Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 222
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Protein Sci ; 33(8): e5129, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39073218

RESUMO

Rhodanese-like domains (RLDs) represent a widespread protein family canonically involved in sulfur transfer reactions between diverse donor and acceptor molecules. RLDs mediate these transsulfuration reactions via a transient persulfide intermediate, created by modifying a conserved cysteine residue in their active sites. RLDs are involved in various aspects of sulfur metabolism, including sulfide oxidation in mitochondria, iron-sulfur cluster biogenesis, and thio-cofactor biosynthesis. However, due to the inherent complexity of sulfur metabolism caused by the intrinsically high nucleophilicity and redox sensitivity of thiol-containing compounds, the physiological functions of many RLDs remain to be explored. Here, we focus on a single domain Acinetobacter baumannii RLD (Ab-RLD) associated with a desulfurase encapsulin which is able to store substantial amounts of sulfur inside its protein shell. We determine the 1.6 Å x-ray crystal structure of Ab-RLD, highlighting a homodimeric structure with a number of unusual features. We show through kinetic analysis that Ab-RLD exhibits thiosulfate sulfurtransferase activity with both cyanide and glutathione acceptors. Using native mass spectrometry and in vitro assays, we provide evidence that Ab-RLD can stably carry a persulfide and thiosulfate modification and may employ a ternary catalytic mechanism. Our results will inform future studies aimed at investigating the functional link between Ab-RLD and the desulfurase encapsulin.


Assuntos
Acinetobacter baumannii , Proteínas de Bactérias , Tiossulfato Sulfurtransferase , Acinetobacter baumannii/enzimologia , Acinetobacter baumannii/química , Acinetobacter baumannii/metabolismo , Acinetobacter baumannii/genética , Tiossulfato Sulfurtransferase/química , Tiossulfato Sulfurtransferase/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Cristalografia por Raios X , Modelos Moleculares
2.
J Biol Chem ; 300(5): 107149, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38479599

RESUMO

Persulfides (RSSH/RSS-) participate in sulfur metabolism and are proposed to transduce hydrogen sulfide (H2S) signaling. Their biochemical properties are poorly understood. Herein, we studied the acidity and nucleophilicity of several low molecular weight persulfides using the alkylating agent, monobromobimane. The different persulfides presented similar pKa values (4.6-6.3) and pH-independent rate constants (3.2-9.0 × 103 M-1 s-1), indicating that the substituents in persulfides affect properties to a lesser extent than in thiols because of the larger distance to the outer sulfur. The persulfides had higher reactivity with monobromobimane than analogous thiols and putative thiols with the same pKa, providing evidence for the alpha effect (enhanced nucleophilicity by the presence of a contiguous atom with high electron density). Additionally, we investigated two enzymes from the human mitochondrial H2S oxidation pathway that form catalytic persulfide intermediates, sulfide quinone oxidoreductase and thiosulfate sulfurtransferase (TST, rhodanese). The pH dependence of the activities of both enzymes was measured using sulfite and/or cyanide as sulfur acceptors. The TST half-reactions were also studied by stopped-flow fluorescence spectroscopy. Both persulfidated enzymes relied on protonated groups for reaction with the acceptors. Persulfidated sulfide quinone oxidoreductase appeared to have a pKa of 7.8 ± 0.2. Persulfidated TST presented a pKa of 9.38 ± 0.04, probably due to a critical active site residue rather than the persulfide itself. The TST thiol reacted in the anionic state with thiosulfate, with an apparent pKa of 6.5 ± 0.1. Overall, our study contributes to a fundamental understanding of persulfide properties and their modulation by protein environments.


Assuntos
Sulfetos , Tiossulfato Sulfurtransferase , Humanos , Compostos Bicíclicos com Pontes , Sulfeto de Hidrogênio/metabolismo , Sulfeto de Hidrogênio/química , Concentração de Íons de Hidrogênio , Oxirredução , Quinona Redutases/metabolismo , Quinona Redutases/química , Compostos de Sulfidrila/química , Compostos de Sulfidrila/metabolismo , Sulfetos/química , Sulfetos/metabolismo , Tiossulfato Sulfurtransferase/metabolismo , Tiossulfato Sulfurtransferase/química , Quinonas/química , Quinonas/metabolismo , Especificidade por Substrato
3.
Protein Sci ; 32(11): e4794, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37800277

RESUMO

The enzyme Thiosulfate sulfurtransferase (TST, EC 2.8.1.1), is a positive genetic predictor of diabetes type 2 and obesity. As increased TST activity protects against the development of diabetic symptoms in mice, an activating compound for TST may provide therapeutic benefits in diabetes and obesity. We identified a small molecule activator of human TST through screening of an inhouse small molecule library. Kinetic studies in vitro suggest that two distinct isomers of the compound are required for full activation as well as an allosteric mode of activation. Additionally, we studied the effect of TST protein and the activator on TST activity through mitochondrial respiration. Molecular docking and molecular dynamics (MD) approaches supports an allosteric site for the binding of the activator, which is supported by the lack of activation in the Escherichia coli. mercaptopyruvate sulfurtransferase. Finally, we show that increasing TST activity in isolated mitochondria increases mitochondrial oxygen consumption.


Assuntos
Diabetes Mellitus , Tiossulfato Sulfurtransferase , Camundongos , Humanos , Animais , Tiossulfato Sulfurtransferase/química , Tiossulfato Sulfurtransferase/genética , Tiossulfato Sulfurtransferase/metabolismo , Simulação de Acoplamento Molecular , Cinética , Mitocôndrias/metabolismo , Diabetes Mellitus/metabolismo , Respiração , Obesidade/metabolismo
4.
Nucleic Acids Res ; 50(22): 12969-12978, 2022 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-36533440

RESUMO

Sulfuration of uridine 8, in bacterial and archaeal tRNAs, is catalyzed by enzymes formerly known as ThiI, but renamed here TtuI. Two different classes of TtuI proteins, which possess a PP-loop-containing pyrophosphatase domain that includes a conserved cysteine important for catalysis, have been identified. The first class, as exemplified by the prototypic Escherichia coli enzyme, possesses an additional C-terminal rhodanese domain harboring a second cysteine, which serves to form a catalytic persulfide. Among the second class of TtuI proteins that do not possess the rhodanese domain, some archaeal proteins display a conserved CXXC + C motif. We report here spectroscopic and enzymatic studies showing that TtuI from Methanococcus maripaludis and Pyrococcus furiosus can assemble a [4Fe-4S] cluster that is essential for tRNA sulfuration activity. Moreover, structural modeling studies, together with previously reported mutagenesis experiments of M. maripaludis TtuI, indicate that the [4Fe-4S] cluster is coordinated by the three cysteines of the CXXC + C motif. Altogether, our results raise a novel mechanism for U8-tRNA sulfuration, in which the cluster is proposed to catalyze the transfer of sulfur atoms to the activated tRNA substrate.


Assuntos
Archaea , Cisteína , Proteínas Ferro-Enxofre , RNA de Transferência , Tiossulfato Sulfurtransferase , Archaea/enzimologia , Archaea/genética , Catálise , Cisteína/metabolismo , Proteínas Ferro-Enxofre/metabolismo , RNA de Transferência/metabolismo , Tiossulfato Sulfurtransferase/química , Tiossulfato Sulfurtransferase/genética , Tiossulfato Sulfurtransferase/metabolismo , Motivos de Aminoácidos , Mutagênese , Domínios Proteicos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo
5.
Int J Mol Sci ; 23(15)2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-35955583

RESUMO

Thiosulfate: cyanide sulfurtransferase (TST), also named rhodanese, is an enzyme widely distributed in both prokaryotes and eukaryotes, where it plays a relevant role in mitochondrial function. TST enzyme is involved in several biochemical processes such as: cyanide detoxification, the transport of sulfur and selenium in biologically available forms, the restoration of iron-sulfur clusters, redox system maintenance and the mitochondrial import of 5S rRNA. Recently, the relevance of TST in metabolic diseases, such as diabetes, has been highlighted, opening the way for research on important aspects of sulfur metabolism in diabetes. This review underlines the structural and functional characteristics of TST, describing the physiological role and biomedical and biotechnological applications of this essential enzyme.


Assuntos
Tiossulfato Sulfurtransferase , Tiossulfatos , Cianetos/metabolismo , Mitocôndrias/metabolismo , Enxofre/metabolismo , Tiossulfato Sulfurtransferase/química , Tiossulfato Sulfurtransferase/genética , Tiossulfato Sulfurtransferase/metabolismo , Tiossulfatos/metabolismo
6.
Biomolecules ; 11(2)2021 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-33499055

RESUMO

Urm1 (ubiquitin related modifier 1) is a molecular fossil in the class of ubiquitin-like proteins (UBLs). It encompasses characteristics of classical UBLs, such as ubiquitin or SUMO (small ubiquitin-related modifier), but also of bacterial sulfur-carrier proteins (SCP). Since its main function is to modify tRNA, Urm1 acts in a non-canonical manner. Uba4, the activating enzyme of Urm1, contains two domains: a classical E1-like domain (AD), which activates Urm1, and a rhodanese homology domain (RHD). This sulfurtransferase domain catalyzes the formation of a C-terminal thiocarboxylate on Urm1. Thiocarboxylated Urm1 is the sulfur donor for 5-methoxycarbonylmethyl-2-thiouridine (mcm5s2U), a chemical nucleotide modification at the wobble position in tRNA. This thio-modification is conserved in all domains of life and optimizes translation. The absence of Urm1 increases stress sensitivity in yeast triggered by defects in protein homeostasis, a hallmark of neurological defects in higher organisms. In contrast, elevated levels of tRNA modifying enzymes promote the appearance of certain types of cancer and the formation of metastasis. Here, we summarize recent findings on the unique features that place Urm1 at the intersection of UBL and SCP and make Urm1 an excellent model for studying the evolution of protein conjugation and sulfur-carrier systems.


Assuntos
Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/química , Regulação Fúngica da Expressão Gênica , Genes Fúngicos , Homeostase , Fenótipo , RNA de Transferência/metabolismo , Estresse Fisiológico , Sulfurtransferases/genética , Tiossulfato Sulfurtransferase/química , Ubiquitina/química , Ubiquitina/metabolismo , Ubiquitinas/metabolismo
7.
Prep Biochem Biotechnol ; 51(6): 607-617, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33206023

RESUMO

Extracellular rhodanese obtained from Aureobasidium pullulans was employed in both free and immobilized forms for the biodegradation of cyanide present in cassava processing mill effluent (CPME). Crosslinking with glutaraldehyde (at an optimum concentration of 5% v/v) before entrapment in alginate beads resulted in the highest immobilization yield of 94.5% and reduced enzyme leakage of 1.8%. Rhodanese immobilized by cross-linking before entrapment (cbe) retained about 46% of its initial activity after eight cycles of catalysis compared to the entrapment in alginate alone (eaa) which lost more than 79% after the fifth catalytic cycle. A cross-examination of thermodynamic (ΔGd*, ΔSd*, ΔHd*) kinetic (kd, t1/2, D and z-values) parameters at 30-70 °C showed that cbe displayed a higher resistance to thermal inactivation when compared to the free enzyme (fe) and (eaa). The efficiency of cyanide biodegradation from the CPME by the fe, eaa and cbe were 55, 62, and 74% respectively after 6 h. Rhodanese immobilized via cbe had a higher resistance to thermal denaturation over other enzyme forms. Hence, this makes cbe adaptable for large-scale detoxification of cyanide from CPME.


Assuntos
Ascomicetos/enzimologia , Cianetos/química , Enzimas Imobilizadas/química , Proteínas Fúngicas/química , Manihot/química , Tiossulfato Sulfurtransferase/química , Águas Residuárias/química , Biodegradação Ambiental , Estabilidade Enzimática , Concentração de Íons de Hidrogênio
8.
Mol Immunol ; 107: 115-122, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30716562

RESUMO

Rhodanese homology domains (RHODs) are the structural modules of ubiquitous tertiary that occur in three major evolutionary phyla. Despite the versatile and important physiological functions of RHODs containing proteins, little is known about their invertebrate counterparts. A novel HSP67B2-like single-domain rhodanese homologue, MdRDH1 from Musca domestica, whose expression can be induced by bacterial infection or oxidative stress. Silencing MdRDH1 through RNAi causes important accumulations of reactive oxygen species (ROS) and malondialdehyde (MDA), and increases mortality in the larvae treated with bacterial invasion. The E. coli with MdRDH1 and the mutant MdRDH1C135A are transformed, with significant rhodanese activity of the recombinant protein of MdRDH1 in vitro found, without no detection of enzyme activity of the mutant MdRDH1C135A, revealing that catalytic Cys135 in the active-site loop is essential in the sulfurtransferase activity of MdRDH1. When oxidative stress is insulted by phenazine methosulfate (PMS), the MdRDH1 transformed E. coli shows enhanced survival rates compared with those bacteria transformed with MdRDH1C135A. Our research indicates that MdRDH1 confers oxidative stress tolerance, thus rendering evidence for the idea that rhodanese family genes play a critical role in antioxidant defenses. This paper yields novel insights into the potential antioxidative and immune functions of HSP67B2-like rhodanese homologues in invertebrate.


Assuntos
Moscas Domésticas/enzimologia , Proteínas de Insetos/metabolismo , Tiossulfato Sulfurtransferase/metabolismo , Sequência de Aminoácidos , Animais , Doxorrubicina/farmacologia , Moscas Domésticas/microbiologia , Especificidade de Órgãos , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Filogenia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Análise de Sequência de Proteína , Superóxido Dismutase/metabolismo , Tiossulfato Sulfurtransferase/química , Tiossulfato Sulfurtransferase/genética
9.
Sci Rep ; 8(1): 10819, 2018 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-30018390

RESUMO

The association of cabbage white butterflies (Pieris spec., Lepidoptera: Pieridae) with their glucosinolate-containing host plants represents a well-investigated example of the sequential evolution of plant defenses and insect herbivore counteradaptations. The defensive potential of glucosinolates, a group of amino acid-derived thioglucosides present in plants of the Brassicales order, arises mainly from their rapid breakdown upon tissue disruption resulting in formation of toxic isothiocyanates. Larvae of P. rapae are able to feed exclusively on glucosinolate-containing plants due to expression of a nitrile-specifier protein in their gut which redirects glucosinolate breakdown to the formation of nitriles. The release of equimolar amounts of cyanide upon further metabolism of the benzylglucosinolate-derived nitrile suggests that the larvae are also equipped with efficient means of cyanide detoxification such as ß-cyanoalanine synthases or rhodaneses. While insect ß-cyanoalanine synthases have recently been identified at the molecular level, no sequence information was available of characterized insect rhodaneses. Here, we identify and characterize two single-domain rhodaneses from P. rapae, PrTST1 and PrTST2. The enzymes differ in their kinetic properties, predicted subcellular localization and expression in P. rapae indicating different physiological roles. Phylogenetic analysis together with putative lepidopteran rhodanese sequences indicates an expansion of the rhodanese family in Pieridae.


Assuntos
Borboletas/metabolismo , Proteínas de Insetos/metabolismo , Tiossulfato Sulfurtransferase/metabolismo , Animais , Borboletas/crescimento & desenvolvimento , Cianetos/metabolismo , Glucosinolatos/metabolismo , Herbivoria , Proteínas de Insetos/química , Proteínas de Insetos/classificação , Proteínas de Insetos/genética , Cinética , Larva/metabolismo , Filogenia , Análise de Sequência de RNA , Tiossulfato Sulfurtransferase/química , Tiossulfato Sulfurtransferase/classificação , Tiossulfato Sulfurtransferase/genética
10.
J Biol Chem ; 293(8): 2675-2686, 2018 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-29348167

RESUMO

Rhodanese domains are structural modules present in the sulfurtransferase superfamily. These domains can exist as single units, in tandem repeats, or fused to domains with other activities. Despite their prevalence across species, the specific physiological roles of most sulfurtransferases are not known. Mammalian rhodanese and mercaptopyruvate sulfurtransferase are perhaps the best-studied members of this protein superfamily and are involved in hydrogen sulfide metabolism. The relatively unstudied human thiosulfate sulfurtransferase-like domain-containing 1 (TSTD1) protein, a single-domain cytoplasmic sulfurtransferase, was also postulated to play a role in the sulfide oxidation pathway using thiosulfate to form glutathione persulfide, for subsequent processing in the mitochondrial matrix. Prior kinetic analysis of TSTD1 was performed at pH 9.2, raising questions about relevance and the proposed model for TSTD1 function. In this study, we report a 1.04 Å resolution crystal structure of human TSTD1, which displays an exposed active site that is distinct from that of rhodanese and mercaptopyruvate sulfurtransferase. Kinetic studies with a combination of sulfur donors and acceptors reveal that TSTD1 exhibits a low Km for thioredoxin as a sulfane sulfur acceptor and that it utilizes thiosulfate inefficiently as a sulfur donor. The active site exposure and its interaction with thioredoxin suggest that TSTD1 might play a role in sulfide-based signaling. The apical localization of TSTD1 in human colonic crypts, which interfaces with sulfide-releasing microbes, and the overexpression of TSTD1 in colon cancer provide potentially intriguing clues as to its role in sulfide metabolism.


Assuntos
Modelos Moleculares , NADP/metabolismo , Proteínas de Neoplasias/metabolismo , Tiorredoxina Dissulfeto Redutase/metabolismo , Tiorredoxinas/metabolismo , Tiossulfato Sulfurtransferase/metabolismo , Substituição de Aminoácidos , Animais , Biocatálise , Domínio Catalítico , Colo/enzimologia , Colo/metabolismo , Colo/patologia , Neoplasias Colorretais/enzimologia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Cristalografia por Raios X , Bases de Dados de Proteínas , Humanos , Mucosa Intestinal/enzimologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Mutação , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Especificidade por Substrato , Tiorredoxina Dissulfeto Redutase/química , Tiorredoxinas/química , Tiorredoxinas/genética , Tiossulfato Sulfurtransferase/química , Tiossulfato Sulfurtransferase/genética
11.
Sci Rep ; 7(1): 16931, 2017 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-29208924

RESUMO

The mammalian molecular chaperone, HSP60, plays an essential role in protein homeostasis through mediating protein folding and assembly. The structure and ATP-dependent function of HSP60 has been well established in recent studies. After ATP, GTP is the major cellular nucleotide. In this paper, we have investigated the role of GTP in the activity of HSP60. It was found that HSP60 has different properties with respect to allostery, complex formation and protein folding activity depending on the nucleoside triphosphate present. The presence of GTP slightly affected the ATPase activity of HSP60 during protein folding. These results provide clues as to the functional mechanism of the HSP60-HSP10 complex.


Assuntos
Chaperonina 10/metabolismo , Chaperonina 60/química , Chaperonina 60/metabolismo , Trifosfato de Adenosina/metabolismo , Regulação Alostérica , Animais , Sítios de Ligação , Chaperonina 10/química , Chaperonina 10/genética , Chaperonina 60/genética , Simulação por Computador , GTP Fosfo-Hidrolases/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Guanosina Trifosfato/metabolismo , Modelos Moleculares , Chaperonas Moleculares/metabolismo , Dobramento de Proteína , Multimerização Proteica , Sus scrofa , Tiossulfato Sulfurtransferase/química , Tiossulfato Sulfurtransferase/metabolismo
12.
J Biol Chem ; 292(34): 14026-14038, 2017 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-28684420

RESUMO

Hydrogen sulfide (H2S) is a signaling molecule that is toxic at elevated concentrations. In eukaryotes, it is cleared via a mitochondrial sulfide oxidation pathway, which comprises sulfide quinone oxidoreductase, persulfide dioxygenase (PDO), rhodanese, and sulfite oxidase and converts H2S to thiosulfate and sulfate. Natural fusions between the non-heme iron containing PDO and rhodanese, a thiol sulfurtransferase, exist in some bacteria. However, little is known about the role of the PDO-rhodanese fusion (PRF) proteins in sulfur metabolism. Herein, we report the kinetic properties and the crystal structure of a PRF from the Gram-negative endophytic bacterium Burkholderia phytofirmans The crystal structures of wild-type PRF and a sulfurtransferase-inactivated C314S mutant with and without glutathione were determined at 1.8, 2.4, and 2.7 Å resolution, respectively. We found that the two active sites are distant and do not show evidence of direct communication. The B. phytofirmans PRF exhibited robust PDO activity and preferentially catalyzed sulfur transfer in the direction of thiosulfate to sulfite and glutathione persulfide; sulfur transfer in the reverse direction was detectable only under limited turnover conditions. Together with the kinetic data, our bioinformatics analysis reveals that B. phytofirmans PRF is poised to metabolize thiosulfate to sulfite in a sulfur assimilation pathway rather than in sulfide stress response as seen, for example, with the Staphylococcus aureus PRF or sulfide oxidation and disposal as observed with the homologous mammalian proteins.


Assuntos
Proteínas de Bactérias/metabolismo , Burkholderiaceae/enzimologia , Modelos Moleculares , Proteínas Mutantes Quiméricas/metabolismo , Quinona Redutases/metabolismo , Tiossulfato Sulfurtransferase/metabolismo , Substituição de Aminoácidos , Apoenzimas/química , Apoenzimas/genética , Apoenzimas/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Biocatálise , Domínio Catalítico , Biologia Computacional , Cristalografia por Raios X , Cisteína/química , Dissulfetos/metabolismo , Estabilidade Enzimática , Glutationa/análogos & derivados , Glutationa/química , Glutationa/metabolismo , Sulfeto de Hidrogênio/metabolismo , Proteínas Mutantes Quiméricas/química , Proteínas Mutantes Quiméricas/genética , Mutação , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Conformação Proteica , Quinona Redutases/química , Quinona Redutases/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Tiossulfato Sulfurtransferase/química , Tiossulfato Sulfurtransferase/genética , Tiossulfatos/metabolismo
13.
J Mol Biol ; 428(19): 3737-51, 2016 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-27473602

RESUMO

S-Nitrosylation is well established as an important post-translational regulator in protein function and signaling. However, relatively little is known about its structural and dynamical consequences. We have investigated the effects of S-nitrosylation on the rhodanese domain of the Escherichia coli integral membrane protein YgaP by NMR, X-ray crystallography, and mass spectrometry. The results show that the active cysteine in the rhodanese domain of YgaP is subjected to two competing modifications: S-nitrosylation and S-sulfhydration, which are naturally occurring in vivo. It has been observed that in addition to inhibition of the sulfur transfer activity, S-nitrosylation of the active site residue Cys63 causes an increase in slow motion and a displacement of helix 5 due to a weakening of the interaction between the active site and the helix dipole. These findings provide an example of how nitrosative stress can exert action at the atomic level.


Assuntos
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Processamento de Proteína Pós-Traducional , Tiossulfato Sulfurtransferase/química , Tiossulfato Sulfurtransferase/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Cisteína/metabolismo , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Modelos Moleculares , Conformação Proteica
14.
Colloids Surf B Biointerfaces ; 141: 59-64, 2016 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-26836478

RESUMO

Preserving the catalytic activity of enzymes immobilized in bioelectronics devices is essential for optimal performance in biosensors. Therefore, ultrathin films in which the architecture can be controlled at the molecular level are of interest. In this work, the enzyme rhodanese was adsorbed onto Langmuir monolayers of the phospholipid dimyristoylphosphatidic acid and characterized by surface pressure-area isotherms, polarization-modulated infrared reflection-absorption spectroscopy (PM-IRRAS), and Brewster angle microscopy (BAM). The incorporation of the enzyme (5% in mol) in the lipid monolayer expanded the film, providing small surface domains, as visualized by BAM. Also, amide bands could be identified in the PM-IRRAS spectra, confirming the presence of the enzyme at the air-water interface. Structuring of the enzyme into α-helices was identified in the mixed monolayer and was preserved when the film was transferred from the liquid interface to solids supports as Langmuir-Blodgett (LB) films. The enzyme-lipid LB films were then characterized by fluorescence spectroscopy, PM-IRRAS, and atomic force microscopy. Measurements of the catalytic activity towards cyanide showed that the enzyme accommodated in the LB films preserved more than 87% of the enzyme activity in relation to the homogeneous medium. After 1 month, the enzyme in the LB film maintained 85% of the activity in contrast to the homogeneous medium, which 24% of the enzyme activity was kept. The method presented in this work not only points to an enhanced catalytic activity toward cyanide, but also may explain why certain film architectures exhibit an improved performance.


Assuntos
Enzimas Imobilizadas/metabolismo , Glicerofosfolipídeos/química , Tiossulfato Sulfurtransferase/metabolismo , Lipossomas Unilamelares/metabolismo , Adsorção , Técnicas Biossensoriais/métodos , Ensaios Enzimáticos , Enzimas Imobilizadas/química , Cinética , Microscopia de Força Atômica , Espectrometria de Fluorescência , Espectrofotometria Infravermelho , Propriedades de Superfície , Termodinâmica , Tiossulfato Sulfurtransferase/química , Lipossomas Unilamelares/química , Água/química
15.
Biochem Biophys Res Commun ; 466(1): 72-5, 2015 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-26325470

RESUMO

Many proteins in bacterial cells fold in the chaperonin cage made of the central cavity of GroEL capped by GroES. Recent studies indicate that the polypeptide in the cage spends the most time as a state tethered dynamically to the GroEL/GroES interface region, in which folding occurs in the polypeptide segments away from the tethered site (F. Motojima & M. Yoshida, EMBO J. (2010) 29, 4008-4019). In support of this, we show here that a polypeptide in the cage tethered covalently to an appropriate site in the GroEL/GroES interface region can fold to a near-native structure.


Assuntos
Chaperonina 10/metabolismo , Chaperonina 60/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Dobramento de Proteína , Tiossulfato Sulfurtransferase/metabolismo , Animais , Bovinos , Chaperonina 10/química , Chaperonina 60/química , Escherichia coli/química , Proteínas de Escherichia coli/química , Modelos Moleculares , Peptídeos/química , Peptídeos/metabolismo , Tiossulfato Sulfurtransferase/química
16.
Biochemistry ; 54(29): 4542-54, 2015 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-26177047

RESUMO

Hydrogen sulfide (H2S) is both a lethal gas and an emerging gasotransmitter in humans, suggesting that the cellular H2S level must be tightly regulated. CstB is encoded by the cst operon of the major human pathogen Staphylococcus aureus and is under the transcriptional control of the persulfide sensor CstR and H2S. Here, we show that CstB is a multifunctional Fe(II)-containing persulfide dioxygenase (PDO), analogous to the vertebrate protein ETHE1 (ethylmalonic encephalopathy protein 1). Chromosomal deletion of ethe1 is fatal in vertebrates. In the presence of molecular oxygen (O2), hETHE1 oxidizes glutathione persulfide (GSSH) to generate sulfite and reduced glutathione. In contrast, CstB oxidizes major cellular low molecular weight (LMW) persulfide substrates from S. aureus, coenzyme A persulfide (CoASSH) and bacillithiol persulfide (BSSH), directly to generate thiosulfate (TS) and reduced thiols, thereby avoiding the cellular toxicity of sulfite. Both Cys201 in the N-terminal PDO domain (CstB(PDO)) and Cys408 in the C-terminal rhodanese domain (CstB(Rhod)) strongly enhance the TS generating activity of CstB. CstB also possesses persulfide transferase (PT; reverse rhodanese) activity, which generates TS when provided with LMW persulfides and sulfite, as well as conventional thiosulfate transferase (TST; rhodanese) activity; both of these activities require Cys408. CstB protects S. aureus against H2S toxicity, with the C201S and C408S cstB genes being unable to rescue a NaHS-induced ΔcstB growth phenotype. Induction of the cst operon by NaHS reveals that functional CstB impacts cellular TS concentrations. These data collectively suggest that CstB may have evolved to facilitate the clearance of LMW persulfides that occur upon elevation of the level of cellular H2S and hence may have an impact on bacterial viability under H2S misregulation, in concert with the other enzymes encoded by the cst operon.


Assuntos
Proteínas de Bactérias/química , Sulfeto de Hidrogênio/metabolismo , Staphylococcus aureus/enzimologia , Tiossulfato Sulfurtransferase/química , Proteínas de Bactérias/fisiologia , Sulfeto de Hidrogênio/farmacologia , Cinética , Tiossulfato Sulfurtransferase/fisiologia , Tiossulfatos/química , Tiossulfatos/metabolismo
17.
Acta Crystallogr F Struct Biol Commun ; 71(Pt 3): 354-7, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25760714

RESUMO

Adaptations to hypoxia play an important role in Mycobacterium tuberculosis pathogenesis. Rv0324, which contains an HTH DNA-binding domain and a rhodanese domain, is one of the key transcription regulators in response to hypoxia. M. tuberculosis Rv1674c is a homologue of Rv0324. To understand the interdomain interaction and regulation of the HTH domain and the rhodanese domain, recombinant Rv1674c protein was purified and crystallized by the vapour-diffusion method. The crystals diffracted to 2.25 Šresolution. Preliminary diffraction analysis suggests that the crystals belonged to space group P3121 or P3221, with unit-cell parameters a = b = 67.8, c = 174.5 Å, α = ß = 90, γ = 120°. The Matthews coefficient was calculated to be 2.44 Å(3) Da(-1), assuming that the crystallographic asymmetric unit contains two protein molecules.


Assuntos
Proteínas de Bactérias/química , Mycobacterium tuberculosis/enzimologia , Tiossulfato Sulfurtransferase/química , Proteínas de Bactérias/isolamento & purificação , Domínio Catalítico , Cromatografia de Afinidade , Cristalização , Cristalografia por Raios X , Tiossulfato Sulfurtransferase/isolamento & purificação
18.
Methods Enzymol ; 554: 189-200, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25725523

RESUMO

H2S is produced from sulfur-containing amino acids, cysteine and homocysteine, or a catabolite, 3-mercaptopyruvate, by three known enzymes: cystathionine ß-synthase, γ-cystathionase, and 3-mercaptopyruvate sulfurtransferase. Of these, the first two enzymes reside in the cytoplasm and comprise the transsulfuration pathway, while the third enzyme is found both in the cytoplasm and in the mitochondrion. The following mitochondrial enzymes oxidize H2S: sulfide quinone oxidoreductase, sulfur dioxygenase, rhodanese, and sulfite oxidase. The products of the sulfide oxidation pathway are thiosulfate and sulfate. Assays for enzymes involved in the production and oxidative clearance of sulfide to thiosulfate are described in this chapter.


Assuntos
Cistationina beta-Sintase/química , Cistationina gama-Liase/química , Sulfeto de Hidrogênio/química , Animais , Dioxigenases/química , Ensaios Enzimáticos , Humanos , Cinética , Oxirredução , Sulfurtransferases/química , Tiossulfato Sulfurtransferase/química
19.
J Biol Chem ; 289(52): 36220-8, 2014 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-25378400

RESUMO

Aha1 (activator of Hsp90 ATPase) stimulates the ATPase activity of the molecular chaperone Hsp90 to accelerate the conformational cycle during which client proteins attain their final shape. Thereby, Aha1 promotes effective folding of Hsp90-dependent clients such as steroid receptors and many kinases involved in cellular signaling. In our current study, we find that Aha1 plays a novel, additional role beyond regulating the Hsp90 ATP hydrolysis rate. We propose a new concept suggesting that Aha1 acts as an autonomous chaperone and associates with stress-denatured proteins to prevent them from aggregation similar to the chaperonin GroEL. Our study reveals that an N-terminal sequence of 22 amino acids, present in human but absent from yeast Aha1, is critical for this capability. However, in lieu of fostering their refolding, Aha1 allows ubiquitination of bound clients by the E3 ubiquitin ligase CHIP. Accordingly, Aha1 may promote disposal of folding defective proteins by the cellular protein quality control.


Assuntos
Chaperonas Moleculares/fisiologia , Agregação Patológica de Proteínas/metabolismo , Animais , Células HEK293 , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Luciferases de Vaga-Lume/química , Macaca mulatta , Camundongos , Chaperonas Moleculares/química , Ligação Proteica , Redobramento de Proteína , Proteólise , Tiossulfato Sulfurtransferase/química , Ubiquitinação
20.
J Biol Chem ; 289(45): 30901-10, 2014 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-25225291

RESUMO

Sulfide oxidation is expected to play an important role in cellular switching between low steady-state intracellular hydrogen sulfide levels and the higher concentrations where the physiological effects are elicited. Yet despite its significance, fundamental questions regarding how the sulfide oxidation pathway is wired remain unanswered, and competing proposals exist that diverge at the very first step catalyzed by sulfide quinone oxidoreductase (SQR). We demonstrate that, in addition to sulfite, glutathione functions as a persulfide acceptor for human SQR and that rhodanese preferentially synthesizes rather than utilizes thiosulfate. The kinetic behavior of these enzymes provides compelling evidence for the flow of sulfide via SQR to glutathione persulfide, which is then partitioned to thiosulfate or sulfite. Kinetic simulations at physiologically relevant metabolite concentrations provide additional support for the organizational logic of the sulfide oxidation pathway in which glutathione persulfide is the first intermediate formed.


Assuntos
Sulfeto de Hidrogênio/química , Mitocôndrias/metabolismo , Quinona Redutases/química , Catálise , Cisteína/química , Citocromos c/química , Escherichia coli/enzimologia , Glutationa/química , Homeostase , Humanos , Concentração de Íons de Hidrogênio , Cinética , Oxirredução , Oxigênio/química , Espectrofotometria Ultravioleta , Sulfetos/química , Tiossulfato Sulfurtransferase/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA