Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dev Biol ; 405(1): 158-72, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26123745

RESUMO

Gene duplications result in paralogs that may be maintained due to the gain of novel functions (neo-functionalization) or the partitioning of ancestral function (sub-functionalization). Plant genomes are especially prone to duplication; paralogs are particularly widespread in the floral MADS box transcription factors that control organ identity through the ABC model of flower development. C class genes establish stamen and carpel identity and control floral meristem determinacy, and are largely conserved across the angiosperm phylogeny. Originally, an additional D class had been identified as controlling ovule identity; yet subsequent studies indicated that both C and D lineage genes more commonly control ovule development redundantly. The ranunculid Thalictrum thalictroides has two orthologs of the Arabidopsis thaliana C class gene AGAMOUS (AG), ThtAG1 and ThtAG2 (Thalictrum thalictroides AGAMOUS1/2). We previously showed that ThtAG1 exhibits typical C class function; here we examine the role of its paralog, ThtAG2. Our phylogenetic analysis shows that ThtAG2 falls within the C lineage, together with ThtAG1, and is consistent with previous findings of a Ranunculales-specific duplication in this clade. However, ThtAG2 is not expressed in stamens, but rather solely in carpels and ovules. This female-specific expression pattern is consistent with D lineage genes, and with other C lineage genes known to be involved in ovule identity. Given the divergent expression of ThtAG2, we tested the hypothesis that it has acquired ovule identity function. Molecular evolution analyses showed evidence of positive selection on ThtAG2-a pattern that supports divergence of function by sub-functionalization. Down-regulation of ThtAG2 by virus-induced gene silencing resulted in homeotic conversions of ovules into carpel-like structures. Taken together, our results suggest that, although ThtAG2 falls within the C lineage, it has diverged to acquire "D function" as an ovule identity gene, and does not appear to require a direct interaction with the ThtAG1 protein. We therefore present a functional example of ovule identity being specified by either a single gene or a gene pair within the C lineage, with no D lineage contribution. In conclusion, following a Ranunculales-wide duplication in the AG lineage, functional divergence has led to the evolution of ovule identity-specificity in a T. thalictroides C lineage gene.


Assuntos
Duplicação Gênica , Genes de Plantas , Óvulo Vegetal/crescimento & desenvolvimento , Óvulo Vegetal/genética , Thalictrum/crescimento & desenvolvimento , Thalictrum/genética , Sequência de Aminoácidos , Aminoácidos/metabolismo , Regulação para Baixo/genética , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Genes Homeobox , Dados de Sequência Molecular , Especificidade de Órgãos/genética , Óvulo Vegetal/ultraestrutura , Fenótipo , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ligação Proteica , Alinhamento de Sequência , Thalictrum/ultraestrutura , Técnicas do Sistema de Duplo-Híbrido
2.
Oecologia ; 139(3): 359-75, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15024639

RESUMO

Effects of invasive plant species on native plant species are frequently assumed or inferred from comparisons, but rarely quantified experimentally. Such quantification is important to assessing risks and impacts of invasives. We quantified the effects of Lonicera maackii, an exotic shrub invasive in many eastern North American forests, on survival, growth, and reproduction of three perennial herbs: Allium burdickii, Thalictrum thalictroides , and Viola pubescens. We predicted that the spring ephemeral, A. burdickii , would be most impacted, due to early leaf expansion of L. maackii. Field experiments were carried out in two deciduous forest stands, one (Gregg's Woodlot, GW) disturbed and the other (Western Woods, WW) relatively undisturbed. In each stand, individual herbs were transplanted into a blocked design of 60 plots where L. maackii was present, absent, or removed, and monitored for 5 growing seasons. Lonicera maackii did not affect survival of transplants, but reduced growth and final size of individuals of all three species. For two of the species, A. burdickii and V. pubescens, L. maackii reduced the proportion of live plants flowering in both stands, and reduced the seed or fruit number per flowering individual in GW. For T. thalictroides the proportion flowering was not affected, but seed number per flowering plant was reduced by L. maackii in both stands. For all three species, cumulative seed production over the course of the study was reduced by L. maackii. Overall, effects on the spring ephemeral, A. burdickii, were similar to effects on the other herbs. Because mortality of these established individuals was not affected, short-term studies might conclude forest herbs are unaffected by invasive shrubs. However, the growth and reproduction impacts documented here suggest that populations are impacted in the long-term.


Assuntos
Allium/crescimento & desenvolvimento , Ecossistema , Lonicera/crescimento & desenvolvimento , Thalictrum/crescimento & desenvolvimento , Viola/crescimento & desenvolvimento , Análise de Variância , Ohio , Dinâmica Populacional , Reprodução/fisiologia , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...