Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Phylogenet Evol ; 197: 108094, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38723792

RESUMO

Thermophilic unicellular cyanobacteria of the family Thermosynechococcaceae are essential primary producers and integral components of many microbial mats found in hot springs of Asia and North America. Historically, based on their simple morphology, these organisms, along with members of taxonomically unrelated thermophilic Thermostichaceae have been described with a generic term, "Synechococcus", used for elongated unicellular cyanobacteria. This has created significant misperception in the scientific literature regarding the taxonomic status of these essential thermophilic primary producers and their relationship with Synechococcus sensu stricto. In this manuscript, we attempted a genome-driven taxonomic reevaluation of the family Thermosynechococcaceae. Application of genomic analyses such as GTDB classification, ANI/AAI and phylogenomics support the delineation of eight species within genus Thermosynechococcus. Two subspecies were further identified within T. taiwanensis by dDDH and phylogenomics. Moreover, the results also suggest the presence of two putative new genera phylogenetically alongside genus Thermosynechococcus, a thermophilic genus Parathermosynechococcus represented by PCC 6715 and a non-thermophilic genus represented by PCC 6312. The proposed genospecies and new genera were further integrated with morphological and/or ecological information. Interestingly, the phylogeny of 16S-23S ITS achieved a better taxonomic relationship than that of 16S rRNA and supported the genome-based classification of Thermosynechococcus spp. Finally, the pan-genome analysis indicated a conserved pattern of genomic core among known members of Thermosynechococcus.


Assuntos
Filogenia , Fenótipo , Thermosynechococcus/genética , Thermosynechococcus/classificação , Genoma Bacteriano/genética , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , Análise de Sequência de DNA , Genômica , Cianobactérias/genética , Cianobactérias/classificação
2.
Microbes Environ ; 36(2)2021.
Artigo em Inglês | MEDLINE | ID: mdl-33952861

RESUMO

Cyanobacteria thrive in diverse environments. However, questions remain about possible growth limitations in ancient environmental conditions. As a single genus, the Thermosynechococcus are cosmopolitan and live in chemically diverse habitats. To understand the genetic basis for this, we compared the protein coding component of Thermosynechococcus genomes. Supplementing the known genetic diversity of Thermosynechococcus, we report draft metagenome-assembled genomes of two Thermosynechococcus recovered from ferrous carbonate hot springs in Japan. We find that as a genus, Thermosynechococcus is genomically conserved, having a small pan-genome with few accessory genes per individual strain as well as few genes that are unique to the genus. Furthermore, by comparing orthologous protein groups, including an analysis of genes encoding proteins with an iron related function (uptake, storage or utilization), no clear differences in genetic content, or adaptive mechanisms could be detected between genus members, despite the range of environments they inhabit. Overall, our results highlight a seemingly innate ability for Thermosynechococcus to inhabit diverse habitats without having undergone substantial genomic adaptation to accommodate this. The finding of Thermosynechococcus in both hot and high iron environments without adaptation recognizable from the perspective of the proteome has implications for understanding the basis of thermophily within this clade, and also for understanding the possible genetic basis for high iron tolerance in cyanobacteria on early Earth. The conserved core genome may be indicative of an allopatric lifestyle-or reduced genetic complexity of hot spring habitats relative to other environments.


Assuntos
Genoma Bacteriano , Thermosynechococcus/genética , Thermosynechococcus/isolamento & purificação , Adaptação Fisiológica , Ecossistema , Genômica , Fontes Termais/microbiologia , Japão , Filogenia , Thermosynechococcus/classificação , Thermosynechococcus/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA