Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 590
Filtrar
1.
Biochim Biophys Acta Gen Subj ; 1868(6): 130599, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38521471

RESUMO

BACKGROUND: VEGFR-2 has emerged as a prominent positive regulator of cancer progression. AIM: Discovery of new anticancer agents and apoptotic inducers targeting VEGFR-2. METHODS: Design and synthesis of new thiazolidine-2,4-diones followed by extensive in vitro studies, including VEGFR-2 inhibition assay, MTT assay, apoptosis analysis, and cell migration assay. In silico investigations including docking, MD simulations, ADMET, toxicity, and DFT studies were performed. RESULTS: Compound 15 showed the strongest VEGFR-2 inhibitory activity with an IC50 value of 0.066 µM. Additionally, most of the synthesized compounds showed anti-proliferative activity against HepG2 and MCF-7 cancer cell lines at the micromolar range with IC50 values ranging from 0.04 to 4.71 µM, relative to sorafenib (IC50 = 2.24 ± 0.06 and 3.17 ± 0.01 µM against HepG2 and MCF-7, respectively). Also, compound 15 showed selectivity indices of 1.36 and 2.08 against HepG2 and MCF-7, respectively. Furthermore, compound 15 showed a significant apoptotic effect and arrested the cell cycle of MCF-7 cells at the S phase. Moreover, compound 15 had a significant inhibitory effect on the ability of MCF-7 cells to heal from. Docking studies revealed that the synthesized thiazolidine-2,4-diones have a binding pattern approaching sorafenib. MD simulations indicated the stability of compound 15 in the active pocket of VEGFR-2 for 200 ns. ADMET and toxicity studies indicated an acceptable pharmacokinetic profile. DFT studies confirmed the ability of compound 15 to interact with VEGFR-2. CONCLUSION: Compound 15 has promising anticancer activity targeting VEGFR-2 with significant activity as an apoptosis inducer.


Assuntos
Antineoplásicos , Apoptose , Proliferação de Células , Desenho de Fármacos , Simulação de Acoplamento Molecular , Tiazolidinedionas , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Humanos , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Tiazolidinedionas/farmacologia , Tiazolidinedionas/química , Tiazolidinedionas/síntese química , Células MCF-7 , Células Hep G2 , Proliferação de Células/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Ensaios de Seleção de Medicamentos Antitumorais , Sorafenibe/farmacologia , Sorafenibe/química , Simulação de Dinâmica Molecular , Movimento Celular/efeitos dos fármacos
2.
J Mol Graph Model ; 129: 108742, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38422823

RESUMO

Peroxisome proliferator-activated receptor gamma (PPAR-γ) serves as a nuclear receptor with a pivotal function in governing diverse facets of metabolic processes. In diabetes, the prime physiological role of PPAR-γ is to enhance insulin sensitivity and regulate glucose metabolism. Although PPAR-γ agonists such as Thiazolidinediones are effective in addressing diabetes complications, it is vital to be mindful that they are associated with substantial side effects that could potentially give rise to health challenges. The recent surge in the discovery of selective modulators of PPAR-γ inspired us to formulate an integrated computational strategy by leveraging the promising capabilities of both machine learning and in silico drug design approaches. In pursuit of our objectives, the initial stage of our work involved constructing an advanced machine learning classification model, which was trained utilizing chemical information and physicochemical descriptors obtained from known PPAR-γ modulators. The subsequent application of machine learning-based virtual screening, using a library of 31,750 compounds, allowed us to identify 68 compounds having suitable characteristics for further investigation. A total of four compounds were identified and the most favorable configurations were complemented with docking scores ranging from -8.0 to -9.1 kcal/mol. Additionally, the compounds engaged in hydrogen bond interactions with essential conserved residues including His323, Leu330, Phe363, His449 and Tyr473 that describe the ligand binding site. The stability indices investigated herein for instance root-mean-square fluctuations in the backbone atoms indicated higher mobility in the region of orthosteric site in the presence of agonist with the deviation peaks in the range of 0.07-0.69 nm, signifying moderate conformational changes. The deviations at global level revealed that the average values lie in the range of 0.25-0.32 nm. In conclusion, our identified hits particularly, CHEMBL-3185642 and CHEMBL-3554847 presented outstanding results and highlighted the stable conformation within the orthosteric site of PPAR-γ to positively modulate the activity.


Assuntos
Agonistas PPAR-gama , Tiazolidinedionas , Simulação de Acoplamento Molecular , Tiazolidinedionas/química , Sítios de Ligação , PPAR gama/agonistas , PPAR gama/metabolismo
3.
Eur J Med Chem ; 261: 115826, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37793328

RESUMO

Diabetes mellitus is a metabolic disorder characterized by elevated blood sugar levels and related complications. This study focuses on harnessing and integrating fragment-based drug design and virtual screening techniques to explore the antidiabetic potential of newly synthesized thiazolidine-2,4-dione derivatives. The research involves the design of novel variations of thiazolidine-2,4-dione compounds by Fragment-Based Drug Design. The screening process involves pharmacophore based virtual screening through docking algorithms, and the identification of newly twelve top-scoring compounds. The molecular docking analysis revealed that compounds SP4e, SP4f showed highest docking scores of -9.082 and -10.345. The binding free energies of the compounds SP4e, SP4f and pioglitazone was found to be -19.9, -16.1 and -13 respectively, calculated using the Prime MM/GBSA approach. The molecular dynamic study validates the docking results. Furthermore, In the Swiss albino mice model, both SP4e and SP4f exhibited significant hypoglycaemic effects, comparable to the reference drug pioglitazone. Furthermore, these compounds demonstrated favorable effects on the lipid profile, reducing total cholesterol, triglycerides, and LDL levels while increasing HDL levels. In mice tissue, the disease control group showed PPAR-γ expression of 4.200 ± 0.24, while compound SP4f displayed higher activation at 7.84 ± 0.431 compared to compound SP4e with an activation of 7.68 ± 0.65. In zebrafish model, SP4e and SP4f showed significant reductions in blood glucose levels and lipid peroxidation, along with increased glutathione levels and catalase activity. These findings highlighted the potential of SP4e and SP4f as antidiabetic agents, warranting further exploration for therapeutic applications. The in vitro study was performed in HEK-2 cell line, the pioglitazone group demonstrated PPAR-γ expression of EC50 = 575.2, while compound SP4f exhibited enhanced activation at EC50 = 739.0 in contrast to compound SP4e activation of EC50 = 826.7.


Assuntos
Diabetes Mellitus Experimental , Tiazolidinedionas , Camundongos , Animais , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Hipoglicemiantes/química , Pioglitazona/farmacologia , Pioglitazona/uso terapêutico , Tiazolidinas/uso terapêutico , Simulação de Acoplamento Molecular , Peixe-Zebra/metabolismo , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/tratamento farmacológico , Tiazolidinedionas/química , PPAR gama/metabolismo , Desenho de Fármacos
4.
Eur J Med Chem ; 258: 115591, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37393789

RESUMO

In case of metabolic disorder like Diabetes mellitus (DM), a number of key enzymes are abnormally expressed and hence they might be excellent targets for antidiabetic drug design. Multi-target design strategy has recently attracted great attention to treat challenging diseases. We have previously reported a vanillin-thiazolidine-2,4-dione hybrid 3 as multitarget inhibitor of α-glucosidase, α-amylase, PTP-1B and DPP-4. The reported compound predominantly exhibited good in-vitro DPP-4 inhibition only. Current research describes the goal to optimize an early lead compound. The efforts were focused on enhancing the capability of manipulating multiple pathways at the same time for the treatment of diabetes. The central 5-benzylidinethiazolidine-2,4-dione for Lead compound (Z)-5-(4-hydroxy-3-methoxybenzylidene)-3-(2-morpholinoacetyl)thiazolidine-2,4-dione (Z-HMMTD) was left unchanged. While East and West moieties were altered by the introduction of different building blocks conceived by using a number of rounds of predictive docking studies performed on X-ray crystal structures of four target enzymes. This systematic SAR led to the syntheses of new potent multi-target antidiabetic compounds 47-49 and 55-57 with many fold increase in the in-vitro potency compared to Z-HMMTD. The potent compounds showed good in-vitro and in-vivo safety profile. Compound 56 emerged excellent as glucose-uptake promotor via hemi diaphragm of the rat. Moreover, the compounds demonstrated antidiabetic activity in STZ-induced diabetic animal model.


Assuntos
Diabetes Mellitus , Tiazolidinedionas , Ratos , Animais , Tiazolidinas , Simulação de Acoplamento Molecular , Hipoglicemiantes/química , Tiazolidinedionas/química , Diabetes Mellitus/tratamento farmacológico
5.
J Am Chem Soc ; 145(27): 14802-14810, 2023 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-37385602

RESUMO

The lipid-sensing transcription factor PPARγ is the target of antidiabetic thiazolidinediones (TZD). At two sites within its ligand binding domain, it also binds oxidized vitamin E metabolites and the vitamin E mimetic garcinoic acid. While the canonical interaction within the TZD binding site mediates classical PPARγ activation, the effects of the second binding on PPARγ activity remain elusive. Here, we identified an agonist mimicking dual binding of vitamin E metabolites and developed a selective ligand of the second site, unveiling potential noncanonical regulation of PPARγ activities. We found that this alternative binding event can simultaneously occur with orthosteric ligands and it exerted different effects on PPARγ-cofactor interactions compared to both orthosteric PPARγ agonists and antagonists, indicating the diverse roles of the two binding sites. Alternative site binding lacked the pro-adipogenic effect of TZD and mediated no classical PPAR signaling in differential gene expression analysis but markedly diminished FOXO signaling, suggesting potential therapeutic applications.


Assuntos
PPAR gama , Tiazolidinedionas , PPAR gama/agonistas , PPAR gama/genética , PPAR gama/metabolismo , Ligantes , Fatores de Transcrição/metabolismo , Tiazolidinedionas/química , Sítios de Ligação
6.
Bioorg Chem ; 134: 106449, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36889200

RESUMO

Despite the advancements in the management of Diabetes mellitus, the design and synthesis of drug molecule which ameliorates the hyperglycemia and associated secondary complications in diabetic patients, still remains a challenge. Herein, we report the synthesis, characterization and anti-diabetic evaluation of pyrimidine-thiazolidinedione derivatives. The synthesized compounds were characterized by 1H NMR, 13C NMR, FTIR and Mass Spectroscopic analytical techniques. The in-silico ADME studies depicted that the compounds were within the permissible limits of the Lipinski's rule of five. The compounds 6e and 6m showing the best results in OGTT were evaluated for in-vivo anti-diabetic evaluation in STZ induced diabetic rats. Administration of 6e and 6m for four weeks decreased the blood glucose levels significantly. Compound 6e (4.5 mg/kg p.o.) was the most potent compound of the series. It reduced the level of blood glucose to 145.2 ± 1.35 compared to the standard Pioglitazone (150.2 ± 1.06). Moreover, the 6e and 6m treated group did not show increase in bodyweight. The biochemical estimations showed that the levels of ALT, ASP, ALP, urea, creatinine, blood urea nitrogen, total protein and LDH restored to normal in 6e and 6m treated groups as compared to STZ control group. The histopathological studies supported the results obtained in biochemical estimations. Both the compounds did not show any toxicity. Moreover, the histopathological studies of pancreas, liver, heart and kidney revealed that the structural integrity of these tissues restored to almost normal in 6e and 6m treated groups as compared to STZ control group. Based upon these findings it can be concluded that the pyrimidine-based thiazolidinedione derivatives represent novel anti-diabetic agents with least side effects.


Assuntos
Diabetes Mellitus Experimental , Tiazolidinedionas , Ratos , Animais , Glicemia/metabolismo , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/tratamento farmacológico , Tiazolidinedionas/farmacologia , Tiazolidinedionas/uso terapêutico , Tiazolidinedionas/química , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Hipoglicemiantes/química , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico
7.
Int J Mol Sci ; 24(3)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36769344

RESUMO

Diabetes mellitus (DM) and related complications continue to exert a significant burden on health care systems globally. Although conventional pharmacological therapies are beneficial in the management of this metabolic condition, it is still necessary to seek novel potential molecules for its management. On this basis, we have synthesised and evaluated the anti-diabetic properties of four novel thiazolidinedione (TZD)-derivatives. The TZD derivatives were synthesised through the pharmacophore hybridisation strategy based on N-arylpyrrole and TZD. The resultant derivatives at different concentrations were screened against key enzymes of glucose metabolism and glucose utilisation in the liver (HEP-G2) cell line. Additionally, peroxisome proliferator-activated receptor-γ activation was performed through docking studies. Docking of these molecules against PPAR-γ predicted strong binding, similar to that of rosiglitazone. Hence, TZDD2 was able to increase glucose uptake in the liver cells as compared to the control. The enzymatic inhibition assays showed a relative inhibition activity; with all four derivatives exhibiting ≥ 50% inhibition activity in the α-amylase inhibition assay and a concentration dependent activity in the α-glucosidase inhibition assay. All four derivatives exhibited ≥30% inhibition in the aldose reductase inhibition assay, except TZDD1 at 10 µg/mL. Interestingly, TZDD3 showed a decreasing inhibition activity. In the dipeptidyl peptidase-4 inhibition assay, TZDD2 and TZDD4 exhibited ≥20% inhibition activity.


Assuntos
Hipoglicemiantes , Tiazolidinedionas , Hipoglicemiantes/farmacologia , Hipoglicemiantes/química , Tiazolidinedionas/farmacologia , Tiazolidinedionas/química , Rosiglitazona/farmacologia , Glucose/metabolismo , PPAR gama/metabolismo , Simulação de Acoplamento Molecular
8.
Arch Pharm (Weinheim) ; 356(2): e2200452, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36378997

RESUMO

The thiazolidine-4-one scaffold has recently emerged as a potential pharmacophore having clinical significance for medicinal chemists. This heterocyclic ring has been reported to possess a plethora of biological activities, including antidiabetic activity that has inspired researchers to integrate this core with different pharmacophoric fragments to design novel and effective antidiabetic leads. The antidiabetic activity has been observed due to the ability of the thiazolidine-4-one nucleus to interact with different biological targets, including peroxisome proliferator-activated receptor γ, protein tyrosine phosphatase 1B, aldose reductase, α-glucosidase, and α-amylase. The present review discusses the mode of action of thiazolidine-4-ones through these antidiabetic drug targets. This review attempts to summarize and analyze the recent developments with regard to the antidiabetic potential of thiazolidine-4-ones covering different synthetic strategies, structure-activity relationships, and docking studies reported in the literature. The significance of various structural modifications at C-2, N-3, and C-5 of the thiazolidine-4-one ring has also been discussed in this manuscript. This comprehensive compilation will provide an inevitable scope for the design and development of potential antidiabetic drug candidates having a thiazolidine-4-one core.


Assuntos
Hipoglicemiantes , Tiazolidinedionas , Relação Estrutura-Atividade , Hipoglicemiantes/farmacologia , Hipoglicemiantes/química , Tiazolidinas/farmacologia , Tiazolidinas/química , PPAR gama/metabolismo , Tiazolidinedionas/química
9.
Molecules ; 27(19)2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36235304

RESUMO

Heterocyclic compounds containing nitrogen and sulfur, especially those in the thiazole family, have generated special interest in terms of their synthetic chemistry, which is attributable to their ubiquitous existence in pharmacologically dynamic natural products and also as overwhelmingly powerful agrochemicals and pharmaceuticals. The thiazolidin-2,4-dione (TZD) moiety plays a central role in the biological functioning of several essential molecules. The availability of substitutions at the third and fifth positions of the Thiazolidin-2,4-dione (TZD) scaffold makes it a highly utilized and versatile moiety that exhibits a wide range of biological activities. TZD analogues exhibit their hypoglycemic activity by improving insulin resistance through PPAR-γ receptor activation, their antimicrobial action by inhibiting cytoplasmic Mur ligases, and their antioxidant action by scavenging reactive oxygen species (ROS). In this manuscript, an effort has been made to review the research on TZD derivatives as potential antimicrobial, antioxidant, and antihyperglycemic agents from the period from 2010 to the present date, along with their molecular mechanisms and the information on patents granted to TZD analogues.


Assuntos
Anti-Infecciosos , Produtos Biológicos , Compostos Heterocíclicos , Tiazolidinedionas , Agroquímicos , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Ligases , Nitrogênio , PPAR gama , Preparações Farmacêuticas , Espécies Reativas de Oxigênio , Enxofre , Tiazóis , Tiazolidinedionas/química
10.
Arch Pharm (Weinheim) ; 355(9): e2100517, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35715383

RESUMO

2,4-Thiazolidinedione (2,4-TZD), commonly known as glitazone, is a ubiquitous heterocyclic pharmacophore possessing a plethora of pharmacological activities and offering a vast opportunity for structural modification. The diverse range of biological activities endowed with a novel mode of action, low cost, and easy synthesis has attracted the attention of medicinal chemists. Several researchers have integrated the TZD core with different structural fragments to develop a wide range of lead molecules against various clinical disorders. The most common sites for structural modifications at the 2,4-TZD nucleus are the N-3 and the active methylene at C-5. The review covers the recent development of TZD derivatives such as antimicrobial, anticancer, and antidiabetic agents. Various 2,4-TZD based agents or drugs, which are either under clinical development or in the market, are discussed in the study. Different synthetic methodologies for synthesizing the 2,4-TZD core are also included in the manuscript. The importance of various substitutions at N-3 and C-5 and the mechanisms of action and structure-activity relationships are also discussed. We hope this study will serve as a valuable tool for the scientific community engaged in the structural exploitation of the 2,4-TZD core for developing novel drug m\olecules for life-threatening ailments.


Assuntos
Anti-Infecciosos , Tiazolidinedionas , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Ligantes , Relação Estrutura-Atividade , Tiazolidinedionas/química , Tiazolidinedionas/farmacologia
11.
Molecules ; 27(3)2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35163936

RESUMO

The multidomain BAG3 protein is a member of the BAG (Bcl-2-associated athanogene) family of co-chaperones, involved in a wide range of protein-protein interactions crucial for many key cellular pathways, including autophagy, cytoskeletal dynamics, and apoptosis. Basal expression of BAG3 is elevated in several tumor cell lines, where it promotes cell survival signaling and apoptosis resistance through the interaction with many protein partners. In addition, its role as a key player of several hallmarks of cancer, such as metastasis, angiogenesis, autophagy activation, and apoptosis inhibition, has been established. Due to its involvement in malignant transformation, BAG3 has emerged as a potential and effective biological target to control multiple cancer-related signaling pathways. Recently, by using a multidisciplinary approach we reported the first synthetic BAG3 modulator interfering with its BAG domain (BD), based on a 2,4-thiazolidinedione scaffold and endowed with significant anti-proliferative activity. Here, a further in silico-driven selection of a 2,4-thiazolidinedione-based compound was performed. Thanks to a straightforward synthesis, relevant binding affinity for the BAG3BD domain, and attractive biological activities, this novel generation of compounds is of great interest for the development of further BAG3 binders, as well as for the elucidation of the biological roles of this protein in tumors. Specifically, we found compound 6 as a new BAG3 modulator with a relevant antiproliferative effect on two different cancer cell lines (IC50: A375 = 19.36 µM; HeLa = 18.67 µM).


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Antineoplásicos/farmacologia , Proteínas Reguladoras de Apoptose/antagonistas & inibidores , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Tiazolidinedionas/farmacologia , Antineoplásicos/química , Apoptose , Autofagia , Proliferação de Células , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Tiazolidinedionas/química , Células Tumorais Cultivadas
12.
Molecules ; 27(3)2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35164095

RESUMO

This work aimed to synthesize a new antihyperglycemic thiazolidinedione based on the spectral data. The DFT\B3LYP\6-311G** level of theory was used to investigate the frontier molecular orbitals (FMOs), chemical reactivity and map the molecular electrostatic potentials (MEPs) to explain how the synthesized compounds interacted with the receptor. The molecular docking simulations into the active sites of PPAR-γ and α-amylase were performed. The in vitro potency of these compounds via α-amylase and radical scavenging were evaluated. The data revealed that compounds (4-6) have higher potency than the reference drugs. The anti-diabetic and anti-hyperlipidemic activities for thiazolidine-2,4-dione have been investigated in vivo using the alloxan-induced diabetic rat model along with the 30 days of treatment protocol. The investigated compounds didn't show obvious reduction of blood glucose during pre-treatments compared to diabetic control, while after 30 days of treatments, the blood glucose level was lower than that of the diabetic control. Compounds (4-7) were able to regulate hyperlipidemia levels (cholesterol, triglyceride, high-density lipoproteins and low- and very-low-density lipoproteins) to nearly normal value at the 30th day.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Sequestradores de Radicais Livres , Simulação de Acoplamento Molecular , Tiazolidinedionas , Animais , Diabetes Mellitus Experimental/metabolismo , Sequestradores de Radicais Livres/síntese química , Sequestradores de Radicais Livres/química , Sequestradores de Radicais Livres/farmacologia , Estrutura Molecular , Ratos , Relação Estrutura-Atividade , Tiazolidinedionas/síntese química , Tiazolidinedionas/química , Tiazolidinedionas/farmacologia , alfa-Amilases/antagonistas & inibidores , alfa-Amilases/química
13.
J Enzyme Inhib Med Chem ; 37(1): 531-541, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34991416

RESUMO

Different 2,4-thiazolidinedione-tethered coumarins 5a-b, 10a-n and 11a-d were synthesised and evaluated for their inhibitory action against the cancer-associated hCAs IX and XII, as well as the physiologically dominant hCAs I and II to explore their selectivity. Un-substituted phenyl-bearing coumarins 10a, 10 h, and 2-thienyl/furyl-bearing coumarins 11a-c exhibited the best hCA IX (KIs between 0.48 and 0.93 µM) and hCA XII (KIs between 0.44 and 1.1 µM) inhibitory actions. Interestingly, none of the coumarins had any inhibitory effect on the off-target hCA I and II isoforms. The sub-micromolar compounds from the biochemical assay, coumarins 10a, 10 h and 11a-c, were assessed in an in vitro antiproliferative assay, and then the most potent antiproliferative agent 11a was tested to explore its impact on the cell cycle phases and apoptosis in MCF-7 breast cancer cells to provide more insights into the anticancer activity of these compounds.


Assuntos
Anidrase Carbônica IX/antagonistas & inibidores , Inibidores da Anidrase Carbônica/farmacologia , Anidrases Carbônicas/metabolismo , Cumarínicos/farmacologia , Descoberta de Drogas , Tiazolidinedionas/farmacologia , Antígenos de Neoplasias/metabolismo , Apoptose/efeitos dos fármacos , Anidrase Carbônica IX/metabolismo , Inibidores da Anidrase Carbônica/síntese química , Inibidores da Anidrase Carbônica/química , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cumarínicos/síntese química , Cumarínicos/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Células MCF-7 , Estrutura Molecular , Relação Estrutura-Atividade , Tiazolidinedionas/síntese química , Tiazolidinedionas/química
14.
Proteins ; 90(1): 142-154, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34331342

RESUMO

Derivatives of 2,4-thiazolidinedione have been reported to inhibit the aggregation of tau protein, in which compound 30 (C30) not only inhibit 80% of paired helical filament 6 (PHF6) aggregation, but also inhibit K18 and full-length tau aggregation. However, its inhibitory mechanism is unclear. In this study, to investigate the effect of C30 on tau protein, all-atom molecular dynamics simulation was performed on the PHF6 oligomer with and without C30. The results show that C30 can cause significant conformational changes in the PHF6 oligomer. The nematic order parameter P2 and secondary structure analyses show that C30 destroys the ordered structure of PHF6 oligomer, reduces the content of ß-sheet structure, and transforms ß-sheet into random coil structure. By clustering analysis, it was found that C30 has four possible binding sites on the PFH6 oligomer, and the binding ability order is S1 > S2 > S4 > S3. Following a more in-depth analyses of each site, it was determined that the S1 site is the most possible binding site mainly located between layers of L1 and L3. The hydrophobic interaction is the driving force for the binding of C30 to PHF6 oligomer. In addition, L1P4_Y310, L1P5_Y310, L3P1_V309, and L3P2_V309 are key residues for C30 binding to oligomer. Moreover, π-π interaction formed by L1P4_Y310 and L1P5_Y310 with C30 and the hydrogen bonding interaction formed by C30 with L3P3_Q307 are beneficial to the combination of C30 and oligomer. The fully understanding disrupt the mechanism of 2,4-thiazolidinedione derivative on PHF6 oligomer and the identification of binding sites will help design and discover new AD inhibitors in the future.


Assuntos
Oligopeptídeos , Tiazolidinedionas , Proteínas tau , Interações Hidrofóbicas e Hidrofílicas , Simulação de Dinâmica Molecular , Oligopeptídeos/química , Oligopeptídeos/metabolismo , Distribuição de Poisson , Termodinâmica , Tiazolidinedionas/química , Tiazolidinedionas/metabolismo , Proteínas tau/química , Proteínas tau/metabolismo
15.
J Biomol Struct Dyn ; 40(14): 6211-6227, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-33538239

RESUMO

New thiazole-thiazolidinedione hybrids (5a-k) were efficiently synthesized and evaluated for their in-vitro antimicrobial activity against four fungal and bacterial strains. The chemical structures of the compounds were elucidated by FTIR, 1H NMR, and 13C NMR spectral data. Most of the synthesized compounds were sensitive against gram positive, gram negative bacterial and fungal strains. Among the synthesized molecules, compounds 5h, and 5i exhibited promising inhibitory activity against all selected fungal strains and gram positive bacteria namely, Staphylococcus aureus, and Enterococcus faecalis. The molecular docking results predicted that the thiazole-thiazolidinedione derivatives bind to the active site protein ATP-binding pocket from E. coli, S. aureus and C. albicans with good interaction energy scores. Ct-DNA was used to evaluate the binding interactions of the selected compounds by means of absorption spectroscopy. To further characterize the drug-likeness and ADME properties were calculated using the Qikprop, the result of present study suggests that thiazole-thiazolidinedione hybrid could be an interesting approach for the design of new antimicrobial agents.Communicated by Ramaswamy H. Sarma.


Assuntos
Anti-Infecciosos , Tiazolidinedionas , Antibacterianos/química , Antibacterianos/farmacologia , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Bactérias , Escherichia coli , Fungos , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Staphylococcus aureus , Relação Estrutura-Atividade , Tiazóis/química , Tiazóis/farmacologia , Tiazolidinedionas/química , Tiazolidinedionas/farmacologia
16.
Bioorg Chem ; 119: 105533, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34902647

RESUMO

A novel ANAP (Aspergillus niger from alkaline protease) catalyzed one pot three component approach in the synthesis of new thiazolidinedione festooned quinoline analogues via Knoevenagel condensation and N-alkylation have been reported. The catalytic effect of enzyme was monitored and optimized by adjusting various parameters including catalyst concentration, choice of solvent and temperature. The isolated alkaline protease exhibits favorable features for the reaction response such as the shorter reaction time, simple work-up procedure, clean reaction profiles and excellent product yields through reusability of the catalyst upto five cycles. In silico molecular docking simulations were carried out to find out the effective binding affinity of the synthesized quinoline analogues 4(a-i) towards PPARγ protein (Id-2XKW). In vitro α-amylase and α-glucosidase assays were performed for hypoglycemic activity evaluation. In vivo hypoglycemic studies carried out on streptozotocin (SZT) induced diabetic male albino rats have shown that compounds 4e and 4f significantly reduced blood glucose levels with percentage reduction of 43.7 ± 0.91 and 45.6 ± 0.28 at a concentration of 50 mg/kg body wt. The results obtained from molecular docking simulations and in vitro enzyme assays are in consistent with in-vivo studies which clearly demonstrated that out of the synthesized quinoline analogues, compounds 4e and 4f possess promising hypoglycemic activity which was on par to that of standards pioglitazone and rosiglitazone respectively.


Assuntos
Proteínas de Bactérias/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Endopeptidases/metabolismo , Inibidores Enzimáticos/farmacologia , Hipoglicemiantes/farmacologia , Quinolinas/farmacologia , Tiazolidinedionas/farmacologia , Animais , Aspergillus niger/enzimologia , Biocatálise , Diabetes Mellitus Experimental/induzido quimicamente , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Hipoglicemiantes/química , Hipoglicemiantes/metabolismo , Masculino , Modelos Moleculares , Estrutura Molecular , Quinolinas/química , Quinolinas/metabolismo , Ratos , Estreptozocina , Relação Estrutura-Atividade , Tiazolidinedionas/química , Tiazolidinedionas/metabolismo , alfa-Amilases/antagonistas & inibidores , alfa-Amilases/metabolismo , alfa-Glucosidases/metabolismo
17.
Bioorg Med Chem ; 52: 116518, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34826680

RESUMO

Dihydrodipicolinate synthase (DHDPS), responsible for the first committed step of the diaminopimelate pathway for lysine biosynthesis, has become an attractive target for the development of new antibacterial and herbicidal agents. Herein, we report the discovery and exploration of the first inhibitors of E. coli DHDPS which have been identified from screening lead and are not based on substrates from the lysine biosynthesis pathway. Over 50 thiazolidinediones and related analogues have been prepared in order to thoroughly evaluate the structure-activity relationships against this enzyme of significant interest.


Assuntos
Inibidores Enzimáticos/farmacologia , Compostos Heterocíclicos/farmacologia , Hidroliases/antagonistas & inibidores , Tiazolidinedionas/farmacologia , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Escherichia coli/enzimologia , Compostos Heterocíclicos/síntese química , Compostos Heterocíclicos/química , Hidroliases/metabolismo , Estrutura Molecular , Relação Estrutura-Atividade , Tiazolidinedionas/síntese química , Tiazolidinedionas/química
18.
Bioorg Chem ; 116: 105342, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34536928

RESUMO

Thiazolidinedione (TZD) is a novel peroxides proliferator activated receptor γ (PPARγ) agonist with many side effects. Herein, we developed a series of novel TZD analogues as partial agonists targeting PPARγ. The study of anti-hyperglycemic activity and anti-inflammatory activity enabled us to identify a novel compound, 4 g, which quickly recover the blood glucose of mice at the concentration of 100 mg/kg, and show similar anti-inflammatory activity to ibuprofen at the concentration of 20 mg/kg. The competitive binding assay confirmed direct binding of 4 g to the LBD of PPARγ with IC50 being 1790 nM, and dose-dependently increased the transcriptional activity of PPARγ. Besides, through computer-aided drug design software simulation docking, it was found that compound 4 g showed the best binding ability to target protein PPARγ. Furthermore, because of the introduction of benzene containing group at N3 position, the stability of H12 in the active pocket is reduced and the stability of H3 and ß-fold is increased, showing the characteristics of some PPARγ agonists, based on the docking model analysis. Together, these results suggest that 4 g is a promising PPARγ agonist that deserves further investigation.


Assuntos
Desenho de Fármacos , PPAR gama/agonistas , Tiazolidinedionas/farmacologia , Relação Dose-Resposta a Droga , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Software , Relação Estrutura-Atividade , Tiazolidinedionas/síntese química , Tiazolidinedionas/química
19.
Future Med Chem ; 13(22): 1963-1986, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34581188

RESUMO

Background: Angiogenesis deregulation is often linked to cancer and is thus an essential target. Materials & methods: Twenty-nine compounds were developed as VEGFR-2 inhibitors. Compounds were evaluated to determine their antiangiogenic activity. Results: B1, PB11 and PB16 showed HUVEC's IC50 scores in the submicromolar range. B1, B2 and PB16 reduced cellular migration and capillary tube formation of HUVECs. VEGFR-2 inhibitory activity was found in the nanomolar range: 200 nM of B1, 500 nM of B2 and 600 nM of PB16. B1 and PB16 suppressed the formation of new capillaries on growing CAMs. B1 and PB16 occupied the ATP site and allosteric pocket of VEGFR-2 in docking studies. Conclusion: These compounds can target VEGFR-2 and are endowed with in vitro and in vivo antiangiogenic activity.


Assuntos
Inibidores da Angiogênese/farmacologia , Desenvolvimento de Medicamentos , Neovascularização Fisiológica/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Pirazóis/farmacologia , Tiazolidinedionas/farmacologia , Inibidores da Angiogênese/síntese química , Inibidores da Angiogênese/química , Humanos , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Pirazóis/síntese química , Pirazóis/química , Tiazolidinedionas/síntese química , Tiazolidinedionas/química , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
20.
Bioorg Chem ; 116: 105350, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34547645

RESUMO

In the present study, two novel series of compounds incorporating naphthyl and pyridyl linker were synthesized and biological assays revealed 5-((6-(2-(5-(2-chlorophenyl)-3-(4-fluorophenyl)-4,5-dihydro-1H-pyrazol-1-yl)-2-oxoethoxy) naphthalene-2-yl)methylene)thiazolidine-2,4-dione (14b) as the most potent dual inhibitors of vascular endothelial growth factors receptor-2 (VEGFR-2) and histone deacetylase 4 (HDAC4). Compounds 13b, 14b, 17f, and 21f were found to stabilize HDAC4; where, pyridyl linker swords were endowed with higher stabilization effects than naphthyl linker. Also, 13b and 14b showed best inhibitory activity on VEGFR-2 as compared to others. Compound 14b was most potent as evident by in-vitro and in-vivo biological assessments. It displayed anti-angiogenic potential by inhibiting endothelial cell proliferation, migration, tube formation and also suppressed new capillary formation in the growing chick chorioallantoic membranes (CAMs). It showed selectivity and potency towards HDAC4 as compared to other HDAC isoforms. Compound 14b (25 mg/kg, i.p.) also indicated exceptional antitumor efficacy on in-vivo animal xenograft model of human colorectal adenocarcinoma (HT-29). The mechanism of action of 14b was also confirmed by western blot.


Assuntos
Inibidores da Angiogênese/farmacologia , Antineoplásicos/farmacologia , Inibidores de Histona Desacetilases/farmacologia , Neovascularização Patológica/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Pirazóis/farmacologia , Tiazolidinedionas/farmacologia , Inibidores da Angiogênese/síntese química , Inibidores da Angiogênese/química , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores de Histona Desacetilases/síntese química , Inibidores de Histona Desacetilases/química , Histona Desacetilases/metabolismo , Humanos , Camundongos , Estrutura Molecular , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Pirazóis/síntese química , Pirazóis/química , Proteínas Repressoras/antagonistas & inibidores , Proteínas Repressoras/metabolismo , Relação Estrutura-Atividade , Tiazolidinedionas/síntese química , Tiazolidinedionas/química , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...