Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 298(3): 101638, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35085553

RESUMO

The hydrolytic deamination of cytosine and 5-methylcytosine drives many of the transition mutations observed in human cancer. The deamination-induced mutagenic intermediates include either uracil or thymine adducts mispaired with guanine. While a substantial array of methods exist to measure other types of DNA adducts, the cytosine deamination adducts pose unusual analytical problems, and adequate methods to measure them have not yet been developed. We describe here a novel hybrid thymine DNA glycosylase (TDG) that is comprised of a 29-amino acid sequence from human TDG linked to the catalytic domain of a thymine glycosylase found in an archaeal thermophilic bacterium. Using defined-sequence oligonucleotides, we show that hybrid TDG has robust mispair-selective activity against deaminated U:G and T:G mispairs. We have further developed a method for separating glycosylase-released free bases from oligonucleotides and DNA followed by GC-MS/MS quantification. Using this approach, we have measured for the first time the levels of total uracil, U:G, and T:G pairs in calf thymus DNA. The method presented here will allow the measurement of the formation, persistence, and repair of a biologically important class of deaminated cytosine adducts.


Assuntos
DNA , Timina DNA Glicosilase , Citosina/química , Citosina/metabolismo , DNA/análise , DNA/genética , DNA/metabolismo , Reparo do DNA , Humanos , Oligonucleotídeos , Especificidade por Substrato , Espectrometria de Massas em Tandem , Timina/metabolismo , Timina DNA Glicosilase/análise , Timina DNA Glicosilase/genética , Timina DNA Glicosilase/metabolismo , Uracila/química
2.
Anal Chim Acta ; 1061: 101-109, 2019 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-30926028

RESUMO

Effective detection of thymine DNA glycosylase (TDG) activity is extremely crucial and urgent for epigenetic research. Herein, a novel label-free electrogenerated chemiluminescence (ECL) biosensing method was developed for the detection of TDG activity using DNA-functionalized gold nanoparticles (DNA-AuNPs) triggered hybridization chain reaction (HCR). In this assay, the thiol modified hairpin probe DNA (hp-DNA) with 5' overhangs and one mismatched base pair of guanines: thymine (G: T) in the stem part was boned onto gold electrode. TDG specifically removed T base of the G: T mismatch to produce apyrimidinic (AP) sites through the N-glycosidic bond hydrolysis. The AP site was then cleaved by the catalysis of Endonuclease IV (EnIV) to generate dsDNA containing a free 3' end in the long sequence, which serves as a complementary sequence to hybridize with the specific sequence (ssDNA1) of DNA-AuNPs. Then, the functionalized DNA-AuNPs with initiator strands (ssDNA2) could trigger HCR to form nicked double helices DNA polymer which can embed numerous ECL indicator, Ru(phen)32+, resulting in significantly increased ECL signal. The proposed strategy combined the amplification function of DNA-AuNPs triggered HCR and the inherent high sensitivity of the ECL technique, a detection limit of 1.1 × 10-5 U/µL (0.0028 ng/mL) for TDG determination was obtained. In addition, this method was successfully applied to evaluate TDG activity in cancer cell, which provides great possibility for TDG activity assay in related clinical diagnostics.


Assuntos
Técnicas Biossensoriais , Neoplasias da Mama/metabolismo , DNA/química , Ouro/química , Medições Luminescentes , Nanopartículas Metálicas/química , Timina DNA Glicosilase/análise , Neoplasias da Mama/patologia , Técnicas Eletroquímicas , Feminino , Humanos , Timina DNA Glicosilase/metabolismo
3.
Biosens Bioelectron ; 86: 849-857, 2016 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-27494808

RESUMO

Thymine DNA glycosylase (TDG) performs essential functions in maintaining genetic integrity and epigenetic regulation, which also plays an essential role in DNA demethylation. In this work, the novel iridium(III) complex 1 with an anchor tail was synthesized and employed to construct a G-quadruplex-based assay for detecting TDG activity in aqueous solution by using the mismatched base excising property of TDG with T4 DNA ligase and phi29 DNA polymerase, in concert with the rolling circle amplification (RCA) strategy. The assay achieved a detection limit of 0.048UmL(-)(1) (0.012ngmL(-1)), and showed high selectivity towards TDG even in the presence of other proteins and enzymes. Additionally, the assay could function in diluted cellular debris.


Assuntos
Sondas de DNA/genética , Quadruplex G , Medições Luminescentes/instrumentação , Técnicas de Sonda Molecular/instrumentação , Timina DNA Glicosilase/análise , Timina DNA Glicosilase/genética , Desenho de Equipamento , Análise de Falha de Equipamento , Técnicas de Amplificação de Ácido Nucleico/instrumentação , Técnicas de Amplificação de Ácido Nucleico/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
4.
Biosens Bioelectron ; 71: 249-255, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25913445

RESUMO

A triple-signal amplification strategy was proposed for highly sensitive and selective detection of thymine DNA glycosylase (TDG) by coupling a dendrimer-like DNA label with the electrochemical method and quantum dots (QDs) tagging. The DNA-QDs dendrimer-like superstructure was designed by DNA hybridization and covalent assembling. Benefiting from outstanding performance of the amplification strategy, this assay showed high sensitivity, extraordinary stability, and easy operation. The limit of detection could reach 0.00003 U µL(-1) with a splendid specificity. The TDG content in different concentration of HeLa cell was also determined. This assay opens a new horizon for both qualitative and quantitative detection of TDG, holding great promise for potential application in cancer cell research and clinical diagnostics.


Assuntos
Técnicas Biossensoriais/métodos , DNA/química , Dendrímeros/química , Ensaios Enzimáticos/métodos , Pontos Quânticos/química , Timina DNA Glicosilase/metabolismo , DNA/metabolismo , Técnicas Eletroquímicas/métodos , Células HeLa , Humanos , Limite de Detecção , Modelos Moleculares , Reprodutibilidade dos Testes , Timina DNA Glicosilase/análise
6.
Br Poult Sci ; 52(1): 58-65, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21337199

RESUMO

1. Birds, especially nestlings, are generally difficult to sex by morphology and early detection of chick gender in ovo in the hatchery would facilitate removal of unwanted chicks and diminish welfare objections regarding culling after hatch. 2. We describe a method to determine chicken gender without the need for PCR via use of Thymine-DNA Glycosylase (TDG). TDG restores thymine (T)/guanine (G) mismatches to cytosine (C)/G. We show here, that like DNA Polymerase, TDG can recognise, bind and function on a primer hybridised to chicken genomic DNA. 3. The primer contained a T to mismatch a G in a chicken genomic template and the T/G was cleaved with high fidelity by TDG. Thus, the chicken genomic DNA can be identified without PCR amplification via direct and linear detection. Sensitivity was increased using gender specific sequences from the chicken genome. 4. Currently, these are laboratory results, but we anticipate that further development will allow this method to be used in non-laboratory settings, where PCR cannot be employed.


Assuntos
Galinhas/genética , DNA/química , Análise para Determinação do Sexo/métodos , Timina DNA Glicosilase/análise , Animais , Proteínas Aviárias/genética , Proteínas de Ligação a DNA/genética , Transferência Ressonante de Energia de Fluorescência , Marcadores Genéticos , Genoma , Reação em Cadeia da Polimerase
7.
Acta Biochim Biophys Sin (Shanghai) ; 42(6): 381-7, 2010 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-20539937

RESUMO

Cytosine methylation is a vital biology event. However, it is also the source of genomic instability due to deamination of 5'-methylcytosine by spontaneous hydrolysis, which produces thymine and results in G:T mismatches. Thymine DNA glycosylase and methyl-CpG-binding protein 4 are major DNA glycosylases involved in the mismatch repair progress, and their activities have been measured in many related researches. In this study, we developed a convenient spectrometric assay system for specific and quantitative measurement of intracellular DNA glycosylase activity. A G:T mismatch was introduced into the upstream region of firefly luciferase-coding sequence in the pGL3-control plasmid. Only if the G:T mismatches were repaired to G:C, will luciferase be expressed in transfected cells. By measuring luciferase activity, which is simple and convenient, the intracellular DNA glycosylase activity can be determined.


Assuntos
Endodesoxirribonucleases/análise , Espectrometria de Fluorescência/métodos , Timina DNA Glicosilase/análise , Animais , Pareamento Incorreto de Bases , Linhagem Celular Tumoral , Reparo do DNA , Genes Reporter , Vetores Genéticos , Luciferases de Vaga-Lume/metabolismo , Luciferases de Renilla/análise , Camundongos , Plasmídeos , Timina/metabolismo
8.
Nucleic Acids Res ; 35(18): 6207-18, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17855402

RESUMO

Human (h) DNA repair enzyme thymine DNA glycosylase (hTDG) is a key DNA glycosylase in the base excision repair (BER) pathway that repairs deaminated cytosines and 5-methyl-cytosines. The cell cycle checkpoint protein Rad9-Rad1-Hus1 (the 9-1-1 complex) is the surveillance machinery involved in the preservation of genome stability. In this study, we show that hTDG interacts with hRad9, hRad1 and hHus1 as individual proteins and as a complex. The hHus1 interacting domain is mapped to residues 67-110 of hTDG, and Val74 of hTDG plays an important role in the TDG-Hus1 interaction. In contrast to the core domain of hTDG (residues 110-308), hTDG(67-308) removes U and T from U/G and T/G mispairs, respectively, with similar rates as native hTDG. Human TDG activity is significantly stimulated by hHus1, hRad1, hRad9 separately, and by the 9-1-1 complex. Interestingly, the interaction between hRad9 and hTDG, as detected by co-immunoprecipitation (Co-IP), is enhanced following N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) treatment. A significant fraction of the hTDG nuclear foci co-localize with hRad9 foci in cells treated with methylating agents. Thus, the 9-1-1 complex at the lesion sites serves as both a damage sensor to activate checkpoint control and a component of the BER.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Reparo do DNA , Exonucleases/metabolismo , Timina DNA Glicosilase/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Dano ao DNA , Ativação Enzimática , Células HeLa , Humanos , Dados de Sequência Molecular , Timina DNA Glicosilase/análise , Timina DNA Glicosilase/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...