Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Eukaryot Microbiol ; 65(5): 694-704, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29505174

RESUMO

For the first time, ciliates have been found to activate rather than inactivate a virus, chum salmon reovirus (CSV). Activation was seen as an increase in viral titre upon incubation of CSV at 22 °C with Tetrahymena canadenesis and two strains of T. thermophila: wild type (B1975) and a temperature conditional mutant for phagocytosis (NP1). The titre increase was not likely due to replication because CSV had no visible effects on the ciliates and no vertebrate virus has ever been shown unequivocally to replicate in ciliates. When incubated with B1975 and NP1 at 30 °C, CSV was activated only by B1975. Therefore, activation required CSV internalization because at 30 °C only B1975 exhibited phagocytosis. CSV replicated in fish cells at 18 to 26 °C but not at 30 °C. Collectively, these observations point to CSV activation being distinct from replication. Activation is attributed to the CSV capsid being modified in the ciliate phagosomal-lysosomal system and released in a more infectious form. When allowed to swim in CSV-infected fish cell cultures, collected, washed, and transferred to uninfected cultures, T. canadensis caused a CSV infection. Overall the results suggest that ciliates could have roles in the environmental dissemination of some fish viral diseases.


Assuntos
Infecções por Reoviridae/veterinária , Reoviridae/fisiologia , Tetrahymena thermophila/virologia , Animais , Doenças dos Peixes/virologia , Oncorhynchus keta/parasitologia , Oncorhynchus keta/virologia , Fagossomos/virologia , Infecções por Reoviridae/virologia , Temperatura , Ativação Viral , Replicação Viral
2.
Biol Direct ; 9: 6, 2014 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-24773695

RESUMO

Polintons (also known as Mavericks) and Tlr elements of Tetrahymena thermophila represent two families of large DNA transposons widespread in eukaryotes. Here, we show that both Polintons and Tlr elements encode two key virion proteins, the major capsid protein with the double jelly-roll fold and the minor capsid protein, known as the penton, with the single jelly-roll topology. This observation along with the previously noted conservation of the genes for viral genome packaging ATPase and adenovirus-like protease strongly suggests that Polintons and Tlr elements combine features of bona fide viruses and transposons. We propose the name 'Polintoviruses' to denote these putative viruses that could have played a central role in the evolution of several groups of DNA viruses of eukaryotes.


Assuntos
Proteínas do Capsídeo/genética , Elementos de DNA Transponíveis , Vírus de DNA/genética , Tetrahymena thermophila/virologia , Vírion/genética , Sequência de Aminoácidos , Proteínas do Capsídeo/metabolismo , Vírus de DNA/metabolismo , Dados de Sequência Molecular , Filogenia , Alinhamento de Sequência , Vírion/metabolismo
3.
J Eukaryot Microbiol ; 55(3): 207-13, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18460158

RESUMO

Tetrahymena has been shown to ingest and inactivate bacteriophages, such as T4, in co-incubation experiments. In this study, Tetrahymena thermophila failed to inactivate phages PhiX174 and MS2 in co-incubations, although PhiX174 were ingested by T. thermophila, as demonstrated by: (1) recovery at defecation in a pulse-chase experiment, (2) recovery from Tetrahymena by detergent lysis, and (3) transmission electron microscopy. We conclude, therefore, that the phages must be digestion-resistant. Internalized PhiX174 were further shown to be partially protected from lethal damage by ultraviolet (UV) C and UVB irradiation. Finally, ingested PhiX174 were shown to be rapidly transported through buffer in a horizontal swimming, race tube-like assay. The transport and protection of phages may confer evolutionary advantages that explain the acquisition of digestion-resistance by some phages.


Assuntos
Bacteriófagos/fisiologia , Tetrahymena thermophila/fisiologia , Animais , Bacteriófagos/efeitos da radiação , Tetrahymena thermophila/efeitos da radiação , Tetrahymena thermophila/ultraestrutura , Tetrahymena thermophila/virologia , Raios Ultravioleta , Inativação de Vírus
4.
J Eukaryot Microbiol ; 55(1): 44-50, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18251802

RESUMO

Abiotic factors are thought to be primarily responsible for the loss of bacteriophages from the environment, but ingestion of phages by heterotrophs may also play a role in their elimination. Tetrahymena thermophila has been shown to ingest and inactivate bacteriophage T4 in co-incubation experiments. In this study, other Tetrahymena species were co-incubated with T4 with similar results. In addition, T. thermophila was shown to inactivate phages T5 and lambda in co-incubations. Several approaches, including direct visualization by electron microscopy, demonstrated that ingestion is required for T4 inactivation. Mucocysts were shown to have no role in the ingestion of T4. When (35)S-labeled T4 were fed to T. thermophila in a pulse-chase experiment, the degradation of two putative capsid proteins, gp23(*) and hoc, was observed. In addition, a polypeptide with the apparent molecular mass of 52 kDa was synthesized. This suggests that Tetrahymena can use phages as a minor nutrient source in the absence of bacteria.


Assuntos
Bacteriófago T4/crescimento & desenvolvimento , Tetrahymena/fisiologia , Tetrahymena/virologia , Animais , Bacteriófago T4/ultraestrutura , Bacteriófago lambda/crescimento & desenvolvimento , Proteínas do Capsídeo/metabolismo , Técnicas de Cocultura/métodos , Marcação por Isótopo , Microscopia Eletrônica , Mutação , Radioisótopos de Enxofre/metabolismo , Fagos T/crescimento & desenvolvimento , Tetrahymena/genética , Tetrahymena/ultraestrutura , Tetrahymena thermophila/genética , Tetrahymena thermophila/fisiologia , Tetrahymena thermophila/ultraestrutura , Tetrahymena thermophila/virologia , Inativação de Vírus
5.
Appl Environ Microbiol ; 73(2): 643-9, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17114327

RESUMO

The ability of a ciliate to inactivate bacteriophage was studied because these viruses are known to influence the size and diversity of bacterial populations, which affect nutrient cycling in natural waters and effluent quality in sewage treatment, and because ciliates are ubiquitous in aquatic environments, including sewage treatment plants. Tetrahymena thermophila was used as a representative ciliate; T4 was used as a model bacteriophage. The T4 titer was monitored on Escherichia coli B in a double-agar overlay assay. T4 and the ciliate were incubated together under different conditions and for various times, after which the mixture was centrifuged through a step gradient, producing a top layer free of ciliates. The T4 titer in this layer decreased as coincubation time increased, but no decrease was seen if phage were incubated with formalin-fixed Tetrahymena. The T4 titer associated with the pellet of living ciliates was very low, suggesting that removal of the phage by Tetrahymena inactivated T4. When Tetrahymena cells were incubated with SYBR gold-labeled phage, fluorescence was localized in structures that had the shape and position of food vacuoles. Incubation of the phage and ciliate with cytochalasin B or at 4 degrees C impaired T4 inactivation. These results suggest the active removal of T4 bacteriophage from fluid by macropinocytosis, followed by digestion in food vacuoles. Such ciliate virophagy may be a mechanism occurring in natural waters and sewage treatment, and the methods described here could be used to study the factors influencing inactivation and possibly water quality.


Assuntos
Bacteriófago T4/crescimento & desenvolvimento , Água Doce/virologia , Tetrahymena thermophila/virologia , Inativação de Vírus , Animais , Bacteriófago T4/fisiologia , Meios de Cultura , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/virologia , Eucariotos , Água Doce/parasitologia , Fagocitose , Tetrahymena thermophila/crescimento & desenvolvimento , Tetrahymena thermophila/ultraestrutura , Vacúolos/ultraestrutura , Vacúolos/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...