Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
J Cancer Res Ther ; 16(4): 726-730, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32930110

RESUMO

PURPOSE: The purpose of this study was to evaluate the organs at risk (OARs) doses for lung tumors in gated radiotherapy (RT) compared to conventional RT using the four-dimensional extended cardiac-torso (4D-XCAT) digital phantom in a simulation study. MATERIALS AND METHODS: 4D-XCAT digital phantom was used to create 32 digital phantom datasets of different tumor diameters of 3 and 4 cm, and motion ranges (MRs) of 2, 2.5, 3, and 3.5 cm and each tumor was placed in four different lung locations (right lower lobe, right upper lobe, left lower lobe, and left upper lobe). XCAT raw binary images were converted to the digital imaging and communication in medicine format using an in-house MATLAB-based program and were imported to treatment planning system (TPS). For each dataset, gated and conventional treatment plans were prepared using Planning Computerized RadioTherapy-three dimensional (PCRT-3D) TPS with superposition computational algorithm. Dose differences between gated and conventional plans were evaluated and compared (as a function of 3D motion and tumor volume and its location) with respect to the dose-volume histograms of different organs-at-risk. RESULTS: There are statistically significant differences in dosimetric parameters among gated and conventional RT, especially for the tumors near the diaphragm (P < 0.05). The maximum reduction in the mean dose of the lung, heart, and liver were 6.11 Gy, 1.51 Gy, and 10.49 Gy, respectively, using gated RT. CONCLUSIONS: Dosimetric comparison between gated and conventional RT showed that gated RT provides relevant dosimetric improvements to lung normal tissue and the other OARs, especially for the tumors near the diaphragm. In addition, dosimetric differences between gated and conventional RT did generally increase with increasing tumor motion and decreasing tumor volume.


Assuntos
Neoplasias Pulmonares/radioterapia , Órgãos em Risco/efeitos da radiação , Planejamento da Radioterapia Assistida por Computador/métodos , Tomografia Computadorizada Quadridimensional/instrumentação , Tomografia Computadorizada Quadridimensional/métodos , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Órgãos em Risco/diagnóstico por imagem , Imagens de Fantasmas , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/instrumentação , Mecânica Respiratória , Carga Tumoral/efeitos da radiação
2.
Phys Med Biol ; 65(15): 155014, 2020 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-32392543

RESUMO

Thoracic tumours are increasingly considered indications for pencil beam scanned proton therapy (PBS-PT) treatments. Conservative robustness settings have been suggested due to potential range straggling effects caused by the lung micro-structure. Using proton radiography (PR) and a 4D porcine lung phantom, we experimentally assess range errors to be considered in robust treatment planning for thoracic indications. A human-chest-size 4D phantom hosting inflatable porcine lungs and corresponding 4D computed tomography (4DCT) were used. Five PR frames were planned to intersect the phantom at various positions. Integral depth-dose curves (IDDs) per proton spot were measured using a multi-layer ionisation chamber (MLIC). Each PR frame consisted of 81 spots with an assigned energy of 210 MeV (full width at half maximum (FWHM) 8.2 mm). Each frame was delivered five times while simultaneously acquiring the breathing signal of the 4D phantom, using an ANZAI load cell. The synchronised ANZAI and delivery log file information was used to retrospectively sort spots into their corresponding breathing phase. Based on this information, IDDs were simulated by the treatment planning system (TPS) Monte Carlo dose engine on a dose grid of 1 mm. In addition to the time-resolved TPS calculations on the 4DCT phases, IDDs were calculated on the average CT. Measured IDDs were compared with simulated ones, calculating the range error for each individual spot. In total, 2025 proton spots were individually measured and analysed. The range error of a specific spot is reported relative to its water equivalent path length (WEPL). The mean relative range error was 1.2% (1.5 SD 2.3 %) for the comparison with the time-resolved TPS calculations, and 1.0% (1.5 SD 2.2 %) when comparing to TPS calculations on the average CT. The determined mean relative range errors justify the use of 3% range uncertainty for robust treatment planning in a clinical setting for thoracic indications.


Assuntos
Tomografia Computadorizada Quadridimensional/instrumentação , Pulmão/diagnóstico por imagem , Imagens de Fantasmas , Incerteza , Algoritmos , Animais , Humanos , Pulmão/fisiologia , Método de Monte Carlo , Terapia com Prótons , Planejamento da Radioterapia Assistida por Computador , Respiração , Suínos
3.
Phys Med Biol ; 65(16): 165005, 2020 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-32235043

RESUMO

Breathing motion is challenging for radiotherapy planning and delivery. This requires advanced four-dimensional (4D) imaging and motion mitigation strategies and associated validation tools with known deformations. Numerical phantoms such as the XCAT provide reproducible and realistic data for simulation-based validation. However, the XCAT generates partially inconsistent and non-invertible deformations where tumours remain rigid and structures can move through each other. We address these limitations by post-processing the XCAT deformation vector fields (DVF) to generate a breathing phantom with realistic motion and quantifiable deformation. An open-source post-processing framework was developed that corrects and inverts the XCAT-DVFs while preserving sliding motion between organs. Those post-processed DVFs are used to warp the first XCAT-generated image to consecutive time points providing a 4D phantom with a tumour that moves consistently with the anatomy, the ability to scale lung density as well as consistent and invertible DVFs. For a regularly breathing case, the inverse consistency of the DVFs was verified and the tumour motion was compared to the original XCAT. The generated phantom and DVFs were used to validate a motion-including dose reconstruction (MIDR) method using isocenter shifts to emulate rigid motion. Differences between the reconstructed doses with and without lung density scaling were evaluated. The post-processing framework produced DVFs with a maximum [Formula: see text]-percentile inverse-consistency error of 0.02 mm. The generated phantom preserved the dominant sliding motion between the chest wall and inner organs. The tumour of the original XCAT phantom preserved its trajectory while deforming consistently with the underlying tissue. The MIDR was compared to the ground truth dose reconstruction illustrating its limitations. MIDR with and without lung density scaling resulted in small dose differences up to 1 Gy (prescription 54 Gy). The proposed open-source post-processing framework overcomes important limitations of the original XCAT phantom and makes it applicable to a wider range of validation applications within radiotherapy.


Assuntos
Tomografia Computadorizada Quadridimensional/instrumentação , Imagens de Fantasmas , Respiração , Humanos , Movimento , Reprodutibilidade dos Testes
4.
Phys Med Biol ; 65(6): 065009, 2020 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-32023555

RESUMO

Develop a machine learning-based method to generate multi-contrast anatomical textures in the 4D extended cardiac-torso (XCAT) phantom for more realistic imaging simulations. As a pilot study, we synthesize CT and CBCT textures in the chest region. For training purposes, major organs and gross tumor volumes (GTVs) in chest region were segmented from real patient images and assigned to different HU values to generate organ maps, which resemble the XCAT images. A dual-discriminator conditional-generative adversarial network (D-CGAN) was developed to synthesize anatomical textures in the corresponding organ maps. The D-CGAN was uniquely designed with two discriminators, one trained for the body and the other for the tumor. Various XCAT phantoms were input to the D-CGAN to generate textured XCAT phantoms. The D-CGAN model was trained separately using 62 CT and 63 CBCT images from lung SBRT patients to generate multi-contrast textured XCAT (MT-XCAT). The MT-XCAT phantoms were evaluated by comparing the intensity histograms and radiomic features with those from real patient images using Wilcoxon rank-sum test. The visual examination demonstrated that the MT-XCAT phantoms presented similar general contrast and anatomical textures as CT and CBCT images. The mean HU of the MT-XCAT-CT and MT-XCAT-CBCT were [Formula: see text] and [Formula: see text], compared with that of real CT ([Formula: see text]) and CBCT ([Formula: see text]). The majority of radiomic features from the MT-XCAT phantoms followed the same distribution as the real images according to the Wilcoxon rank-sum test, except for limited second-order features. The study demonstrated the feasibility of generating realistic MT-XCAT phantoms using D-CGAN. The MT-XCAT phantoms can be further expanded to include other modalities (MRI, PET, ultrasound, etc) under the same scheme. This crucial development greatly enhances the value of the phantom for various clinical applications, including testing and optimizing novel imaging techniques, validation of radiomics analysis methods, and virtual clinical trials.


Assuntos
Tomografia Computadorizada Quadridimensional/instrumentação , Aprendizado de Máquina , Imagens de Fantasmas , Meios de Contraste , Humanos , Projetos Piloto
6.
Med Phys ; 46(10): 4481-4489, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31356690

RESUMO

PURPOSE: As the predominant driver of respiratory motion, the diaphragm represents a key surrogate for motion management during the irradiation of thoracic cancers. Existing approaches to diaphragm tracking often produce phase-based estimates, suffer from lateral side failures or are not executable in real-time. In this paper, we present an algorithm that continuously produces real-time estimates of three-dimensional (3D) diaphragm position using kV images acquired on a standard linear accelerator. METHODS: Patient-specific 3D diaphragm models were generated via automatic segmentation on end-exhale four-dimensional-computed tomography (4D-CT) images. The estimated trajectory of diaphragmatic motion, referred to as the principal motion vector, was obtained by registering end-exhale to end-inhale 4D-CT images. Two-dimensional (2D) diaphragm masks were generated by forward-projecting 3D models over the complement of angles spanned during kV image acquisition. For each kV image, diaphragm position was determined by shifting angle-matched 2D masks along the principal motion vector and selecting the position of highest contrast on a vertical difference image. Retrospective analysis was performed using 22 cone beam CT (CBCT) image sequences for six lung cancer patients across two datasets. Given the current lack of objective ground truth for diaphragm position, our algorithm was evaluated by examining its ability to track implanted markers. Simple linear regression was used to construct 3D marker motion models and estimation errors were computed as the difference between estimated and ground truth marker positions. Additionally, Pearson correlation coefficients were used to characterize diaphragm-marker correlation. RESULTS: The mean ± standard deviation of the estimation errors across all image sequences was -0.1 ± 0.7 mm, -0.1 ± 1.8 mm and 0.2 ± 1.4 mm in the LR, SI, and AP directions respectively. The 95th percentile of the absolute errors ranged over 0.5-3.1 mm, 1.6-6.7 mm, and 1.2-4.0 mm in the LR, SI, and AP directions, respectively. The mean ± standard deviation of diaphragm-marker correlations over all image sequences was -0.07 ± 0.57, 0.67 ± 0.49, and 0.29 ± 0.52 in the LR, SI, and AP directions, respectively. Diaphragm-marker correlation was observed to be highly dependent on marker position. Mean correlation along the SI axis ranged over 0.91-0.93 for markers situated in the lower lobes of the lung, while correlations ranging over -0.51-0.79 were observed for markers situated in the upper and middle lobes. CONCLUSION: This work advances a new approach to real-time direct diaphragm tracking in realistic treatment scenarios. By achieving continuous estimates of diaphragmatic motion, the proposed method has applications for both markerless tumor tracking and respiratory binning in 4D-CBCT.


Assuntos
Diafragma/diagnóstico por imagem , Tomografia Computadorizada Quadridimensional/instrumentação , Processamento de Imagem Assistida por Computador/métodos , Aceleradores de Partículas , Algoritmos , Marcadores Fiduciais , Tomografia Computadorizada Quadridimensional/normas , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Fatores de Tempo
7.
Phys Med ; 63: 25-34, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31221405

RESUMO

We present a technique for continuous generation of volumetric images during SBRT using periodic kV imaging and an external respiratory surrogate signal to drive a patient-specific PCA motion model. Using the on-board imager, kV radiographs are acquired every 3 s and used to fit the parameters of a motion model so that it matches observed changes in internal patient anatomy. A multi-dimensional correlation model is established between the motion model parameters and the external surrogate position and velocity, enabling volumetric image reconstruction between kV imaging time points. Performance of the algorithm was evaluated using 10 realistic eXtended CArdiac-Torso (XCAT) digital phantoms including 3D anatomical respiratory deformation programmed with 3D tumor positions measured with orthogonal kV imaging of implanted fiducial gold markers. The clinically measured ground truth 3D tumor positions provided a dataset with realistic breathing irregularities, and the combination of periodic on-board kV imaging with recorded external respiratory surrogate signal was used for correlation modeling to account for any changes in internal-external correlation. The three-dimensional tumor positions are reconstructed with an average root mean square error (RMSE) of 1.47 mm, and an average 95th percentile 3D positional error of 2.80 mm compared with the clinically measured ground truth 3D tumor positions. This technique enables continuous 3D anatomical image generation based on periodic kV imaging of internal anatomy without the additional dose of continuous kV imaging. The 3D anatomical images produced using this method can be used for treatment verification and delivered dose computation in the presence of irregular respiratory motion.


Assuntos
Tomografia Computadorizada Quadridimensional/instrumentação , Imagens de Fantasmas , Radiocirurgia , Planejamento da Radioterapia Assistida por Computador/instrumentação , Respiração
8.
Phys Med Biol ; 64(14): 145002, 2019 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-31146274

RESUMO

Stereotactic body radiation therapy (SBRT) is usually verified with a dynamic phantom or solid phantom, but there is a demand for phantoms that can accurately simulate tumor dynamics within an individual that would allow customized validation in every patient. We developed a new 4D dynamic target phantom (multi-cell 4D phantom) that allows simulation of tumor movement in patients. The basic quality and dynamic reproducibility of this new phantom was verified in this investigation. The newly developed multi-cell 4D phantom comprises four main components: soft tissue, bones, lungs, and tumor (target). The phantom structure was based on computed tomography (CT) data of a male. In this study, we investigated the basic performance of a multi-cell 4D phantom. All the CT numbers of the phantom were very close to those of human data. The geometric maximum amplitudes were 4.57 mm in the lateral direction, 4.59 mm in the ventrodorsal direction, and 3.68 mm in the cranio-caudal direction. Geometric errors were 0.84, 0.58, and 0.40 mm, respectively. Movements of the abdominal surface were stable for 60 s. Repeated measurements show no actual differences in target movements between multiple measurements and indicated high reproducibility (r > 0.97). End-to-end tests using Gafchromic film revealed a gamma pass rate of 98% or above (2 mm/3%). Although our phantom performed limited reproducibility in the movement of the patient tumor at present, a satisfactory level of precision was confirmed in general. This is a very promising device for use in the verification of radiation therapy for moving targets.


Assuntos
Tomografia Computadorizada Quadridimensional/instrumentação , Processamento de Imagem Assistida por Computador/métodos , Imagens de Fantasmas , Radiografia Abdominal/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Técnicas de Imagem de Sincronização Respiratória/métodos , Tomografia Computadorizada por Raios X/métodos , Tomografia Computadorizada Quadridimensional/métodos , Humanos , Pulmão/diagnóstico por imagem , Masculino , Movimento , Radiocirurgia/métodos
9.
Phys Med Biol ; 64(9): 095029, 2019 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-30840940

RESUMO

Respiratory-correlated cone-beam CT (CBCT) not only inhibits rapid scanning due to the slow speed of the LINAC head gantry rotation, but its implementation for routine patient imaging is impractical because of the high radiation dose delivered during the process. Digital tomosynthesis (DTS) is a potentially faster technique that delivers a much lower radiation dose by reducing the number of projections in a limited angular range. Unfortunately, 4D-DTS introduces strong aliasing artifacts in the reconstructed images due to the sparsely sampled projections in each respiratory phase bin. The authors hereby suggest a novel low-dose 4D-DTS image reconstruction method that achieves a compromise between the occurrence of aliasing artifacts and image smoothing using a brute force-based adaptive weighting parameter searching technique. We used a prototype LINAC system mounted with a flat-panel detector to acquire tomosynthesis projections of respiratory motion in a phantom in the anterior-posterior (AP) and lateral views. Three different 4D-DTS image reconstruction schemes that included conventional filtered back-projection (FBP), adaptive steepest descent projection onto convex sets (ASD-POCS), and the proposed brute force-based adaptive total variation (BF-ATV) were implemented in four different respiratory phase bins for both AP and lateral views. All reconstructions were accelerated using a single GPU card to reduce the computation time. To study the performance of the algorithm under various sparse conditions, we operated the prototype system in three different gantry sweep modes. The results indicate that the proposed BF-ATV method yields the largest structural similarities in the differenced image between the ground-truth dataset acquired using the slow gantry sweep mode and the sparse dataset from both moderate and fast sweep modes. In addition, the proposed method maintained the object sharpness with less streaking lines and small loss of sharpness compared to the conventional FBP and ASD-POCS methods. In conclusion, the proposed low-dose 4D-DTS reconstruction scheme may provide better performance due in part to its rapid scanning. Therefore, it is potentially applicable to practical 4D imaging for radiotherapy.


Assuntos
Tomografia Computadorizada Quadridimensional/instrumentação , Processamento de Imagem Assistida por Computador/métodos , Movimento , Aceleradores de Partículas , Algoritmos , Artefatos , Humanos , Imagens de Fantasmas
10.
J Comput Assist Tomogr ; 43(3): 392-398, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30762658

RESUMO

PURPOSE: The aim of this study was to determine the normal measurement values and interobserver performance of the distal radioulnar joint during wrist pronation-supination using 4-dimensional computed tomography (CT). METHODS: Four-dimensional CT examinations were performed on the asymptomatic contralateral wrists of 10 patients with unilateral chronic wrist pain. Measurements were conducted using the modified radioulnar (mRU) line and epicenter (Epi) methods. Volar subluxation of the ulnar head was demonstrated with negative values. Wilcoxon rank sum test was used to determine the measurement changes. Interobserver agreements were assessed using interclass correlation coefficients. RESULTS: In pronation, mRU line measurements (median, 0.09; interquartile range, 0-0.15) were significantly larger than in supination (median, -0.1; interquartile range, -0.18 to 0; P = 0.008).The Epi measurements were not significantly different in pronation (median, 0.03; interquartile range, 0.01-0.07) and supination (median, 0.06; interquartile range, 0.01-0.1; P = 0.799). There was an excellent inter-observer agreement between the two readers using mRU and Epi methods in pronation (0.982, 0.898), midpoint (0.994, 0.827) and supination (0.989, 0.972) positions, respectively. CONCLUSIONS: Using 4-dimensional CT examination, distal radioulnar joint kinematics in asymptomatic wrists demonstrate excellent interobserver agreements with increased volar ulnar subluxation with supination as detected using mRU, but not the Epi method.


Assuntos
Tomografia Computadorizada Quadridimensional/métodos , Articulação do Punho/diagnóstico por imagem , Articulação do Punho/fisiologia , Adolescente , Adulto , Fenômenos Biomecânicos , Feminino , Tomografia Computadorizada Quadridimensional/instrumentação , Humanos , Masculino , Pessoa de Meia-Idade , Variações Dependentes do Observador , Adulto Jovem
11.
Z Med Phys ; 29(3): 249-261, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30448049

RESUMO

Inter-fractional variations of breathing pattern and patient anatomy introduce dose uncertainties in proton therapy. One approach to monitor these variations is to utilize the cone-beam computed tomography (CT, CBCT) scans routinely taken for patient positioning, reconstruct them as 4DCBCTs, and generate 'virtual CTs' (vCTs), combining the accurate CT numbers of the diagnostic 4DCT and the geometry of the daily 4DCBCT by using deformable image registration (DIR). In this study different algorithms for 4DCBCT reconstruction and DIR were evaluated. For this purpose, CBCT scans of a moving ex vivo porcine lung phantom with 663 and 2350 projections respectively were acquired, accompanied by an additional 4DCT as reference. The CBCT projections were sorted in 10 phase bins with the Amsterdam-shroud method and reconstructed phase-by-phase using first a FDK reconstruction from the Reconstruction Toolkit (RTK) and again an iterative reconstruction algorithm implemented in the Gadgetron Toolkit. The resulting 4DCBCTs were corrected by DIR of the corresponding 4DCT phases, using both a morphons algorithm from REGGUI and a b-spline deformation from Plastimatch. The resulting 4DvCTs were compared to the 4DCT by visual inspection and by calculating water equivalent thickness (WET) maps from the phantom's surface to the distal edge of a target from various angles. The optimized procedure was successfully repeated with mismatched input phases and on a clinical patient dataset. Proton treatment plans were simulated on the 4DvCTs and the dose distributions compared to the reference based on the 4DCT via gamma pass rate analysis. A combination of iterative reconstruction and morphons DIR yielded the most accurate 4DvCTs, with median WET differences under 2mm and 3%/3mm gamma pass rates per phase between 89% and 99%. These results suggest that image correction of iteratively reconstructed 4DCBCTs with a morphons DIR of the planning CT may yield sufficiently accurate 4DvCTs for daily time resolved proton dose calculations.


Assuntos
Tomografia Computadorizada de Feixe Cônico/instrumentação , Tomografia Computadorizada Quadridimensional/instrumentação , Pulmão/diagnóstico por imagem , Imagens de Fantasmas , Terapia com Prótons , Doses de Radiação , Planejamento da Radioterapia Assistida por Computador , Animais , Estudos de Viabilidade , Humanos , Processamento de Imagem Assistida por Computador , Pulmão/efeitos da radiação , Dosagem Radioterapêutica , Suínos
12.
Phys Med Biol ; 63(24): 245007, 2018 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-30523974

RESUMO

The aim of this research was to introduce and evaluate a respiratory-guided slow gantry rotation 4D digital tomosynthesis (DTS). For each of ten volunteers, two breathing patterns were obtained for 3 min, one under free breathing conditions and the other with visual respiratory-guidance using an in-house developed respiratory monitoring system based on pressure sensing. Visual guidance was performed using a 4 s cycle sine wave with an amplitude corresponding to the average of end-inhalation peaks and end-exhalation valleys from the free-breathing pattern. The scan range was 40 degrees for each simulation, and the frame rate and gantry rotation speed were determined so that one projection per phase should be included. Both acquisition time and the number of total projections to be acquired (NPA) were calculated. Applying the obtained respiration pattern and the corresponding sequence, virtual projections were acquired under a typical geometry of Varian on-board imager for two virtual phantoms, modified Shepp-Logan (mSL) and extended cardiac-torso (XCAT). For the XCAT, two different orientations were considered, anterior-posterior (i.e. coronal) and left-right (i.e. sagittal). Projections were sorted to ten phases and image reconstruction was made using a modified filtered back-projection. Reconstructed images were compared with the planned breathing data (i.e. ideal situation) by structural similarity index (SSIM) and normalized root-mean-square error (NRMSE). For each case, simulation with guidance (SwG) showed motion-related artefact reduction compared to that under free-breathing (SuFB). SwG required less NPA but provided slightly higher SSIM and lower NRMSE values in all phantom images than SuFB did. In addition, the distribution of projections per phase was more regular in SwG. Through the proposed respiratory-guided 4D DTS, it is possible to reduce imaging dose while improving image quality. (Institutional Review Board approval: MC17DESI0086).


Assuntos
Tomografia Computadorizada Quadridimensional/métodos , Respiração , Artefatos , Tomografia Computadorizada Quadridimensional/instrumentação , Humanos , Movimento (Física) , Imagens de Fantasmas
13.
Phys Med ; 52: 133-142, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30139602

RESUMO

To study temporal resolved computed tomography imaging (4-Dimensional Computed Tomography: 4DCT) artifacts correlations with scanning parameters and target kinetics and to assess uncertainty introduced by 4DCT in radiotherapy treatment planning. In this work we classified 4DCT artifacts as finite gantry rotation speed related (FGS) and finite sampling frequency related (FSF). We studied FGS artifacts using a respiratory phantom and FSF artifacts using a Monte Carlo simulation of acquisition timing. From our analysis FGS localization error is comparable with image resolution determined by voxel dimensions. Remaining FGS artifacts are correlated with gantry rotation time (Trot), target velocity (v) and their interaction. FSF artifacts occurrence is correlated with sampling ratio (SR), i.e. the ratio of patient respiratory period (Tresp) and sampling time (Ts). In the studied velocity range (0-2 cm/s), using a Trot of 0,5s and a SR higher than 15, FGS and FSF artifacts became comparable with other sources of uncertainty. Our considerations are valid for "ideal" breathing pattern only. When variations from periodical breathing, high target velocity (more than 2 cm/s) or high peak to peak amplitude (more than 2 cm) are present, patient specific images artifacts analysis is recommended.


Assuntos
Artefatos , Tomografia Computadorizada Quadridimensional/métodos , Simulação por Computador , Tomografia Computadorizada Quadridimensional/instrumentação , Humanos , Modelos Lineares , Método de Monte Carlo , Movimento , Imagens de Fantasmas , Planejamento da Radioterapia Assistida por Computador , Respiração
14.
Phys Med ; 51: 81-90, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29776740

RESUMO

PURPOSE: To verify the accuracy of 4D Monte Carlo (MC) simulations, using the 4DdefDOSXYZnrc user code, in a deforming anatomy. We developed a tissue-equivalent and reproducible deformable lung phantom and evaluated 4D simulations of delivered dose to the phantom by comparing calculations against measurements. METHODS: A novel deformable phantom consisting of flexible foam, emulating lung tissue, inside a Lucite external body was constructed. A removable plug, containing an elastic tumor that can hold film and other dosimeters, was inserted in the phantom. Point dose and position measurements were performed inside and outside the tumor using RADPOS 4D dosimetry system. The phantom was irradiated on an Elekta Infinity linac in both stationary and moving states. The dose delivery was simulated using delivery log files and the phantom motion recorded with RADPOS. RESULTS: Reproducibility of the phantom motion was determined to be within 1 mm. The phantom motion presented realistic features like hysteresis. MC calculations and measurements agreed within 2% at the center of tumor. Outside the tumor agreements were better than 5% which were within the positional/dose reading uncertainties at the measurement points. More than 94% of dose points from MC simulations agreed within 2%/2 mm compared to film measurements. CONCLUSION: The deformable lung phantom presented realistic and reproducible motion characteristics and its use for verification of 4D dose calculations was demonstrated. Our 4DMC method is capable of accurate calculations of the realistic dose delivered to a moving and deforming anatomy during static and dynamic beam delivery techniques.


Assuntos
Tomografia Computadorizada Quadridimensional/instrumentação , Método de Monte Carlo , Imagens de Fantasmas , Pulmão/anatomia & histologia , Pulmão/diagnóstico por imagem , Pulmão/fisiologia , Doses de Radiação , Respiração
15.
Phys Med Biol ; 63(10): 105012, 2018 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-29667933

RESUMO

Fixed-beam radiotherapy systems with subjects rotating about a longitudinal (horizontal) axis are subject to gravity-induced motion. Limited reports on the degree of this motion, and any deformation, has been reported previously. The purpose of this study is to quantify the degree of anatomical motion caused by rotating a subject around a longitudinal axis, using cone-beam CT (CBCT). In the current study, a purpose-made longitudinal rotating was aligned to a Varian TrueBeam kV imaging system. CBCT images of three live rabbits were acquired at fixed rotational offsets of the cradle. Rigid and deformable image registrations back to the original position were used to quantify the motion experienced by the subjects under rotation. In the rotation offset CBCTs, the mean magnitude of rigid translations was 5.7 ± 2.7 mm across all rabbits and all rotations. The translation motion was reproducible between multiple rotations within 2.1 mm, 1.1 mm, and 2.8 mm difference for rabbit 1, 2, and 3, respectively. The magnitude of the mean and absolute maximum deformation vectors were 0.2 ± 0.1 mm and 5.4 ± 2.0 mm respectively, indicating small residual deformations after rigid registration. In the non-rotated rabbit 4DCBCT, respiratory diaphragm motion up to 5 mm was observed, and the variation in respiratory motion as measured from a series of 4DCBCT scans acquired at each rotation position was small. The principle motion of the rotated subjects was rigid translational motion. The deformation of the anatomy under rotation was found to be similar in scale to normal respiratory motion. This indicates imaging and treatment of rotated subjects with fixed-beam systems can use rigid registration as the primary mode of motion estimation. While the scaling of deformation from rabbits to humans is uncertain, these proof-of-principle results indicate promise for fixed-beam treatment systems.


Assuntos
Algoritmos , Tomografia Computadorizada de Feixe Cônico/métodos , Tomografia Computadorizada Quadridimensional/instrumentação , Gravitação , Movimento , Animais , Coelhos , Rotação
16.
Comput Biol Med ; 97: 21-29, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29684782

RESUMO

PURPOSE: The present study was conducted to investigate normal lung tissue complication probability in gated and conventional radiotherapy (RT) as a function of diaphragm motion, lesion size, and its location using 4D-XCAT digital phantom in a simulation study. MATERIALS AND METHODS: Different time series of 3D-CT images were generated using the 4D-XCAT digital phantom. The binary data obtained from this phantom were then converted to the digital imaging and communication in medicine (DICOM) format using an in-house MATLAB-based program to be compatible with our treatment planning system (TPS). The 3D-TPS with superposition computational algorithm was used to generate conventional and gated plans. Treatment plans were generated for 36 different XCAT phantom configurations. These included four diaphragm motions of 20, 25, 30 and 35 mm, three lesion sizes of 3, 4, and 5 cm in diameter and each tumor was placed in four different lung locations (right lower lobe, right upper lobe, left lower lobe and left upper lobe). The complication of normal lung tissue was assessed in terms of mean lung dose (MLD), the lung volume receiving ≥20 Gy (V20), and normal tissue complication probability (NTCP). RESULTS: The results showed that the gated RT yields superior outcomes in terms of normal tissue complication compared to the conventional RT. For all cases, the gated radiation therapy technique reduced the mean dose, V20, and NTCP of lung tissue by up to 5.53 Gy, 13.38%, and 23.89%, respectively. CONCLUSIONS: The results of this study showed that the gated RT provides significant advantages in terms of the normal lung tissue complication, compared to the conventional RT, especially for the lesions near the diaphragm.


Assuntos
Tomografia Computadorizada Quadridimensional/métodos , Processamento de Imagem Assistida por Computador/métodos , Pulmão/diagnóstico por imagem , Imagens de Fantasmas , Planejamento da Radioterapia Assistida por Computador/métodos , Tomografia Computadorizada Quadridimensional/instrumentação , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/radioterapia , Movimento , Radioterapia/efeitos adversos , Respiração
17.
Phys Med ; 45: 19-24, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29472086

RESUMO

In this study, qualities of 4D cone-beam CT (CBCT) images obtained using various gantry rotation speeds (GRSs) for liver stereotactic body radiation therapy (SBRT) with fiducial markers were quantitatively evaluated. Abdominal phantom containing a fiducial marker was moved along a sinusoidal waveform, and 4D-CBCT images were acquired with GRSs of 50-200°â€¯min-1. We obtained the 4D-CBCT projection data from six patients who underwent liver SBRT and generated 4D-CBCT images at GRSs of 67-200°â€¯min-1, by varying the number of projection data points. The image quality was evaluated based on the signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and structural similarity index (SSIM). The fiducial marker positions with different GRSs were compared with the setup values and a reference position in the phantom and clinical studies, respectively. The root mean square errors (RMSEs) were calculated relative to the reference positions. In the phantom study, the mean SNR, CNR, and SSIM decreased from 37.6 to 10.1, from 39.8 to 10.1, and from 0.9 to 0.7, respectively, as the GRS increased from 50 to 200°â€¯min-1. The fiducial marker positions were within 2.0 mm at all GRSs. Similarly, in the clinical study, the mean SNR, CNR, and SSIM decreased from 50.4 to 13.7, from 24.2 to 6.0, and from 0.92 to 0.73, respectively. The mean RMSEs were 2.0, 2.1, and 3.6 mm for the GRSs of 67, 100, and 200°â€¯min-1, respectively. We conclude that GRSs of 67 and 85°â€¯min-1 yield images of acceptable quality for 4D-CBCT in liver SBRT with fiducial markers.


Assuntos
Tomografia Computadorizada Quadridimensional/métodos , Fígado/diagnóstico por imagem , Fígado/efeitos da radiação , Radiocirurgia , Marcadores Fiduciais , Tomografia Computadorizada Quadridimensional/instrumentação , Humanos , Imagens de Fantasmas , Estudos Retrospectivos , Rotação
18.
Phys Med Biol ; 63(2): 025028, 2018 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-29176059

RESUMO

We report on the design, implementation and characterization of a multi-graphic processing unit (GPU) computational platform for higher-order optimization in radiotherapy treatment planning. In collaboration with a commercial vendor (Varian Medical Systems, Palo Alto, CA), a research prototype GPU-enabled Eclipse (V13.6) workstation was configured. The hardware consisted of dual 8-core Xeon processors, 256 GB RAM and four NVIDIA Tesla K80 general purpose GPUs. We demonstrate the utility of this platform for large radiotherapy optimization problems through the development and characterization of a parallelized particle swarm optimization (PSO) four dimensional (4D) intensity modulated radiation therapy (IMRT) technique. The PSO engine was coupled to the Eclipse treatment planning system via a vendor-provided scripting interface. Specific challenges addressed in this implementation were (i) data management and (ii) non-uniform memory access (NUMA). For the former, we alternated between parameters over which the computation process was parallelized. For the latter, we reduced the amount of data required to be transferred over the NUMA bridge. The datasets examined in this study were approximately 300 GB in size, including 4D computed tomography images, anatomical structure contours and dose deposition matrices. For evaluation, we created a 4D-IMRT treatment plan for one lung cancer patient and analyzed computation speed while varying several parameters (number of respiratory phases, GPUs, PSO particles, and data matrix sizes). The optimized 4D-IMRT plan enhanced sparing of organs at risk by an average reduction of [Formula: see text] in maximum dose, compared to the clinical optimized IMRT plan, where the internal target volume was used. We validated our computation time analyses in two additional cases. The computation speed in our implementation did not monotonically increase with the number of GPUs. The optimal number of GPUs (five, in our study) is directly related to the hardware specifications. The optimization process took 35 min using 50 PSO particles, 25 iterations and 5 GPUs.


Assuntos
Tomografia Computadorizada Quadridimensional/instrumentação , Tomografia Computadorizada Quadridimensional/métodos , Neoplasias Pulmonares/radioterapia , Órgãos em Risco/efeitos da radiação , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Dosagem Radioterapêutica , Estudos Retrospectivos
19.
Sci Adv ; 3(12): e1602580, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29226240

RESUMO

Quantitative three-dimensional (3D) computed tomography (CT) imaging of living single cells enables orientation-independent morphometric analysis of the intricacies of cellular physiology. Since its invention, x-ray CT has become indispensable in the clinic for diagnostic and prognostic purposes due to its quantitative absorption-based imaging in true 3D that allows objects of interest to be viewed and measured from any orientation. However, x-ray CT has not been useful at the level of single cells because there is insufficient contrast to form an image. Recently, optical CT has been developed successfully for fixed cells, but this technology called Cell-CT is incompatible with live-cell imaging due to the use of stains, such as hematoxylin, that are not compatible with cell viability. We present a novel development of optical CT for quantitative, multispectral functional 4D (three spatial + one spectral dimension) imaging of living single cells. The method applied to immune system cells offers truly isotropic 3D spatial resolution and enables time-resolved imaging studies of cells suspended in aqueous medium. Using live-cell optical CT, we found a heterogeneous response to mitochondrial fission inhibition in mouse macrophages and differential basal remodeling of small (0.1 to 1 fl) and large (1 to 20 fl) nuclear and mitochondrial structures on a 20- to 30-s time scale in human myelogenous leukemia cells. Because of its robust 3D measurement capabilities, live-cell optical CT represents a powerful new tool in the biomedical research field.


Assuntos
Tomografia Óptica/instrumentação , Tomografia Óptica/métodos , Núcleo Celular/metabolismo , Desenho de Equipamento , Tomografia Computadorizada Quadridimensional/instrumentação , Tomografia Computadorizada Quadridimensional/métodos , Humanos , Células K562/patologia , Mitocôndrias/metabolismo , Reprodutibilidade dos Testes , Análise de Célula Única
20.
Phys Med Biol ; 63(1): 015017, 2017 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-29045239

RESUMO

A robust contour propagation method is proposed to help physicians delineate lung tumors on all phase images of four-dimensional computed tomography (4D-CT) by only manually delineating the contours on a reference phase. The proposed method models the trajectory surface swept by a contour in a respiratory cycle as a tensor-product surface of two closed cubic B-spline curves: a non-uniform B-spline curve which models the contour and a uniform B-spline curve which models the trajectory of a point on the contour. The surface is treated as a deformable entity, and is optimized from an initial surface by moving its control vertices such that the sum of the intensity similarities between the sampling points on the manually delineated contour and their corresponding ones on different phases is maximized. The initial surface is constructed by fitting the manually delineated contour on the reference phase with a closed B-spline curve. In this way, the proposed method can focus the registration on the contour instead of the entire image to prevent the deformation of the contour from being smoothed by its surrounding tissues, and greatly reduce the time consumption while keeping the accuracy of the contour propagation as well as the temporal consistency of the estimated respiratory motions across all phases in 4D-CT. Eighteen 4D-CT cases with 235 gross tumor volume (GTV) contours on the maximal inhale phase and 209 GTV contours on the maximal exhale phase are manually delineated slice by slice. The maximal inhale phase is used as the reference phase, which provides the initial contours. On the maximal exhale phase, the Jaccard similarity coefficient between the propagated GTV and the manually delineated GTV is 0.881 [Formula: see text] 0.026, and the Hausdorff distance is 3.07 [Formula: see text] 1.08 mm. The time for propagating the GTV to all phases is 5.55 [Formula: see text] 6.21 min. The results are better than those of the fast adaptive stochastic gradient descent B-spline method, the 3D + t B-spline method and the diffeomorphic demons method. The proposed method is useful for helping physicians delineate target volumes efficiently and accurately.


Assuntos
Tomografia Computadorizada Quadridimensional/instrumentação , Tomografia Computadorizada Quadridimensional/métodos , Neoplasias Pulmonares/diagnóstico por imagem , Planejamento da Radioterapia Assistida por Computador/métodos , Respiração , Algoritmos , Humanos , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/radioterapia , Movimento (Física)
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...