia
18.
Somatosens Mot Res ; 34(2): 85-91, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28325123

RESUMO

PURPOSE: Facilitatory and inhibitory responses of spinal motor neurons are influenced by somatosensory input from the skin. The purpose of this study, employing electromyography, was to examine the neuromuscular changes that occur with menthol applied to the skin over the quadriceps muscle. METHODS: Forty-two healthy volunteers performed isometric knee extensions at 35% maximum voluntary contraction (MVC) in three groups (Adult Placebo, Adult Menthol, Older Adult Menthol). Stimulation used was application of 5% menthol gel to the skin. Surface electromyography (sEMG) from the vastus lateralis (VL), vastus medialis (VM), and rectus femoris (RF) was recorded using miniature pair electrodes. RESULTS: Root mean square electromyography (rmsEMG) in VL and VM significantly increased with menthol stimulation both in Adult and Older Adult, but no significant difference was observed between Adult Menthol and Older Adult Menthol. There was a significant decrease in mean power frequency (MPF) in VM with menthol stimulation in Older Adult, but no significant changes were observed in Adult Menthol. CONCLUSION: Neuromuscular modulation was observed with the application of menthol gel at low loads in the present study. These findings could lead to a new method of muscular training that targets the recruitment of fast type muscle safe for older adults.


Assuntos
Contração Isométrica/fisiologia , Mentol/farmacologia , Neurônios Motores/fisiologia , Músculo Quadríceps/fisiologia , Termorreceptores/metabolismo , Adulto , Idoso , Eletromiografia , Feminino , Humanos , Contração Isométrica/efeitos dos fármacos , Masculino , Pessoa de Meia-Idade , Neurônios Motores/efeitos dos fármacos , Músculo Quadríceps/efeitos dos fármacos , Pele/efeitos dos fármacos , Pele/inervação , Termorreceptores/efeitos dos fármacos , Adulto Jovem
19.
Neuroscience ; 332: 223-30, 2016 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-27393251

RESUMO

P2Y2 is a member of the P2Y family of G protein-coupled nucleotide receptors that is widely co-expressed with TRPV1 in peripheral sensory neurons of the dorsal root ganglia. To characterize P2Y2 function in cutaneous afferents, intracellular recordings from mouse sensory neurons were made using an ex vivo preparation in which hindlimb skin, saphenous nerve, dorsal root ganglia and spinal cord are dissected intact. The peripheral response properties of individual cutaneous C-fibers were analyzed using digitally controlled mechanical and thermal stimuli in male P2Y2(+/+) and P2Y2(-/-) mice. Selected sensory neurons were labeled with Neurobiotin and further characterized by immunohistochemistry. In wildtype preparations, C-fibers responding to both mechanical and thermal stimuli (CMH or CMHC) preferentially bound the lectin marker IB4 and were always immunonegative for TRPV1. Conversely, cells that fired robustly to noxious heat, but were insensitive to mechanical stimuli, were TRPV1-positive and IB4-negative. P2Y2 gene deletion resulted in reduced firing by TRPV1-negative CMH fibers to a range of heat stimuli. However, we also identified an atypical population of IB4-negative, TRPV1-positive CMH fibers. Compared to wildtype CMH fibers, these TRPV1-positive neurons exhibited lower firing rates in response to mechanical stimulation, but had increased firing to noxious heat (43-51°C). Collectively, these results demonstrate that P2Y2 contributes to response properties of cutaneous afferents, as P2Y2 deletion reduces responsiveness of conventional unmyelinated polymodal afferents to heat and appears to result in the acquisition of mechanical responsiveness in a subset of TRPV1-expressing afferents.


Assuntos
Mecanorreceptores/metabolismo , Fibras Nervosas Amielínicas/metabolismo , Receptores Purinérgicos P2Y2/metabolismo , Pele/inervação , Pele/metabolismo , Termorreceptores/metabolismo , Potenciais de Ação/fisiologia , Animais , Gânglios Espinais/citologia , Gânglios Espinais/metabolismo , Membro Posterior/inervação , Membro Posterior/metabolismo , Temperatura Alta , Imuno-Histoquímica , Masculino , Mecanorreceptores/citologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Estimulação Física , Receptores Purinérgicos P2Y2/genética , Limiar Sensorial/fisiologia , Medula Espinal/citologia , Medula Espinal/metabolismo , Canais de Cátion TRPV/metabolismo , Termorreceptores/citologia , Técnicas de Cultura de Tecidos
20.
PLoS One ; 10(10): e0139314, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26426259

RESUMO

Cold-sensitive nerve terminals (CSNTs) encode steady temperatures with regular, rhythmic temperature-dependent firing patterns that range from irregular tonic firing to regular bursting (static response). During abrupt temperature changes, CSNTs show a dynamic response, transiently increasing their firing frequency as temperature decreases and silencing when the temperature increases (dynamic response). To date, mathematical models that simulate the static response are based on two depolarizing/repolarizing pairs of membrane ionic conductance (slow and fast kinetics). However, these models fail to reproduce the dynamic response of CSNTs to rapid changes in temperature and notoriously they lack a specific cold-activated conductance such as the TRPM8 channel. We developed a model that includes TRPM8 as a temperature-dependent conductance with a calcium-dependent desensitization. We show by computer simulations that it appropriately reproduces the dynamic response of CSNTs from mouse cornea, while preserving their static response behavior. In this model, the TRPM8 conductance is essential to display a dynamic response. In agreement with experimental results, TRPM8 is also needed for the ongoing activity in the absence of stimulus (i.e. neutral skin temperature). Free parameters of the model were adjusted by an evolutionary optimization algorithm, allowing us to find different solutions. We present a family of possible parameters that reproduce the behavior of CSNTs under different temperature protocols. The detection of temperature gradients is associated to a homeostatic mechanism supported by the calcium-dependent desensitization.


Assuntos
Temperatura Baixa , Modelos Teóricos , Canais de Cátion TRPM/metabolismo , Termorreceptores/metabolismo , Sensação Térmica/fisiologia , Animais , Simulação por Computador , Cinética , Camundongos , Camundongos Endogâmicos BALB C , Análise Numérica Assistida por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...