Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 373
Filtrar
1.
Sci Rep ; 14(1): 11100, 2024 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750032

RESUMO

The growth and productivity of crop plants are negatively affected by salinity-induced ionic and oxidative stresses. This study aimed to provide insight into the interaction of NaCl-induced salinity with Azolla aqueous extract (AAE) regarding growth, antioxidant balance, and stress-responsive genes expression in wheat seedlings. In a pot experiment, wheat kernels were primed for 21 h with either deionized water or 0.1% AAE. Water-primed seedlings received either tap water, 250 mM NaCl, AAE spray, or AAE spray + NaCl. The AAE-primed seedlings received either tap water or 250 mM NaCl. Salinity lowered growth rate, chlorophyll level, and protein and amino acids pool. However, carotenoids, stress indicators (EL, MDA, and H2O2), osmomodulators (sugars, and proline), antioxidant enzymes (CAT, POD, APX, and PPO), and the expression of some stress-responsive genes (POD, PPO and PAL, PCS, and TLP) were significantly increased. However, administering AAE contributed to increased growth, balanced leaf pigments and assimilation efficacy, diminished stress indicators, rebalanced osmomodulators and antioxidant enzymes, and down-regulation of stress-induced genes in NaCl-stressed plants, with priming surpassing spray in most cases. In conclusion, AAE can be used as a green approach for sustaining regular growth and metabolism and remodelling the physio-chemical status of wheat seedlings thriving in salt-affected soils.


Assuntos
Antioxidantes , Regulação da Expressão Gênica de Plantas , Extratos Vegetais , Tolerância ao Sal , Plântula , Triticum , Triticum/efeitos dos fármacos , Triticum/genética , Triticum/metabolismo , Triticum/crescimento & desenvolvimento , Tolerância ao Sal/genética , Tolerância ao Sal/efeitos dos fármacos , Antioxidantes/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Plântula/genética , Plântula/metabolismo , Extratos Vegetais/farmacologia , Gleiquênias/efeitos dos fármacos , Gleiquênias/genética , Gleiquênias/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Salinidade , Cloreto de Sódio/farmacologia , Estresse Oxidativo/efeitos dos fármacos
2.
BMC Plant Biol ; 24(1): 365, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38706002

RESUMO

BACKGROUND: In plants, GABA plays a critical role in regulating salinity stress tolerance. However, the response of soybean seedlings (Glycine max L.) to exogenous gamma-aminobutyric acid (GABA) under saline stress conditions has not been fully elucidated. RESULTS: This study investigated the effects of exogenous GABA (2 mM) on plant biomass and the physiological mechanism through which soybean plants are affected by saline stress conditions (0, 40, and 80 mM of NaCl and Na2SO4 at a 1:1 molar ratio). We noticed that increased salinity stress negatively impacted the growth and metabolism of soybean seedlings, compared to control. The root-stem-leaf biomass (27- and 33%, 20- and 58%, and 25- and 59% under 40- and 80 mM stress, respectively]) and the concentration of chlorophyll a and chlorophyll b significantly decreased. Moreover, the carotenoid content increased significantly (by 35%) following treatment with 40 mM stress. The results exhibited significant increase in the concentration of hydrogen peroxide (H2O2), malondialdehyde (MDA), dehydroascorbic acid (DHA) oxidized glutathione (GSSG), Na+, and Cl- under 40- and 80 mM stress levels, respectively. However, the concentration of mineral nutrients, soluble proteins, and soluble sugars reduced significantly under both salinity stress levels. In contrast, the proline and glycine betaine concentrations increased compared with those in the control group. Moreover, the enzymatic activities of ascorbate peroxidase, monodehydroascorbate reductase, glutathione reductase, and glutathione peroxidase decreased significantly, while those of superoxide dismutase, catalase, peroxidase, and dehydroascorbate reductase increased following saline stress, indicating the overall sensitivity of the ascorbate-glutathione cycle (AsA-GSH). However, exogenous GABA decreased Na+, Cl-, H2O2, and MDA concentration but enhanced photosynthetic pigments, mineral nutrients (K+, K+/Na+ ratio, Zn2+, Fe2+, Mg2+, and Ca2+); osmolytes (proline, glycine betaine, soluble sugar, and soluble protein); enzymatic antioxidant activities; and AsA-GSH pools, thus reducing salinity-associated stress damage and resulting in improved growth and biomass. The positive impact of exogenously applied GABA on soybean plants could be attributed to its ability to improve their physiological stress response mechanisms and reduce harmful substances. CONCLUSION: Applying GABA to soybean plants could be an effective strategy for mitigating salinity stress. In the future, molecular studies may contribute to a better understanding of the mechanisms by which GABA regulates salt tolerance in soybeans.


Assuntos
Ácido Ascórbico , Glutationa , Glycine max , Plântula , Ácido gama-Aminobutírico , Ácido gama-Aminobutírico/metabolismo , Plântula/efeitos dos fármacos , Plântula/metabolismo , Plântula/fisiologia , Glycine max/efeitos dos fármacos , Glycine max/metabolismo , Glycine max/fisiologia , Ácido Ascórbico/metabolismo , Glutationa/metabolismo , Minerais/metabolismo , Tolerância ao Sal/efeitos dos fármacos , Estresse Salino/efeitos dos fármacos , Clorofila/metabolismo , Salinidade
3.
Int J Biol Macromol ; 267(Pt 2): 131477, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38604430

RESUMO

Salt stress severely limits the growth and yield of wheat in saline-alkali soil. While nanozymes have shown promise in mitigating abiotic stress by scavenging reactive oxygen species (ROS) in plants, their application in alleviating salt stress for wheat is still limited. This study synthesized a highly active nanozyme catalyst known as ZnPB (Zn-modified Prussian blue) to improve the yield and quality of wheat in saline soil. According to the Michaelis-Menten equation, ZnPB demonstrates exceptional peroxidase-like enzymatic activity, thereby mitigating oxidative damage caused by salt stress. Additionally, studies have shown that the ZnPB nanozyme is capable of regulating intracellular Na+ efflux and K+ retention in wheat, resulting in a decrease in proline and soluble protein levels while maintaining the integrity of macromolecules within the cell. Consequently, field experiments demonstrated that the ZnPB nanozyme increased winter wheat yield by 12.15 %, while also significantly enhancing its nutritional quality. This research offers a promising approach to improving the salinity tolerance of wheat, while also providing insights into its practical application.


Assuntos
Ferrocianetos , Tolerância ao Sal , Sementes , Triticum , Zinco , Triticum/efeitos dos fármacos , Ferrocianetos/química , Zinco/química , Zinco/farmacologia , Tolerância ao Sal/efeitos dos fármacos , Sementes/efeitos dos fármacos , Peroxidase/metabolismo , Sódio/metabolismo , Espécies Reativas de Oxigênio/metabolismo
4.
Int J Biol Macromol ; 268(Pt 1): 131601, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38626833

RESUMO

This study investigates the impact of water and salinity stress on Aloe vera, focusing on the role of Aloe vera polysaccharides in mitigating these stresses. Pectins and acemannan were the most affected polymers. Low soil moisture and high salinity (NaCl 80 mM) increased pectic substances, altering rhamnogalacturonan type I in Aloe vera gel. Aloe vera pectins maintained a consistent 60 % methyl-esterification regardless of conditions. Interestingly, acemannan content rose with salinity, particularly under low moisture, accompanied by 90 to 150 % acetylation increase. These changes improved the functionality of Aloe vera polysaccharides: pectins increased cell wall reinforcement and interactions, while highly acetylated acemannan retained water for sustained plant functions. This study highlights the crucial role of Aloe vera polysaccharides in enhancing plant resilience to water and salinity stress, leading to improved functional properties.


Assuntos
Aloe , Mananas , Pectinas , Aloe/química , Mananas/química , Pectinas/química , Água/química , Parede Celular/química , Parede Celular/efeitos dos fármacos , Salinidade , Polissacarídeos/química , Polissacarídeos/farmacologia , Tolerância ao Sal/efeitos dos fármacos , Acetilação , Estresse Fisiológico/efeitos dos fármacos
5.
Int J Mol Sci ; 23(2)2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-35054806

RESUMO

We previously showed that overexpression of the rice ERF transcription factor gene OsBIERF3 in tobacco increased resistance against different pathogens. Here, we report the function of OsBIERF3 in rice immunity and abiotic stress tolerance. Expression of OsBIERF3 was induced by Xanthomonas oryzae pv. oryzae, hormones (e.g., salicylic acid, methyl jasmonate, 1-aminocyclopropane-1-carboxylic acid, and abscisic acid), and abiotic stress (e.g., drought, salt and cold stress). OsBIERF3 has transcriptional activation activity that depends on its C-terminal region. The OsBIERF3-overexpressing (OsBIERF3-OE) plants exhibited increased resistance while OsBIERF3-suppressed (OsBIERF3-Ri) plants displayed decreased resistance to Magnaporthe oryzae and X. oryzae pv. oryzae. A set of genes including those for PRs and MAPK kinases were up-regulated in OsBIERF3-OE plants. Cell wall biosynthetic enzyme genes were up-regulated in OsBIERF3-OE plants but down-regulated in OsBIERF3-Ri plants; accordingly, cell walls became thicker in OsBIERF3-OE plants but thinner in OsBIERF3-Ri plants than WT plants. The OsBIERF3-OE plants attenuated while OsBIERF3-Ri plants enhanced cold tolerance, accompanied by altered expression of cold-responsive genes and proline accumulation. Exogenous abscisic acid and 1-aminocyclopropane-1-carboxylic acid, a precursor of ethylene biosynthesis, restored the attenuated cold tolerance in OsBIERF3-OE plants while exogenous AgNO3, an inhibitor of ethylene action, significantly suppressed the enhanced cold tolerance in OsBIERF3-Ri plants. These data demonstrate that OsBIERF3 positively contributes to immunity against M. oryzae and X. oryzae pv. oryzae but negatively regulates cold stress tolerance in rice.


Assuntos
Adaptação Fisiológica , Temperatura Baixa , Oryza/microbiologia , Oryza/fisiologia , Doenças das Plantas/microbiologia , Imunidade Vegetal , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Ácido Abscísico/farmacologia , Bactérias/metabolismo , Parede Celular/efeitos dos fármacos , Parede Celular/metabolismo , Parede Celular/ultraestrutura , Resistência à Doença/imunologia , Secas , Etilenos/farmacologia , Fungos/fisiologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Magnaporthe/efeitos dos fármacos , Magnaporthe/fisiologia , Oryza/efeitos dos fármacos , Oryza/genética , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Reguladores de Crescimento de Plantas/farmacologia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Tolerância ao Sal/efeitos dos fármacos , Tolerância ao Sal/genética , Estresse Fisiológico , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética , Xanthomonas/efeitos dos fármacos , Xanthomonas/fisiologia
6.
BMC Plant Biol ; 22(1): 31, 2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-35027009

RESUMO

BACKGROUND AND OBJECTIVE: Salt stress is one of the most important abiotic stresses affecting the yield and quality of tobacco (Nicotiana tabacum). Thymol (a natural medicine) has been widely used in medical research because of its antibacterial and anti-inflammatory activities. However, the influence of thymol on the root growth of tobacco is not fully elucidated. In this study, the regulatory effects of different concentrations of thymol were investigated. METHODOLOGY: Here, histochemical staining and biochemical methods, non-invasive micro-test technology (NMT), and qPCR assay were performed to investigate the effect of thymol and mechanism of it improving salinity tolerance in tobacco seedlings. RESULTS: In this study, our results showed that thymol rescued root growth from salt stress by ameliorating ROS accumulation, lipid peroxidation, and cell death. Furthermore, thymol enhanced contents of NO and GSH to repress ROS accumulation, further protecting the stability of the cell membrane. And, thymol improved Na+ efflux and the expression of SOS1, HKT1, and NHX1, thus protecting the stability of Na+ and K+. CONCLUSION: Our study confirmed the protecting effect of thymol in tobacco under salt stress, and we also identified the mechanism of it, involving dynamic regulation of antioxidant system and the maintenance of Na+ homeostasis. It can be a new method to improve salinity tolerance in plants.


Assuntos
Glutationa/metabolismo , Nicotiana/crescimento & desenvolvimento , Nicotiana/metabolismo , Óxido Nítrico/metabolismo , Tolerância ao Sal/efeitos dos fármacos , Sódio/metabolismo , Timol/metabolismo , Timol/farmacologia , Produtos Agrícolas/efeitos dos fármacos , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/metabolismo , Transporte de Íons/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Nicotiana/efeitos dos fármacos
7.
BMC Plant Biol ; 22(1): 16, 2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-34983373

RESUMO

BACKGROUND: Soil salinization is becoming an increasingly serious problem worldwide, resulting in cultivated land loss and desertification, as well as having a serious impact on agriculture and the economy. The indoleamine melatonin (N-acetyl-5-methoxytryptamine) has a wide array of biological roles in plants, including acting as an auxin analog and an antioxidant. Previous studies have shown that exogenous melatonin application alleviates the salt-induced growth inhibition in non-halophyte plants; however, to our knowledge, melatonin effects have not been examined on halophytes, and it is unclear whether melatonin provides similar protection to salt-exposed halophytic plants. RESULTS: We exposed the halophyte Limonium bicolor to salt stress (300 mM) and concomitantly treated the plants with 5 µM melatonin to examine the effect of melatonin on salt tolerance. Exogenous melatonin treatment promoted the growth of L. bicolor under salt stress, as reflected by increasing its fresh weight and leaf area. This increased growth was caused by an increase in net photosynthetic rate and water use efficiency. Treatment of salt-stressed L. bicolor seedlings with 5 µM melatonin also enhanced the activities of antioxidants (superoxide dismutase [SOD], peroxidase [POD], catalase [CAT], and ascorbate peroxidase [APX]), while significantly decreasing the contents of hydrogen peroxide (H2O2), superoxide anion (O2•-), and malondialdehyde (MDA). To screen for L. bicolor genes involved in the above physiological processes, high-throughput RNA sequencing was conducted. A gene ontology enrichment analysis indicated that genes related to photosynthesis, reactive oxygen species scavenging, the auxin-dependent signaling pathway and mitogen-activated protein kinase (MAPK) were highly expressed under melatonin treatment. These data indicated that melatonin improved photosynthesis, decreased reactive oxygen species (ROS) and activated MAPK-mediated antioxidant responses, triggering a downstream MAPK cascade that upregulated the expression of antioxidant-related genes. Thus, melatonin improves the salt tolerance of L. bicolor by increasing photosynthesis and improving cellular redox homeostasis under salt stress. CONCLUSIONS: Our results showed that melatonin can upregulate the expression of genes related to photosynthesis, reactive oxygen species scavenging and mitogen-activated protein kinase (MAPK) of L. bicolor under salt stress, which can improve photosynthesis and antioxidant enzyme activities. Thus melatonin can promote the growth of the species and maintain the homeostasis of reactive oxygen species to alleviate salt stress.


Assuntos
Antioxidantes/metabolismo , Melatonina/farmacologia , Fotossíntese/efeitos dos fármacos , Plumbaginaceae/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Plumbaginaceae/genética , Plumbaginaceae/crescimento & desenvolvimento , Plumbaginaceae/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Estresse Salino , Tolerância ao Sal/efeitos dos fármacos
8.
Sci Rep ; 11(1): 24504, 2021 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-34969963

RESUMO

Cucumber is an important vegetable but highly sensitive to salt stress. The present study was designed to investigate the comparative performance of cucumber genotypes under salt stress (50 mmol L-1) and stress alleviation through an optimized level of triacontanol @ 0.8 mg L-1. Four cucumber genotypes were subjected to foliar application of triacontanol under stress. Different physiological, biochemical, water relations and ionic traits were observed to determine the role of triacontanol in salt stress alleviation. Triacontanol ameliorated the lethal impact of salt stress in all genotypes, but Green long and Marketmore were more responsive than Summer green and 20252 in almost all the attributes that define the genetic potential of genotypes. Triacontanol performs as a good scavenger of ROS by accelerating the activity of antioxidant enzymes (SOD, POD, CAT) and compatible solutes (proline, glycinebetaine, phenolic contents), which lead to improved gas exchange attributes and water relations and in that way enhance the calcium and potassium contents or decline the sodium and chloride contents in cucumber leaves. Furthermore, triacontanol feeding also shows the answer to yield traits of cucumber. It was concluded from the results that the salinity tolerance efficacy of triacontanol is valid in enhancing the productivity of cucumber plants under salt stress. Triacontanol was more pronounced in green long and marketer green than in summer green and 20252. Hence, the findings of this study pave the way towards the usage of triacontanol @ 0.8 mg L-1, and green long and marketer genotypes may be recommended for saline soil.


Assuntos
Cucumis sativus/fisiologia , Álcoois Graxos/metabolismo , Estresse Salino , Cucumis sativus/efeitos dos fármacos , Cucumis sativus/genética , Álcoois Graxos/administração & dosagem , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Estresse Salino/efeitos dos fármacos , Tolerância ao Sal/efeitos dos fármacos
9.
BMC Plant Biol ; 21(1): 577, 2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34872497

RESUMO

BACKGROUND: Salt stress hinders plant growth and production around the world. Autophagy induced by salt stress helps plants improve their adaptability to salt stress. However, the underlying mechanism behind this adaptability remains unclear. To obtain deeper insight into this phenomenon, combined metabolomics and transcriptomics analyses were used to explore the coexpression of differentially expressed-metabolite (DEM) and gene (DEG) between control and salt-stressed wheat roots and leaves in the presence or absence of the added autophagy inhibitor 3-methyladenine (3-MA). RESULTS: The results indicated that 3-MA addition inhibited autophagy, increased ROS accumulation, damaged photosynthesis apparatus and impaired the tolerance of wheat seedlings to NaCl stress. A total of 14,759 DEGs and 554 DEMs in roots and leaves of wheat seedlings were induced by salt stress. DEGs were predominantly enriched in cellular amino acid catabolic process, response to external biotic stimulus, regulation of the response to salt stress, reactive oxygen species (ROS) biosynthetic process, regulation of response to osmotic stress, ect. The DEMs were mostly associated with amino acid metabolism, carbohydrate metabolism, phenylalanine metabolism, carbapenem biosynthesis, and pantothenate and CoA biosynthesis. Further analysis identified some critical genes (gene involved in the oxidative stress response, gene encoding transcription factor (TF) and gene involved in the synthesis of metabolite such as alanine, asparagine, aspartate, glutamate, glutamine, 4-aminobutyric acid, abscisic acid, jasmonic acid, ect.) that potentially participated in a complex regulatory network in the wheat response to NaCl stress. The expression of the upregulated DEGs and DEMs were higher, and the expression of the down-regulated DEGs and DEMs was lower in 3-MA-treated plants under NaCl treatment. CONCLUSION: 3-MA enhanced the salt stress sensitivity of wheat seedlings by inhibiting the activity of the roots and leaves, inhibiting autophagy in the roots and leaves, increasing the content of both H2O2 and O2•-, damaged photosynthesis apparatus and changing the transcriptome and metabolome of salt-stressed wheat seedlings.


Assuntos
Adenina/análogos & derivados , Autofagia/efeitos dos fármacos , Estresse Salino/efeitos dos fármacos , Tolerância ao Sal/efeitos dos fármacos , Triticum/efeitos dos fármacos , Adenina/farmacologia , Autofagia/fisiologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Metaboloma , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Tolerância ao Sal/fisiologia , Plântula/efeitos dos fármacos , Plântula/genética , Plântula/fisiologia , Triticum/genética , Triticum/fisiologia
10.
Sci Rep ; 11(1): 22698, 2021 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-34811419

RESUMO

Two orthologues of the gene encoding the Na+-Cl- cotransporter (NCC), termed ncca and nccb, were found in the sea lamprey genome. No gene encoding the Na+-K+-2Cl- cotransporter 2 (nkcc2) was identified. In a phylogenetic comparison among other vertebrate NCC and NKCC sequences, the sea lamprey NCCs occupied basal positions within the NCC clades. In freshwater, ncca mRNA was found only in the gill and nccb only in the intestine, whereas both were found in the kidney. Intestinal nccb mRNA levels increased during late metamorphosis coincident with salinity tolerance. Acclimation to seawater increased nccb mRNA levels in the intestine and kidney. Electrophysiological analysis of intestinal tissue ex vivo showed this tissue was anion absorptive. After seawater acclimation, the proximal intestine became less anion absorptive, whereas the distal intestine remained unchanged. Luminal application of indapamide (an NCC inhibitor) resulted in 73% and 30% inhibition of short-circuit current (Isc) in the proximal and distal intestine, respectively. Luminal application of bumetanide (an NKCC inhibitor) did not affect intestinal Isc. Indapamide also inhibited intestinal water absorption. Our results indicate that NCCb is likely the key ion cotransport protein for ion uptake by the lamprey intestine that facilitates water absorption in seawater. As such, the preparatory increases in intestinal nccb mRNA levels during metamorphosis of sea lamprey are likely critical to development of whole animal salinity tolerance.


Assuntos
Transporte de Íons/genética , Osmorregulação/genética , Petromyzon/genética , Tolerância ao Sal/genética , Membro 3 da Família 12 de Carreador de Soluto/genética , Sequência de Aminoácidos , Animais , Bumetanida/farmacologia , Água Doce/química , Brânquias/metabolismo , Indapamida/farmacologia , Intestinos/metabolismo , Transporte de Íons/efeitos dos fármacos , Metamorfose Biológica/efeitos dos fármacos , Metamorfose Biológica/genética , Petromyzon/metabolismo , Filogenia , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Salinidade , Tolerância ao Sal/efeitos dos fármacos , Água do Mar/química , Inibidores de Simportadores de Cloreto de Sódio/farmacologia , Inibidores de Simportadores de Cloreto de Sódio e Potássio/farmacologia , Simportadores de Cloreto de Sódio-Potássio/genética , Simportadores de Cloreto de Sódio-Potássio/metabolismo , Membro 3 da Família 12 de Carreador de Soluto/metabolismo , Água/metabolismo
11.
Molecules ; 26(20)2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34684872

RESUMO

Recent studies in the agronomic field indicate that the exogenous application of polyphenols can provide tolerance against various stresses in plants. However, the molecular processes underlying stress mitigation remain unclear, and little is known about the impact of exogenously applied phenolics, especially in combination with salinity. In this work, the impacts of exogenously applied chlorogenic acid (CA), hesperidin (HES), and their combination (HES + CA) have been investigated in lettuce (Lactuca sativa L.) through untargeted metabolomics to evaluate mitigation effects against salinity. Growth parameters, physiological measurements, leaf relative water content, and osmotic potential as well as gas exchange parameters were also measured. As expected, salinity produced a significant decline in the physiological and biochemical parameters of lettuce. However, the treatments with exogenous phenolics, particularly HES and HES + CA, allowed lettuce to cope with salt stress condition. Interestingly, the treatments triggered a broad metabolic reprogramming that involved secondary metabolism and small molecules such as electron carriers, enzyme cofactors, and vitamins. Under salinity conditions, CA and HES + CA distinctively elicited secondary metabolism, nitrogen-containing compounds, osmoprotectants, and polyamines.


Assuntos
Ácido Clorogênico/farmacologia , Hesperidina/farmacologia , Lactuca/efeitos dos fármacos , Estresse Salino/efeitos dos fármacos , Lactuca/metabolismo , Metaboloma/efeitos dos fármacos , Fotossíntese , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Tolerância ao Sal/efeitos dos fármacos
12.
Plant Sci ; 311: 111013, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34482916

RESUMO

Salinity is an important environmental factor that reduces plant productivity in many world regions. It affects negatively photosynthesis causing a growth reduction. Likewise, calcium (Ca2+) is crucial in plant stress response. Therefore, the modification of Ca2+ cation exchangers (CAX) transporters could be a potential strategy to increase plant tolerance to salinity. Using Targeting Induced Local Lesions in Genomes (TILLING), researchers generated three mutants of Brassica rapa CAX1a transporter: BraA.cax1a-7, BraA.cax1a-4, and BraA.cax1a-12. The aim of this study was to test the effect of those mutations on salt tolerance focusing on the response to the photosynthesis process. Thus, the three BraA.cax1a mutants and the parental line (R-o-18) were grown under salinity conditions, and parameters related to biomass, photosynthesis performance, glucose-6-phosphate dehydrogenase (G6PDH, EC 1.1.1.49), and soluble carbohydrates were measured. BraA.cax1a-4 provided higher biomass and a better photosynthetic performance manifested by higher water use efficiency (WUE), Fv/Fm, electron fluxes, and Rubisco (EC 4.1.1.39) values. In addition, BraA.cax1a-4 presented increased osmotic protection through myo-inositol accumulation. On the other hand, BraA.cax1a-7 produced some negative effects on photosynthesis performance and lower G6PDH and Rubisco accumulations. Therefore, this study points out BraA.cax1a-4 as a useful mutation to improve photosynthetic performance in plants grown under saline conditions.


Assuntos
Brassica rapa/genética , Brassica rapa/fisiologia , Fotossíntese/genética , Fotossíntese/fisiologia , Tolerância ao Sal/efeitos dos fármacos , Tolerância ao Sal/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Genética , Genótipo , Mutação , Folhas de Planta/genética , Folhas de Planta/fisiologia
13.
Biomolecules ; 11(7)2021 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-34356629

RESUMO

Soil salinity is the major limiting factor restricting plant growth and development. Little is known about the comparative and combined effects of gibberellic acid (GA3) seed priming and foliar application on maize under salt stress. The current study determined the impact of different application methods of GA3 on morpho-physiological, biochemical and molecular responses of maize seedlings under three salinity stress treatments (no salinity, moderate salinity-6 dS m-1, and severe salinity-12 dS m-1). The GA3 treatments consisted of control, hydro-priming (HP), water foliar spray (WFS), HP + WFS, seed priming with GA3 (GA3P, 100 mg L-1), foliar spray with GA3 (GA3FS, 100ppm) and GA3P + GA3FS. Salt stress particularly at 12 dS m-1 reduced the length of shoots and roots, fresh and dry weights, chlorophyll, and carotenoid contents, K+ ion accumulation and activities of antioxidant enzymes, while enhanced the oxidative damage and accumulation of the Na+ ion in maize plants. Nevertheless, the application of GA3 improved maize growth, reduced oxidative stress, and increased the antioxidant enzymes activities, antioxidant genes expression, and K+ ion concentration under salt stress. Compared with control, the GA3P + GA3FS recorded the highest increase in roots and shoots length (19-37%), roots fresh and dry weights (31-43%), shoots fresh and dry weights (31-47%), chlorophyll content (21-70%), antioxidant enzymes activities (73.03-150.74%), total soluble protein (13.05%), K+ concentration (13-23%) and antioxidants genes expression levels under different salinity levels. This treatment also reduced the H2O2 content, and Na+ ion concentration. These results indicated that GA3P + GA3FS could be used as an effective tool for improving the maize growth and development, and reducing the oxidative stress in salt-contaminated soils.


Assuntos
Antioxidantes/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Giberelinas/farmacologia , Tolerância ao Sal/efeitos dos fármacos , Zea mays , Tolerância ao Sal/genética , Zea mays/genética , Zea mays/crescimento & desenvolvimento
14.
Sci Rep ; 11(1): 15597, 2021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-34341425

RESUMO

Salinity is challenging threats to the agricultural system and leading cause of crop loss. Salicylic acid (SA) is an important endogenous signal molecule, which by regulating growth and physiological processes improves the plant ability to tolerate salt stress. Considering the prime importance of Gladiolus grandiflorus (L.) in the world's cut-flower market, the research work was undertaken to elucidate salinity tolerance in G. grandiflorus by exogenous application of SA irrigated with saline water. Results revealed that increasing salinity (EC: 2, 4 and 6 dS m-1) considerably altered morpho-growth indices (corm morphology and plant biomass) in plants through increasing key antioxidants including proline content and enzymes activity (superoxide dismutase, catalase and peroxidase), while negatively affected the total phenolic along with activity of defense-related enzymes (phenylalanine ammonia lyase, and polyphenol oxidase activity). SA application (50-200 ppm) in non-saline control or saline conditions improved morpho-physiological traits in concentration-dependent manners. In saline conditions, SA minimized salt-stress by enhancing chlorophyll content, accumulating organic osmolytes (glycine betaine and proline content), total phenolic, and boosting activity of antioxidant and defense-related enzymes. Principle component analysis based on all 16 morphological and physiological variables generated useful information regarding the classification of salt tolerant treatment according to their response to SA. These results suggest SA (100 or 150 ppm) could be used as an effective, economic, easily available and safe phenolic agent against salinity stress in G. grandiflorus.


Assuntos
Iridaceae/fisiologia , Ácido Salicílico/farmacologia , Estresse Salino/efeitos dos fármacos , Antioxidantes/metabolismo , Betaína/metabolismo , Carotenoides/metabolismo , Catalase/metabolismo , Catecol Oxidase/metabolismo , Clorofila/metabolismo , Iridaceae/anatomia & histologia , Iridaceae/efeitos dos fármacos , Iridaceae/enzimologia , Peroxidase/metabolismo , Fenóis/metabolismo , Fenilalanina Amônia-Liase/metabolismo , Fotossíntese/efeitos dos fármacos , Pigmentos Biológicos/metabolismo , Folhas de Planta/efeitos dos fármacos , Análise de Componente Principal , Prolina/metabolismo , Tolerância ao Sal/efeitos dos fármacos , Superóxido Dismutase/metabolismo
15.
Int J Mol Sci ; 22(16)2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34445331

RESUMO

Plant WRKY transcription factors play crucial roles in plant growth and development, as well as plant responses to biotic and abiotic stresses. In this study, we identified and characterized a WRKY transcription factor in rice, OsWRKY50. OsWRKY50 functions as a transcriptional repressor in the nucleus. The transcription of OsWRKY50 was repressed under salt stress conditions, but activated after abscisic acid (ABA) treatment. OsWRKY50-overexpression (OsWRKY50-OX) plants displayed increased tolerance to salt stress compared to wild type and control plants. The expression of OsLEA3, OsRAB21, OsHKT1;5, and OsP5CS1 in OsWRKY50-OX were much higher than wild type and control plants under salt stress. Furthermore, OsWRKY50-OX displayed hyposensitivity to ABA-regulated seed germination and seedling establishment. The protoplast-based transient expression system and yeast hybrid assay demonstrated that OsWRKY50 directly binds to the promoter of OsNCED5, and thus further inhibits its transcription. Taken together, our results demonstrate that rice transcription repressor OsWRKY50 mediates ABA-dependent seed germination and seedling growth and enhances salt stress tolerance via an ABA-independent pathway.


Assuntos
Ácido Abscísico/farmacologia , Oryza , Tolerância ao Sal , Fatores de Transcrição/fisiologia , Proteínas de Arabidopsis/genética , Clonagem Molecular , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Germinação/efeitos dos fármacos , Germinação/genética , Oryza/efeitos dos fármacos , Oryza/genética , Oryza/crescimento & desenvolvimento , Filogenia , Desenvolvimento Vegetal/efeitos dos fármacos , Desenvolvimento Vegetal/genética , Proteínas de Plantas/genética , Proteínas de Plantas/fisiologia , Plantas Geneticamente Modificadas , Estresse Salino/efeitos dos fármacos , Estresse Salino/genética , Tolerância ao Sal/efeitos dos fármacos , Tolerância ao Sal/genética , Plântula/efeitos dos fármacos , Plântula/genética , Plântula/crescimento & desenvolvimento , Análise de Sequência de DNA , Homologia de Sequência , Fatores de Transcrição/genética
16.
Int J Mol Sci ; 22(12)2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34203768

RESUMO

Mesembryanthemum crystallinum (common ice plant) is a halophyte species that has adapted to extreme conditions. In this study, we cloned a McHB7 transcription factor gene from the ice plant. The expression of McHB7 was significantly induced by 500 mM NaCl and it reached the peak under salt treatment for 7 days. The McHB7 protein was targeted to the nucleus. McHB7-overexpressing in ice plant leaves through Agrobacterium-mediated transformation led to 25 times more McHB7 transcripts than the non-transformed wild type (WT). After 500 mM NaCl treatment for 7 days, the activities of superoxide dismutase (SOD) and peroxidase (POD) and water content of the transgenic plants were higher than the WT, while malondialdehyde (MDA) was decreased in the transgenic plants. A total of 1082 and 1072 proteins were profiled by proteomics under control and salt treatment, respectively, with 22 and 11 proteins uniquely identified under control and salt stress, respectively. Among the 11 proteins, 7 were increased and 4 were decreased after salt treatment. Most of the proteins whose expression increased in the McHB7 overexpression (OE) ice plants under high salinity were involved in transport regulation, catalytic activities, biosynthesis of secondary metabolites, and response to stimulus. The results demonstrate that the McHB7 transcription factor plays a positive role in improving plant salt tolerance.


Assuntos
Mesembryanthemum/metabolismo , Proteínas de Plantas/metabolismo , Proteômica , Tolerância ao Sal/fisiologia , Sequência de Aminoácidos , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Biologia Computacional , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ontologia Genética , Mesembryanthemum/efeitos dos fármacos , Mesembryanthemum/genética , Filogenia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Transporte Proteico/efeitos dos fármacos , Salinidade , Tolerância ao Sal/efeitos dos fármacos , Tolerância ao Sal/genética , Cloreto de Sódio/farmacologia , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética , Frações Subcelulares/metabolismo , Fatores de Transcrição/metabolismo
17.
Plant Signal Behav ; 16(11): 1950888, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34252347

RESUMO

Tomato is an important crop for its high nutritional and medicinal properties. The role of salicylic acid (SA) in 1-aminocyclopropane-1-carboxylate synthase (ACS), sodium-hydrogen exchanger (NHX1), salt overly sensitive 1 (sos1) and high-affinity K+ transporter (HKT1;2) transcripts, and ACS enzyme activity and ethylene (ET) production, and growth and physiological attributes was evaluated in tomato cv. Pusa Ruby under salinity stress. Thirty days-old seedlings treated with 0 mM NaCl, 250 mM NaCl, 250 mM NaCl plus 100 µM SA were assessed for different growth and physiological parameters at 45 DAS. Results showed ACS, NHX1, sos1 and HKT1;2 transcripts were significantly changed in SA treated plants. The ACS enzyme activity and ET content were considerably decreased in SA treated plants. Shoot length (SL), root length (RL), number of leaves (NL), leaf area per plant (LA), shoot fresh weight (SFW) and root fresh weight (RFW) were also improved under SA treatment. Conversely, the electrolyte leakage and sodium ion (Na+) content were significantly reduced in SA treated plants. In addition, the endogenous proline and potassium ion (K+) content, and K+/Na+ ratio were considerably increased under SA treatment. Likewise, antioxidant enzymes (SOD, CAT, APX and GR) profile were better in SA treated plant. The present findings suggest that SA reverse the negative effects of salinity stress and stress induced ET production by modulating ACS, NHX, sos1 and HKT1;2 transcript level, and improving various growth and physiological parameters, and antioxidants enzymes profile. This will contribute to a better understanding of salinity stress tolerance mechanisms of tomato plants involving SA and ET cross talk and ions homeostasis to develop more tolerant plant.


Assuntos
Etilenos/biossíntese , Ácido Salicílico/metabolismo , Tolerância ao Sal/efeitos dos fármacos , Tolerância ao Sal/genética , Sódio/metabolismo , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Produtos Agrícolas/genética , Produtos Agrícolas/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas
18.
BMC Plant Biol ; 21(1): 331, 2021 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-34246235

RESUMO

BACKGROUND: As damage to the ecological environment continues to increase amid unreasonable amounts of irrigation, soil salinization has become a major challenge to agricultural development. Melatonin (MT) is a pleiotropic signal molecule and indole hormone, which alleviates the damage of abiotic stress to plants. MT has been confirmed to eliminate reactive oxygen species (ROS) by improving the antioxidant system and reducing oxidative damage under adversity. However, the mechanism by which exogenous MT mediates salt tolerance by regulating the photosynthetic capacity and ion balance of cotton seedlings still remains unknown. In this study, the regulatory effects of MT on the photosynthetic system, osmotic modulators, chloroplast, and anatomical structure of cotton seedlings were determined under 0-500 µM MT treatments with salt stress induced by treatment with 150 mM NaCl. RESULTS: Salt stress reduces the chlorophyll content, net photosynthetic rate, stomatal conductance, intercellular CO2 concentration, transpiration rate, PSII photochemical efficiency, PSII actual photochemical quantum yield, the apparent electron transfer efficiency, stomata opening, and biomass. In addition, it increases non-photochemical quenching. All of these responses were effectively alleviated by exogenous treatment with MT. Exogenous MT reduces oxidative damage and lipid peroxidation by reducing salt-induced ROS and protects the plasma membrane from oxidative toxicity. MT also reduces the osmotic pressure by reducing the salt-induced accumulation of Na+ and increasing the contents of K+ and proline. Exogenous MT can facilitate stomatal opening and protect the integrity of cotton chloroplast grana lamella structure and mitochondria under salt stress, protect the photosynthetic system of plants, and improve their biomass. An anatomical analysis of leaves and stems showed that MT can improve xylem and phloem and other properties and aides in the transportation of water, inorganic salts, and organic substances. Therefore, the application of MT attenuates salt-induced stress damage to plants. Treatment with exogenous MT positively increased the salt tolerance of cotton seedlings by improving their photosynthetic capacity, stomatal characteristics, ion balance, osmotic substance biosynthetic pathways, and chloroplast and anatomical structures (xylem vessels and phloem vessels). CONCLUSIONS: Our study attributes help to protect the structural stability of photosynthetic organs and increase the amount of material accumulation, thereby reducing salt-induced secondary stress. The mechanisms of MT-induced plant tolerance to salt stress provide a theoretical basis for the use of MT to alleviate salt stress caused by unreasonable irrigation, fertilization, and climate change.


Assuntos
Gossypium/metabolismo , Melatonina/metabolismo , Fotossíntese/efeitos dos fármacos , Reguladores de Crescimento de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Estresse Salino/efeitos dos fármacos , Tolerância ao Sal/efeitos dos fármacos , Produtos Agrícolas/metabolismo
19.
Nat Plants ; 7(8): 1108-1118, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34226689

RESUMO

Complex antagonistic interactions between abscisic acid (ABA) and brassinosteroid (BR) signalling pathways have been widely documented. However, whether or how ABA interacts synergistically with BR in plants remains to be elucidated. Here, we report that low, but not high, concentration of ABA increases lamina joint inclination of rice seedling, which requires functional BR biosynthesis and signalling. Transcriptome analyses confirm that about 60% of low-concentration ABA early response genes can be regulated by BR in the same directions. ABA activates BR signal in a fast, limited and short-term manner and the BR-biosynthesis regulatory gene, OsGSR1, plays a key role during this process, whose expression is induced slightly by ABA through transcriptional factor ABI3. Moreover, the early short-term BR signal activation is also important for ABA-mediated salt stress tolerance. Intriguingly, the process and effect of short-term BR signal activation were covered by high concentration of ABA, implying adaptive mechanisms existed in plants to cope with varying degrees of stress.


Assuntos
Ácido Abscísico/metabolismo , Adaptação Fisiológica/genética , Brassinosteroides/metabolismo , Oryza/crescimento & desenvolvimento , Oryza/genética , Reguladores de Crescimento de Plantas/metabolismo , Tolerância ao Sal/efeitos dos fármacos , Tolerância ao Sal/genética , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Variação Genética , Genótipo , Desenvolvimento Vegetal/efeitos dos fármacos , Desenvolvimento Vegetal/genética , Plântula/genética , Plântula/crescimento & desenvolvimento , Transdução de Sinais , Estresse Fisiológico , Fatores de Transcrição
20.
Biomed Res Int ; 2021: 6697973, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34327237

RESUMO

Emerging drug-resistant bacteria creates an urgent need to search for antibiotics drugs with novel mechanisms of action. Endophytes have established a reputation as a source of structurally novel secondary metabolites with a wide range of biological activities. In the present study, we explore the antibacterial potential of endophytic fungi isolated from different tissues of Terminalia mantaly, Terminalia catappa, and Cananga odorata. The crude ethyl acetate extracts of 56 different endophytic fungi were screened against seven bacterial strains using the broth microdilution method. The antibacterial modes of action of the most active extracts (04) were evaluated using E. coli ATCC 25922 and H. influenzae ATCC 49247 strains. Both the DPPH and FRAP assays were used to investigate their antioxidant activity, and their cytotoxicity against the Vero cell line was evaluated using the MTT assay. Out of the 56 crude extracts tested, about 13% were considered very active, 66% partially active, and 21% nonactive against all tested bacterial strains with MIC values ranging from 0.32 µg/mL to 25 µg/mL. The four more potent extracts (MIC <5 µg/mL) (from Aspergillus sp. N454, Aspergillus sp. N13, Curvularia sp. N101, and Aspergillus sp. N18) significantly lysed the bacteria cells, increased outer membrane permeability, reduced salt tolerance, and inhibited bacterial catalase activity. They exhibited a DPPH free radical scavenging activity with IC50 ranging from 150.71 to 936.08 µg/mL. Three of the four potent extracts were noncytotoxic against the Vero cells line (CC50 > 100 µg/mL). Results from this investigation demonstrated that endophytes from Cameroonian medicinal plants might content potent antibacterial metabolites. The bioguided fractionation of these potent extracts is ongoing to isolate and characterise potential active ingredients.


Assuntos
Antibacterianos/farmacologia , Cananga/microbiologia , Endófitos/química , Fungos/química , Terminalia/microbiologia , Antioxidantes/farmacologia , Bactérias/efeitos dos fármacos , Compostos de Bifenilo/química , Catalase/metabolismo , Morte Celular/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Permeabilidade da Membrana Celular/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Nucleotídeos/metabolismo , Picratos/química , Tolerância ao Sal/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...