Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 8(1): 10819, 2018 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-30018390

RESUMO

The association of cabbage white butterflies (Pieris spec., Lepidoptera: Pieridae) with their glucosinolate-containing host plants represents a well-investigated example of the sequential evolution of plant defenses and insect herbivore counteradaptations. The defensive potential of glucosinolates, a group of amino acid-derived thioglucosides present in plants of the Brassicales order, arises mainly from their rapid breakdown upon tissue disruption resulting in formation of toxic isothiocyanates. Larvae of P. rapae are able to feed exclusively on glucosinolate-containing plants due to expression of a nitrile-specifier protein in their gut which redirects glucosinolate breakdown to the formation of nitriles. The release of equimolar amounts of cyanide upon further metabolism of the benzylglucosinolate-derived nitrile suggests that the larvae are also equipped with efficient means of cyanide detoxification such as ß-cyanoalanine synthases or rhodaneses. While insect ß-cyanoalanine synthases have recently been identified at the molecular level, no sequence information was available of characterized insect rhodaneses. Here, we identify and characterize two single-domain rhodaneses from P. rapae, PrTST1 and PrTST2. The enzymes differ in their kinetic properties, predicted subcellular localization and expression in P. rapae indicating different physiological roles. Phylogenetic analysis together with putative lepidopteran rhodanese sequences indicates an expansion of the rhodanese family in Pieridae.


Assuntos
Borboletas/metabolismo , Proteínas de Insetos/metabolismo , Tiossulfato Sulfurtransferase/metabolismo , Animais , Borboletas/crescimento & desenvolvimento , Cianetos/metabolismo , Glucosinolatos/metabolismo , Herbivoria , Proteínas de Insetos/química , Proteínas de Insetos/classificação , Proteínas de Insetos/genética , Cinética , Larva/metabolismo , Filogenia , Análise de Sequência de RNA , Tiossulfato Sulfurtransferase/química , Tiossulfato Sulfurtransferase/classificação , Tiossulfato Sulfurtransferase/genética
2.
BMC Microbiol ; 17(1): 181, 2017 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-28830344

RESUMO

BACKGROUND: The only hitherto known biological role of yeast Saccharomyces cerevisiae Tum1 protein is in the tRNA thiolation pathway. The mammalian homologue of the yeast TUM1 gene, the thiosulfate sulfurtransferase (a.k.a. rhodanese) Tst, has been proposed as an obesity-resistance and antidiabetic gene. To assess the role of Tum1 in cell metabolism and the putative functional connection between lipid metabolism and tRNA modification, we analysed evolutionary conservation of the rhodanese protein superfamily, investigated the role of Tum1 in lipid metabolism, and examined the phenotype of yeast strains expressing the mouse homologue of Tum1, TST. RESULTS: We analysed evolutionary relationships in the rhodanese superfamily and established that its members are widespread in bacteria, archaea and in all major eukaryotic groups. We found that the amount of sterol esters was significantly higher in the deletion strain tum1Δ than in the wild-type strain. Expression of the mouse TST protein in the deletion strain did not rescue this phenotype. Moreover, although Tum1 deficiency in the thiolation pathway was complemented by re-introducing TUM1, it was not complemented by the introduction of the mouse homologue Tst. We further showed that the tRNA thiolation pathway is not involved in the regulation of sterol ester content in S. cerevisiae, as overexpression of the tEUUC, tKUUU and tQUUG tRNAs did not rescue the lipid phenotype in the tum1Δ deletion strain, and, additionally, deletion of the key gene for the tRNA thiolation pathway, UBA4, did not affect sterol ester content. CONCLUSIONS: The rhodanese superfamily of proteins is widespread in all organisms, and yeast TUM1 is a bona fide orthologue of mammalian Tst thiosulfate sulfurtransferase gene. However, the mouse TST protein cannot functionally replace yeast Tum1 protein, neither in its lipid metabolism-related function, nor in the tRNA thiolation pathway. We show here that Tum1 protein is involved in lipid metabolism by decreasing the sterol ester content in yeast cells, and that this function of Tum1 is not exerted through the tRNA thiolation pathway, but through another, currently unknown pathway.


Assuntos
Proteínas de Transporte/metabolismo , Ésteres/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Esteróis/metabolismo , Animais , Proteínas de Transporte/genética , Deleção de Genes , Metabolismo dos Lipídeos , Lipídeos/análise , Camundongos , Fenótipo , Filogenia , RNA de Transferência/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Alinhamento de Sequência , Tiossulfato Sulfurtransferase/classificação , Tiossulfato Sulfurtransferase/genética , Tiossulfato Sulfurtransferase/metabolismo , Vertebrados
3.
FEBS Lett ; 472(2-3): 307-11, 2000 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-10788632

RESUMO

Azotobacter vinelandii RhdA uses thiosulfate as the only sulfur donor in vitro, and this apparent selectivity seems to be a unique property among the characterized sulfurtransferases. To investigate the basis of substrate recognition in RhdA, we replaced Thr-232 with either Ala or Lys. Thr-232 was the target of this study since the corresponding Lys-249 in bovine rhodanese has been identified as necessary for catalytic sulfur transfer, and replacement of Lys-249 with Ala fully inactivates bovine rhodanese. Both T232K and T232A mutants of RhdA showed significant increase in thiosulfate-cyanide sulfurtransferase activity, and no detectable activity in the presence of 3-mercaptopyruvate as the sulfur donor substrate. Fluorescence measurements showed that wild-type and mutant RhdAs were overexpressed in the persulfurated form, thus conferring to this enzyme the potential of a persulfide sulfur donor compound. RhdA contains a unique sequence stretch around the catalytic cysteine, and the data here presented suggest a possible divergent physiological function of A. vinelandii sulfurtransferase.


Assuntos
Azotobacter vinelandii/enzimologia , Tiossulfato Sulfurtransferase/genética , Treonina/genética , Animais , Bovinos , Humanos , Mutagênese , Células Procarióticas , Sulfurtransferases/classificação , Sulfurtransferases/genética , Sulfurtransferases/metabolismo , Tiossulfato Sulfurtransferase/classificação , Tiossulfato Sulfurtransferase/metabolismo , Treonina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...