Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 175
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Biol ; 227(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38690647

RESUMO

Hibernation is an extreme state of seasonal energy conservation, reducing metabolic rate to as little as 1% of the active state. During the hibernation season, many species of hibernating mammals cycle repeatedly between the active (aroused) and hibernating (torpid) states (T-A cycling), using brown adipose tissue (BAT) to drive cyclical rewarming. The regulatory mechanisms controlling this process remain undefined but are presumed to involve thermoregulatory centres in the hypothalamus. Here, we used the golden hamster (Mesocricetus auratus), and high-resolution monitoring of BAT, core body temperature and ventilation rate, to sample at precisely defined phases of the T-A cycle. Using c-fos as a marker of cellular activity, we show that although the dorsomedial hypothalamus is active during torpor entry, neither it nor the pre-optic area shows any significant changes during the earliest stages of spontaneous arousal. Contrastingly, in three non-neuronal sites previously linked to control of metabolic physiology over seasonal and daily time scales - the choroid plexus, pars tuberalis and third ventricle tanycytes - peak c-fos expression is seen at arousal initiation. We suggest that through their sensitivity to factors in the blood or cerebrospinal fluid, these sites may mediate metabolic feedback-based initiation of the spontaneous arousal process.


Assuntos
Nível de Alerta , Plexo Corióideo , Células Ependimogliais , Hibernação , Proteínas Proto-Oncogênicas c-fos , Torpor , Animais , Proteínas Proto-Oncogênicas c-fos/metabolismo , Nível de Alerta/fisiologia , Torpor/fisiologia , Hibernação/fisiologia , Células Ependimogliais/metabolismo , Células Ependimogliais/fisiologia , Plexo Corióideo/metabolismo , Plexo Corióideo/fisiologia , Mesocricetus , Masculino , Tecido Adiposo Marrom/fisiologia , Tecido Adiposo Marrom/metabolismo , Cricetinae
2.
Ecol Evol Physiol ; 97(1): 53-63, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38717368

RESUMO

AbstractMany animals follow annual cycles wherein physiology and behavior change seasonally. Hibernating mammals undergo one of the most drastic seasonal alterations of physiology and behavior, the timing of which can have significant fitness consequences. The environmental cues regulating these profound phenotypic changes will heavily influence whether hibernators acclimate and ultimately adapt to climate change. Hence, identifying the cues and proximate mechanisms responsible for hibernation termination timing is critical. Northern Idaho ground squirrels (Urocitellus brunneus)-a rare, endemic species threatened with extinction-exhibit substantial variation in hibernation termination phenology, but it is unclear what causes this variation. We attached geolocators to free-ranging squirrels to test the hypothesis that squirrels assess surface conditions in spring before deciding whether to terminate seasonal heterothermy or reenter torpor. Northern Idaho ground squirrels frequently reentered torpor following a brief initial emergence from hibernacula and were more likely to do so earlier in spring or when challenged by residual snowpack. Female squirrels reentered torpor when confronted with relatively shallow snowpack upon emergence, whereas male squirrels reentered torpor in response to deeper spring snowpack. This novel behavior was previously assumed to be physiologically constrained in male ground squirrels by testosterone production required for spermatogenesis and activated by the circannual clock. Assessing surface conditions to decide when to terminate hibernation may help buffer these threatened squirrels against climate change. Documenting the extent to which other hibernators can facultatively alter emergence timing by reentering torpor after emergence will help identify which species are most likely to persist under climate change.


Assuntos
Hibernação , Sciuridae , Estações do Ano , Neve , Animais , Sciuridae/fisiologia , Hibernação/fisiologia , Feminino , Masculino , Torpor/fisiologia
3.
J Comp Physiol B ; 194(2): 203-212, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38587619

RESUMO

Winter energy stores are finite and factors influencing patterns of activity are important for overwintering energetics and survival. Hibernation patterns (e.g., torpor bout duration and arousal frequency) often depend on microclimate, with more stable hibernacula associated with greater energy savings than less stable hibernacula. We monitored hibernation patterns of individual big brown bats (Eptesicus fuscus; Palisot de Beauvois, 1796) overwintering in rock-crevices that are smaller, drier, and less thermally stable than most known cave hibernacula. While such conditions would be predicted to increase arousal frequency in many hibernators, we did not find support for this. We found that bats were insensitive to changes in hibernacula microclimate (temperature and humidity) while torpid. We also found that the probability of arousal from torpor remained under circadian influence, likely because throughout the winter during arousals, bats commonly exit their hibernacula. We calculated that individuals spend most of their energy on maintaining a torpid body temperature a few degrees above the range of ambient temperatures during steady-state torpor, rather than during arousals as is typical of other small mammalian hibernators. Flight appears to be an important winter activity that may expedite the benefits of euthermic periods and allow for short, physiologically effective arousals. Overall, we found that big brown bats in rock crevices exhibit different hibernation patterns than conspecifics hibernating in buildings and caves.


Assuntos
Quirópteros , Hibernação , Animais , Quirópteros/fisiologia , Hibernação/fisiologia , Estações do Ano , Comportamento Animal/fisiologia , Adaptação Fisiológica , Ritmo Circadiano/fisiologia , Metabolismo Energético , Masculino , Temperatura Corporal , Feminino , Temperatura , Microclima , Umidade , Nível de Alerta/fisiologia , Torpor/fisiologia
4.
J Physiol Sci ; 74(1): 27, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38678189

RESUMO

Growth and differentiation are reduced or stopped during hibernation, an energy conserving strategy in harsh seasons by lowered metabolism and body temperature. However, few studies evaluated this in a same individual using a non-invasive method. In this study, we applied a non-invasive tracking method of the nail growth throughout the hibernation period in the same hibernating animals, the Syrian hamster (Mesocricetus auratus). We found that nail growth was markedly suppressed during the hibernation period but rapidly recovered by the exit from the hibernation period. Our data suggest that nail growth was arrested during deep torpor, a hypometabolic and hypothermic state, but recovered during periodic arousal, a euthermic phase. Consistent with this, nail stem cells located in the nail matrix did not exit the cell cycle in the deep torpor. Thus, hibernation stops nail growth in a body temperature-dependent manner.


Assuntos
Hibernação , Animais , Hibernação/fisiologia , Mesocricetus , Unhas/fisiologia , Temperatura Corporal/fisiologia , Masculino , Cricetinae , Torpor/fisiologia , Temperatura Baixa
5.
Cell Rep ; 43(4): 113960, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38507407

RESUMO

GFRAL-expressing neurons actuate aversion and nausea, are targets for obesity treatment, and may mediate metformin effects by long-term GDF15-GFRAL agonism. Whether GFRAL+ neurons acutely regulate glucose and energy homeostasis is, however, underexplored. Here, we report that cell-specific activation of GFRAL+ neurons using a variety of techniques causes a torpor-like state, including hypothermia, the release of stress hormones, a shift from glucose to lipid oxidation, and impaired insulin sensitivity, glucose tolerance, and skeletal muscle glucose uptake but augmented glucose uptake in visceral fat. Metabolomic analysis of blood and transcriptomics of muscle and fat indicate alterations in ketogenesis, insulin signaling, adipose tissue differentiation and mitogenesis, and energy fluxes. Our findings indicate that acute GFRAL+ neuron activation induces endocrine and gluco- and thermoregulatory responses associated with nausea and torpor. While chronic activation of GFRAL signaling promotes weight loss in obesity, these results show that acute activation of GFRAL+ neurons causes hypothermia and hyperglycemia.


Assuntos
Glucose , Hipotermia , Náusea , Neurônios , Torpor , Animais , Neurônios/metabolismo , Náusea/metabolismo , Hipotermia/metabolismo , Torpor/fisiologia , Glucose/metabolismo , Camundongos , Masculino , Músculo Esquelético/metabolismo , Camundongos Endogâmicos C57BL , Insulina/metabolismo , Resistência à Insulina , Transdução de Sinais
6.
Curr Biol ; 34(4): 923-930.e5, 2024 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-38325375

RESUMO

Thirteen-lined ground squirrels (Ictidomys tridecemlineatus) hibernate for several months each winter without access to water,1 but the mechanisms that maintain fluid homeostasis during hibernation are poorly understood. In torpor, when body temperature (TB) reaches 4°C, squirrels decrease metabolism, slow heart rate, and reduce plasma levels of the antidiuretic hormones arginine vasopressin (AVP) and oxytocin (OXT).1 Squirrels spontaneously undergo interbout arousal (IBA) every 2 weeks, temporarily recovering an active-like metabolism and a TB of 37°C for up to 48 h.1,2 Despite the low levels of AVP and OXT during torpor, profound increases in blood pressure and heart rate during the torpor-IBA transition are not associated with massive fluid loss, suggesting the existence of a mechanism that protects against diuresis at a low TB. Here, we demonstrate that the antidiuretic hormone release pathway is activated by hypothalamic supraoptic nucleus (SON) neurons early in the torpor-arousal transition. SON neuron activity, dense-core vesicle release from the posterior pituitary, and plasma hormone levels all begin to increase before TB reaches 10°C. In vivo fiber photometry of SON neurons from hibernating squirrels, together with RNA sequencing and c-FOS immunohistochemistry, confirms that SON is electrically, transcriptionally, and translationally active to monitor blood osmolality throughout the dynamic torpor-arousal transition. Our work emphasizes the importance of the antidiuretic pathway during the torpor-arousal transition and reveals that the neurophysiological mechanism that coordinates the hormonal response to retain fluid is active at an extremely low TB, which is prohibitive for these processes in non-hibernators.


Assuntos
Hibernação , Torpor , Animais , Hibernação/fisiologia , Torpor/fisiologia , Sciuridae/fisiologia , Sequência de Bases
7.
J Therm Biol ; 120: 103792, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38403496

RESUMO

Small birds and mammals face similar energetic challenges, yet use of torpor to conserve energy while resting is considered less common among birds, especially within the most specious order Passeriformes. We conducted the first study to record the natural thermoregulatory physiology of any species from the family Hirundinidae, which we predicted would use torpor because of their specialised foraging by aerial pursuit of flying insects, that are less active during cold or windy weather. We used temperature telemetry on wild-living welcome swallows (Hirundo neoxena, 13 to 17 g) and found that skin temperature declined during nightly resting by an average by 5 °C, from daytime minima of 41.0 ± 0.8 °C to nightly minima of 36.3 ± 0.8 °C, and by a maximum of 8 °C to a minimum recorded skin temperature of 32.0 °C. The extent of reduction in skin temperature was greater on cold nights and following windy daytime (foraging) periods. Further, we found that transmitters glued directly to the skin between feather tracts (i.e., an apterium) provided a less variable and probably also more accurate reflection of body temperature than transmitters applied over closely trimmed feathers. A moderate decrease in skin temperature, equivalent to shallow torpor, would provide energy savings during rest. Yet, deeper torpor was not observed, despite a period of extreme rainfall that presumedly decreased foraging success. Further studies are needed to understand the resting thermoregulatory energetics of swallows under different environmental conditions. We advocate the importance of measuring thermal biology in wild-living birds to increase our knowledge of the physiology and ecological importance of torpor among passerine birds.


Assuntos
Passeriformes , Andorinhas , Torpor , Animais , Temperatura Corporal , Regulação da Temperatura Corporal/fisiologia , Torpor/fisiologia , Temperatura , Passeriformes/fisiologia , Metabolismo Energético/fisiologia , Mamíferos
8.
J Comp Physiol B ; 194(1): 95-104, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38170253

RESUMO

Mus musculus enters a torpid state in response to caloric restriction in sub-thermoneutral ambient temperatures. This torpid state is characterized by an adaptive and controlled decrease in metabolic rate, heart rate, body temperature, and activity. Previous research has identified the paraventricular nucleus (PVN) within the hypothalamus, a region containing oxytocin neurons, as a location that is active during torpor onset. We hypothesized that oxytocin neurons within the PVN are part of this neural circuit and that activation of oxytocin neurons would deepen and lengthen torpor bouts. We report that activation of oxytocin neurons alone is not sufficient to induce a torpor-like state in the fed mouse, with no significant difference in body temperature or heart rate upon activation of oxytocin neurons. However, we found that activation of oxytocin neurons prior to the onset of daily torpor both deepens and lengthens the subsequent bout, with a 1.7 ± 0.4 °C lower body temperature and a 135 ± 32 min increase in length. We therefore conclude that oxytocin neurons are involved in the neural circuitry controlling daily torpor in the mouse.


Assuntos
Hibernação , Torpor , Camundongos , Animais , Jejum , Ocitocina , Torpor/fisiologia , Temperatura Corporal/fisiologia , Neurônios/fisiologia , Hibernação/fisiologia
9.
Curr Biol ; 33(24): 5381-5389.e4, 2023 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-37992720

RESUMO

Endotherms can survive low temperatures and food shortage by actively entering a hypometabolic state known as torpor. Although the decrease in metabolic rate and body temperature (Tb) during torpor is controlled by the brain, the specific neural circuits underlying these processes have not been comprehensively elucidated. In this study, we identify the neural circuits involved in torpor regulation by combining whole-brain mapping of torpor-activated neurons, cell-type-specific manipulation of neural activity, and viral tracing-based circuit mapping. We find that Trpm2-positive neurons in the preoptic area and Vgat-positive neurons in the dorsal medial hypothalamus are activated during torpor. Genetic silencing shows that the activity of either cell type is necessary to enter the torpor state. Finally, we show that these cells receive projections from the arcuate and suprachiasmatic nucleus and send projections to brain regions involved in thermoregulation. Our results demonstrate an essential role of hypothalamic neurons in the regulation of Tb and metabolic rate during torpor and identify critical nodes of the torpor regulatory network.


Assuntos
Hipotálamo , Torpor , Hipotálamo/fisiologia , Torpor/fisiologia , Área Pré-Óptica , Núcleo Supraquiasmático , Encéfalo
10.
PLoS One ; 18(11): e0293971, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37930992

RESUMO

Djungarian hamsters are small rodents that show pronounced physiological acclimations in response to changes in photoperiod, and unfavorable environmental conditions such as reduced food availability and low external temperature. These include substantial adjustments, such as severe body weight loss and the use of daily torpor. Torpor is a state of decreased physiological activity in eutherms, usually marked by low metabolic rate and a reduced body temperature. In this study, we investigated the effects of photoperiodic acclimation and food deprivation on systemic iron metabolism in Djungarian hamsters. Our study illustrates the association between liver iron levels and the incidence of torpor expression during the course of the experiment. Moreover, we show that both, acclimation to short photoperiods and long-term food restriction, associated with iron sequestration in the liver. This effect was accompanied with hypoferremia and mild reduction in the expression of principal iron-hormone, hepcidin. In addition to iron, the levels of manganese, selenium, and zinc were increased in the liver of hamsters under food restriction. These findings may be important factors for regulating physiological processes in hamsters, since iron and other trace elements are essential for many metabolic and physiological processes.


Assuntos
Hipotermia , Torpor , Cricetinae , Animais , Phodopus/fisiologia , Estações do Ano , Torpor/fisiologia , Fotoperíodo , Jejum
11.
Pflugers Arch ; 475(10): 1149-1160, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37542567

RESUMO

Hibernation enables many species of the mammalian kingdom to overcome periods of harsh environmental conditions. During this physically inactive state metabolic rate and body temperature are drastically downregulated, thereby reducing energy requirements (torpor) also over shorter time periods. Since blood cells reflect the organism´s current condition, it was suggested that transcriptomic alterations in blood cells mirror the torpor-associated physiological state. Transcriptomics on blood cells of torpid and non-torpid Djungarian hamsters and QIAGEN Ingenuity Pathway Analysis (IPA) revealed key target molecules (TMIPA), which were subjected to a comparative literature analysis on transcriptomic alterations during torpor/hibernation in other mammals. Gene expression similarities were identified in 148 TMIPA during torpor nadir among various organs and phylogenetically different mammalian species. Based on TMIPA, IPA network analyses corresponded with described inhibitions of basic cellular mechanisms and immune system-associated processes in torpid mammals. Moreover, protection against damage to the heart, kidney, and liver was deduced from this gene expression pattern in blood cells. This study shows that blood cell transcriptomics can reflect the general physiological state during torpor nadir. Furthermore, the understanding of molecular processes for torpor initiation and organ preservation may have beneficial implications for humans in extremely challenging environments, such as in medical intensive care units and in space.


Assuntos
Hibernação , Torpor , Cricetinae , Humanos , Animais , Phodopus/fisiologia , Hibernação/genética , Transcriptoma , Torpor/fisiologia , Mamíferos/fisiologia
12.
Cells ; 12(10)2023 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-37408188

RESUMO

Temperature changes and periods of detrimental cold occur frequently for many organisms in their natural habitats. Homeothermic animals have evolved metabolic adaptation strategies to increase mitochondrial-based energy expenditure and heat production, largely relying on fat as a fuel source. Alternatively, certain species are able to repress their metabolism during cold periods and enter a state of decreased physiological activity known as torpor. By contrast, poikilotherms, which are unable to maintain their internal temperature, predominantly increase membrane fluidity to diminish cold-related damage from low-temperature stress. However, alterations of molecular pathways and the regulation of lipid-metabolic reprogramming during cold exposure are poorly understood. Here, we review organismal responses that adjust fat metabolism during detrimental cold stress. Cold-related changes in membranes are detected by membrane-bound sensors, which signal to downstream transcriptional effectors, including nuclear hormone receptors of the PPAR (peroxisome proliferator-activated receptor) subfamily. PPARs control lipid metabolic processes, such as fatty acid desaturation, lipid catabolism and mitochondrial-based thermogenesis. Elucidating the underlying molecular mechanisms of cold adaptation may improve beneficial therapeutic cold treatments and could have important implications for medical applications of hypothermia in humans. This includes treatment strategies for hemorrhagic shock, stroke, obesity and cancer.


Assuntos
Adaptação Fisiológica , Temperatura Baixa , Resposta ao Choque Frio , Metabolismo dos Lipídeos , Receptores Ativados por Proliferador de Peroxissomo , Termogênese , Torpor , Torpor/fisiologia , Animais , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Ácidos Graxos/metabolismo , Resposta ao Choque Frio/fisiologia , Fluidez de Membrana , Mitocôndrias/metabolismo
13.
Cells ; 12(10)2023 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-37408201

RESUMO

The utilisation of synthetic torpor for interplanetary travel once seemed farfetched. However, mounting evidence points to torpor-induced protective benefits from the main hazards of space travel, namely, exposure to radiation and microgravity. To determine the radio-protective effects of an induced torpor-like state we exploited the ectothermic nature of the Danio rerio (zebrafish) in reducing their body temperatures to replicate the hypothermic states seen during natural torpor. We also administered melatonin as a sedative to reduce physical activity. Zebrafish were then exposed to low-dose radiation (0.3 Gy) to simulate radiation exposure on long-term space missions. Transcriptomic analysis found that radiation exposure led to an upregulation of inflammatory and immune signatures and a differentiation and regeneration phenotype driven by STAT3 and MYOD1 transcription factors. In addition, DNA repair processes were downregulated in the muscle two days' post-irradiation. The effects of hypothermia led to an increase in mitochondrial translation including genes involved in oxidative phosphorylation and a downregulation of extracellular matrix and developmental genes. Upon radiation exposure, increases in endoplasmic reticulum stress genes were observed in a torpor+radiation group with downregulation of immune-related and ECM genes. Exposing hypothermic zebrafish to radiation also resulted in a downregulation of ECM and developmental genes however, immune/inflammatory related pathways were downregulated in contrast to that observed in the radiation only group. A cross-species comparison was performed with the muscle of hibernating Ursus arctos horribilis (brown bear) to define shared mechanisms of cold tolerance. Shared responses show an upregulation of protein translation and metabolism of amino acids, as well as a hypoxia response with the shared downregulation of glycolysis, ECM, and developmental genes.


Assuntos
Hipotermia , Torpor , Animais , Peixe-Zebra/genética , Torpor/fisiologia , Perfilação da Expressão Gênica , Músculos
14.
Integr Comp Biol ; 63(5): 1039-1048, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37407285

RESUMO

Variability in body temperature is now recognized to be widespread among whole-body endotherms with homeothermy being the exception rather than the norm. A wide range of body temperature patterns exists in extant endotherms, spanning from strict homeothermy, to occasional use of torpor, to deep seasonal hibernation with many points in between. What is often lost in discussions of heterothermy in endotherms are the benefits of variations in body temperature outside of torpor. Endotherms that do not use torpor can still obtain extensive energy and water savings from varying levels of flexibility in normothermic body temperature regulation. Flexibility at higher temperatures (heat storage or facultative hyperthermia) can provide significant water savings, while decreases at cooler temperatures, even outside of torpor, can lower the energetic costs of thermoregulation during rest. We discuss the varying uses of the terms heterothermy, thermolability, and torpor to describe differences in the amplitude of body temperature cycles and advocate for a broader use of the term "heterothermy" to include non-torpid variations in body temperature.


Assuntos
Hibernação , Torpor , Animais , Hibernação/fisiologia , Regulação da Temperatura Corporal/fisiologia , Mamíferos/fisiologia , Temperatura Corporal , Água , Torpor/fisiologia , Metabolismo Energético/fisiologia
15.
Am J Physiol Regul Integr Comp Physiol ; 325(4): R359-R379, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37519255

RESUMO

Djungarian hamsters use daily torpor to save energy during winter. This metabolic downstate is part of their acclimatization strategy in response to short photoperiod and expressed spontaneously without energy challenges. During acute energy shortage, torpor incidence, depth, and duration can be modulated. Torpor induction might rely on glucose availability as acute metabolic energy source. To investigate this, the present study provides the first continuous in vivo blood glucose measurements of spontaneous daily torpor in short photoperiod-acclimated and fasting-induced torpor in long photoperiod-acclimated Djungarian hamsters. Glucose levels were almost identical in both photoperiods and showed a decrease during resting phase. Further decreases appeared during spontaneous daily torpor entrance, parallel with metabolic rate but before body temperature, while respiratory exchange rates were rising. During arousal, blood glucose tended to increase, and pretorpor values were reached at torpor termination. Although food-restricted hamsters underwent a considerable energetic challenge, blood glucose levels remained stable during the resting phase regardless of torpor expression. The activity phase preceding a torpor bout did not reveal changes in blood glucose that might be used as torpor predictor. Djungarian hamsters show a robust, circadian rhythm in blood glucose irrespective of season and maintain appropriate levels throughout complex acclimation processes including metabolic downstates. Although these measurements could not reveal blood glucose as proximate torpor induction factor, they provide new information about glucose availability during torpor. Technical innovations like in vivo microdialysis and in vitro transcriptome or proteome analyses may help to uncover the connection between torpor expression and glucose metabolism.


Assuntos
Phodopus , Torpor , Cricetinae , Animais , Phodopus/fisiologia , Glicemia , Glucose , Torpor/fisiologia , Temperatura Corporal/fisiologia , Fotoperíodo , Estações do Ano
16.
Integr Comp Biol ; 63(5): 1060-1074, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37279461

RESUMO

Migration is a widespread and highly variable trait among animals. Population-level patterns arise from individual-level decisions, including physiological and energetic constraints. Many aspects of migration are influenced by behaviors and strategies employed during periods of stopover, where migrants may encounter variable or unpredictable conditions. Thermoregulation can be a major cost for homeotherms which largely encounter ambient temperatures below the lower critical temperature during migration, especially during the rest phase of the daily cycle. In this review we describe the empirical evidence, theoretical models, and potential implications of bats and birds that use heterothermy to reduce thermoregulatory costs during migration. Torpor-assisted migration is a strategy described for migrating temperate insectivorous bats, whereby torpor can be used during periods of inactivity to drastically reduce thermoregulatory costs and increase net refueling rate, leading to shorter stopover duration, reduced fuel load requirement, and potential consequences for broad-scale movement patterns and survival. Hummingbirds can adopt a similar strategy, but most birds are not capable of torpor. However, there is an increasing recognition of the use of more shallow heterothermic strategies by diverse bird species during migration, with similarly important implications for migration energetics. A growing body of published literature and preliminary data from ongoing research indicate that heterothermic migration strategies in birds may be more common than traditionally appreciated. We further take a broad evolutionary perspective to consider heterothermy as an alternative to migration in some species, or as a conceptual link to consider alternatives to seasonal resource limitations. There is a growing body of evidence related to heterothermic migration strategies in bats and birds, but many important questions related to the broader implications of this strategy remain.


Assuntos
Quirópteros , Torpor , Animais , Quirópteros/fisiologia , Regulação da Temperatura Corporal , Torpor/fisiologia , Temperatura , Aves/fisiologia
17.
Integr Comp Biol ; 63(5): 1049-1059, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37328423

RESUMO

Torpor was traditionally seen as a winter survival mechanism employed by animals living in cold and highly seasonal habitats. Although we now know that torpor is also used by tropical and subtropical species, and in response to a variety of triggers, torpor is still largely viewed as a highly controlled, seasonal mechanism shown by Northern hemisphere species. To scrutinize this view, we report data from a macroanalysis in which we characterized the type and seasonality of torpor use from mammal species currently known to use torpor. Our findings suggest that predictable, seasonal torpor patterns reported for Northern temperate and polar species are highly derived forms of torpor expression, whereas the more opportunistic and variable forms of torpor that we see in tropical and subtropical species are likely closer to the patterns expressed by ancestral mammals. Our data emphasize that the torpor patterns observed in the tropics and subtropics should be considered the norm and not the exception.


Assuntos
Torpor , Animais , Torpor/fisiologia , Mamíferos , Estações do Ano , Ecossistema , Regulação da Temperatura Corporal
18.
J Therm Biol ; 114: 103572, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37344030

RESUMO

Maintaining a high and stable body temperature as observed in most endothermic mammals and birds is energetically costly and many heterothermic species reduce their metabolic demands during energetic bottlenecks through the use of torpor. With the increasing number of heterotherms revealed in a diversity of habitats, it becomes apparent that triggers and patterns of torpor use are more variable than previously thought. Here, we report the previously overlooked use of, shallow rest-time torpor (body temperature >30 °C) in African lesser bushbabies, Galago moholi. Body core temperature of three adult male bushbabies recorded over five months showed a clear bimodal distribution with an average active modal temperature of 39.2 °C and a resting modal body temperature of 36.7 °C. Shallow torpor was observed in two out of three males (n = 29 torpor bouts) between June and August (austral winter), with body temperatures dropping to an overall minimum of 30.7 °C and calculated energy savings of up to 10%. We suggest that shallow torpor may be an ecologically important, yet mostly overlooked energy-saving strategy employed by heterothermic mammals. Our data emphasise that torpor threshold temperatures need to be used with care if we aim to fully understand the level of physiological plasticity displayed by heterothermic species.


Assuntos
Regulação da Temperatura Corporal , Torpor , Animais , Masculino , Regulação da Temperatura Corporal/fisiologia , Torpor/fisiologia , Temperatura Corporal/fisiologia , Temperatura , Mamíferos/fisiologia , Galago/fisiologia
19.
Integr Comp Biol ; 63(5): 1028-1038, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37156524

RESUMO

Many birds reduce rest-phase energy demands through heterothermy, physiological responses involving facultative, reversible reductions in metabolic rate and body temperature (Tb). Here, we review the phylogenetic distribution and ecological contexts of avian heterothermy. Heterothermy has been reported in 140 species representing 15 orders and 39 families. Recent work supports the view that deep heterothermy is most pronounced in phylogenetically older taxa whereas heterothermy in passerines and other recently diverged taxa is shallower and confined to minimum Tb > 20°C. The reasons why deep heterothermy is absent in passerines remain unclear; we speculate an evolutionary trade-off may exist between the capacity to achieve low heterothermic Tb and the tolerance of hyperthermic Tb. Inter- and intraspecific variation in heterothermy is correlated with factors including foraging ecology (e.g., territoriality and defense of food resources among hummingbirds), food availability and foraging opportunities (e.g., lunar phase predicts torpor use in caprimulgids), and predation risk. Heterothermy also plays a major role before and during migration. Emerging questions include the magnitude of energy savings associated with heterothermy among free-ranging birds, the role phylogenetic variation in the capacity for heterothermy has played in evolutionary radiations into extreme habitats, and how the capacity for heterothermy affects avian vulnerability to rapid anthropogenic climate change.


Assuntos
Regulação da Temperatura Corporal , Torpor , Humanos , Animais , Regulação da Temperatura Corporal/fisiologia , Filogenia , Temperatura Corporal , Torpor/fisiologia , Evolução Biológica
20.
Nat Metab ; 5(5): 789-803, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37231250

RESUMO

Torpor is an energy-conserving state in which animals dramatically decrease their metabolic rate and body temperature to survive harsh environmental conditions. Here, we report the noninvasive, precise and safe induction of a torpor-like hypothermic and hypometabolic state in rodents by remote transcranial ultrasound stimulation at the hypothalamus preoptic area (POA). We achieve a long-lasting (>24 h) torpor-like state in mice via closed-loop feedback control of ultrasound stimulation with automated detection of body temperature. Ultrasound-induced hypothermia and hypometabolism (UIH) is triggered by activation of POA neurons, involves the dorsomedial hypothalamus as a downstream brain region and subsequent inhibition of thermogenic brown adipose tissue. Single-nucleus RNA-sequencing of POA neurons reveals TRPM2 as an ultrasound-sensitive ion channel, the knockdown of which suppresses UIH. We also demonstrate that UIH is feasible in a non-torpid animal, the rat. Our findings establish UIH as a promising technology for the noninvasive and safe induction of a torpor-like state.


Assuntos
Hipotermia , Canais de Cátion TRPM , Torpor , Ratos , Camundongos , Animais , Roedores , Hipotermia/induzido quimicamente , Torpor/fisiologia , Temperatura Corporal/fisiologia , Encéfalo , Canais de Cátion TRPM/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...