Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 144
Filtrar
1.
Bone ; 176: 116868, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37549801

RESUMO

Extracellular pyrophosphate (PPi) is well known for its fundamental role as a physiochemical mineralisation inhibitor. However, information about its direct actions on bone cells remains limited. This study shows that PPi decreased osteoclast formation and resorptive activity by ≤50 %. These inhibitory actions were associated with reduced expression of genes involved in osteoclastogenesis (Tnfrsf11a, Dcstamp) and bone resorption (Ctsk, Car2, Acp5). In osteoblasts, PPi present for the entire (0-21 days) or latter stages of culture (7-21/14-21 days) decreased bone mineralisation by ≤95 %. However, PPi present for the differentiation phase only (0-7/0-14 days) increased bone formation (≤70 %). Prolonged treatment with PPi resulted in earlier matrix deposition and increased soluble collagen levels (≤2.3-fold). Expression of osteoblast (RUNX2, Bglap) and early osteocyte (E11, Dmp1) genes along with mineralisation inhibitors (Spp1, Mgp) was increased by PPi (≤3-fold). PPi levels are regulated by tissue non-specific alkaline phosphatase (TNAP) and ecto-nucleotide pyrophosphatase/phosphodiesterase 1 (NPP1). PPi reduced NPP1 expression in both cell types whereas TNAP expression (≤2.5-fold) and activity (≤35 %) were increased in osteoblasts. Breakdown of extracellular ATP by NPP1 represents a key source of PPi. ATP release from osteoclasts and osteoblasts was decreased ≤60 % by PPi and by a selective TNAP inhibitor (CAS496014-12-2). Pertussis toxin, which prevents Gαi subunit activation, was used to investigate whether G-protein coupled receptor (GPCR) signalling mediates the effects of PPi. The actions of PPi on bone mineralisation, collagen production, ATP release, gene/protein expression and osteoclast formation were abolished or attenuated by pertussis toxin. Together these findings show that PPi, modulates differentiation, function and gene expression in osteoblasts and osteoclasts. The ability of PPi to alter ATP release and NPP1/TNAP expression and activity indicates that cells can detect PPi levels and respond accordingly. Our data also raise the possibility that some actions of PPi on bone cells could be mediated by a Gαi-linked GPCR.


Assuntos
Difosfatos , Osteoclastos , Osteoclastos/metabolismo , Difosfatos/farmacologia , Toxina Pertussis/metabolismo , Toxina Pertussis/farmacologia , Osteoblastos/metabolismo , Colágeno/metabolismo , Trifosfato de Adenosina/metabolismo , Fosfatase Alcalina/metabolismo
2.
Mol Neurobiol ; 59(11): 7025-7035, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36074232

RESUMO

Purinergic signaling is involved in multiple pain processes. P2X3 receptor is a key target in pain therapeutics, while A1 adenosine receptor signaling plays a role in analgesia. However, it remains unclear whether there is a link between them in pain. The present results showed that the A1 adenosine receptor agonist N6-cyclopentyladenosine (CPA) concentration dependently suppressed P2X3 receptor-mediated and α,ß-methylene-ATP (α,ß-meATP)-evoked inward currents in rat dorsal root ganglion (DRG) neurons. CPA significantly decreased the maximal current response to α,ß-meATP, as shown a downward shift of the concentration-response curve for α,ß-meATP. CPA suppressed ATP currents in a voltage-independent manner. Inhibition of ATP currents by CPA was completely prevented by the A1 adenosine receptor antagonist KW-3902, and disappeared after the intracellular dialysis of either the Gi/o protein inhibitor pertussis toxin, the adenylate cyclase activator forskolin, or the cAMP analog 8-Br-cAMP. Moreover, CPA suppressed the membrane potential depolarization and action potential bursts, which were induced by α,ß-meATP in DRG neurons. Finally, CPA relieved α,ß-meATP-induced nociceptive behaviors in rats by activating peripheral A1 adenosine receptors. These results indicated that CPA inhibited the activity of P2X3 receptors in rat primary sensory neurons by activating A1 adenosine receptors and its downstream cAMP signaling pathway, revealing a novel peripheral mechanism underlying its analgesic effect.


Assuntos
Gânglios Espinais , Receptores Purinérgicos P2X3 , Adenosina/metabolismo , Adenosina/farmacologia , Trifosfato de Adenosina/metabolismo , Adenilil Ciclases/metabolismo , Analgésicos/farmacologia , Animais , Colforsina/farmacologia , Gânglios Espinais/metabolismo , Neurônios/metabolismo , Dor/metabolismo , Toxina Pertussis/metabolismo , Toxina Pertussis/farmacologia , Agonistas do Receptor Purinérgico P1/metabolismo , Agonistas do Receptor Purinérgico P1/farmacologia , Antagonistas de Receptores Purinérgicos P1/farmacologia , Ratos , Receptores Purinérgicos P1/metabolismo , Receptores Purinérgicos P2X3/metabolismo
3.
JCI Insight ; 7(20)2022 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-36099030

RESUMO

Biased agonism is a frontier field in GPCR research. Acquired hypocalciuric hypercalcemia (AHH) is a rare disease caused by calcium-sensing receptor (CaSR) autoantibodies, to date, showing either simple blocking or biased properties (i.e., stimulatory or blocking effects on different downstream signaling pathways). This emphasizes the importance of the Gi/o (pertussis toxin-sensitive G proteins, whose ßγ subunits activate multiple signals, including ERK1/2) in regulating parathyroid hormone secretion. We here describe 3 patients with symptomatic AHH who shared characteristics with the 2 cases we previously reported as follows: (a) elderly (74-87 years at diagnosis), (b) male, (c) unexpectedly showed no other autoimmune diseases, (d) showed spontaneously fluctuating Ca levels from approximately normal to near fatally high ranges, (e) acute exacerbations could be successfully treated with prednisolone and/or calcimimetics, (f) the presence of CaSR autoantibodies that operated as biased allosteric modulators of CaSR, and (g) were likely to be conformational (i.e., recognizing and, thereby, stabilizing a unique active conformation of CaSR that activates Gq/11, activating phosphatidylinositol turnover, but not Gi/o). Our observations with these prominent commonalities may provide new insights into the phenotype and characteristics of AHH and the mechanisms by which the biased agonism of GPCRs operate.


Assuntos
Hipercalcemia , Receptores de Detecção de Cálcio , Masculino , Humanos , Receptores de Detecção de Cálcio/metabolismo , Hipercalcemia/tratamento farmacológico , Hipercalcemia/diagnóstico , Autoanticorpos , Prednisolona/uso terapêutico , Toxina Pertussis/metabolismo , Cálcio/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Hormônio Paratireóideo/metabolismo , Fosfatidilinositóis
4.
Basic Clin Pharmacol Toxicol ; 131(2): 104-113, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35510660

RESUMO

The GPR15 receptor is a G protein-coupled receptor (GPCR), which is activated by an endogenous peptide GPR15L(25-81) and a C-terminal peptide fragment GPR15L(71-81). GPR15 signals through the Gi/o pathway to decrease intracellular cyclic adenosine 3',5'-monophosphate (cAMP). However, the activation profiles of the GPR15 receptor within Gi/o subtypes have not been examined. Moreover, whether the receptor can also couple to Gs , Gq/11 and G12/13 is unclear. Here, GPR15L(25-81) and GPR15L(71-81) are used as pharmacological tool compounds to delineate the GPR15 receptor-mediated Gα protein signalling using a G protein activation assay and second messenger assay conducted on living cells. The results show that the GPR15 receptor preferentially couples to Gi/o rather than other pathways in both assays. Within the Gi/o family, the GPR15 receptor activates all the subtypes (Gi1 , Gi2 , Gi3 , GoA , GoB and Gz ). The Emax and activation rates of Gi1, Gi2 , Gi3, GoA and GoB are similar, whilst the Emax of Gz is smaller and the activation rate is significantly slower. The potencies of both peptides toward each Gi/o subtype have been determined. Furthermore, the GPR15 receptor signals through Gi/o to inhibit cAMP accumulation, which could be blocked by the application of the Gi/o inhibitor pertussis toxin.


Assuntos
Proteínas de Ligação ao GTP , Transdução de Sinais , Animais , Proteínas de Ligação ao GTP/metabolismo , Mamíferos/metabolismo , Toxina Pertussis/metabolismo , Toxina Pertussis/farmacologia , Receptores Acoplados a Proteínas G/metabolismo
5.
Toxins (Basel) ; 14(3)2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-35324684

RESUMO

Pertussis, also known as whooping cough, is a respiratory disease caused by infection with Bordetella pertussis, which releases several virulence factors, including the AB-type pertussis toxin (PT). The characteristic symptom is severe, long-lasting paroxysmal coughing. Especially in newborns and infants, pertussis symptoms, such as leukocytosis, can become life-threatening. Despite an available vaccination, increasing case numbers have been reported worldwide, including Western countries such as Germany and the USA. Antibiotic treatment is available and important to prevent further transmission. However, antibiotics only reduce symptoms if administered in early stages, which rarely occurs due to a late diagnosis. Thus, no causative treatments against symptoms of whooping cough are currently available. The AB-type protein toxin PT is a main virulence factor and consists of a binding subunit that facilitates transport of an enzyme subunit into the cytosol of target cells. There, the enzyme subunit ADP-ribosylates inhibitory α-subunits of G-protein coupled receptors resulting in disturbed cAMP signaling. As an important virulence factor associated with severe symptoms, such as leukocytosis, and poor outcomes, PT represents an attractive drug target to develop novel therapeutic strategies. In this review, chaperone inhibitors, human peptides, small molecule inhibitors, and humanized antibodies are discussed as novel strategies to inhibit PT.


Assuntos
Coqueluche , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bordetella pertussis/metabolismo , Humanos , Lactente , Recém-Nascido , Leucocitose , Peptídeos/metabolismo , Toxina Pertussis/metabolismo , Coqueluche/diagnóstico , Coqueluche/tratamento farmacológico , Coqueluche/prevenção & controle
6.
Toxins (Basel) ; 13(7)2021 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-34357952

RESUMO

Bordetella pertussis causes the severe childhood disease whooping cough, by releasing several toxins, including pertussis toxin (PT) as a major virulence factor. PT is an AB5-type toxin, and consists of the enzymatic A-subunit PTS1 and five B-subunits, which facilitate binding to cells and transport of PTS1 into the cytosol. PTS1 ADP-ribosylates α-subunits of inhibitory G-proteins (Gαi) in the cytosol, which leads to disturbed cAMP signaling. Since PT is crucial for causing severe courses of disease, our aim is to identify new inhibitors against PT, to provide starting points for novel therapeutic approaches. Here, we investigated the effect of human antimicrobial peptides of the defensin family on PT. We demonstrated that PTS1 enzyme activity in vitro was inhibited by α-defensin-1 and -5, but not ß-defensin-1. The amount of ADP-ribosylated Gαi was significantly reduced in PT-treated cells, in the presence of α-defensin-1 and -5. Moreover, both α-defensins decreased PT-mediated effects on cAMP signaling in the living cell-based interference in the Gαi-mediated signal transduction (iGIST) assay. Taken together, we identified the human peptides α-defensin-1 and -5 as inhibitors of PT activity, suggesting that these human peptides bear potential for developing novel therapeutic strategies against whooping cough.


Assuntos
Anti-Infecciosos/farmacologia , Toxina Pertussis/antagonistas & inibidores , alfa-Defensinas/farmacologia , Animais , Peptídeos Antimicrobianos , Bordetella pertussis/metabolismo , Criança , Humanos , Toxina Pertussis/metabolismo , Fatores de Virulência de Bordetella , Coqueluche
7.
Sci Rep ; 11(1): 9373, 2021 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-33931696

RESUMO

Secretion of pertussis toxin (PT) is the preeminent virulence trait of the human pathogen Bordetella pertussis, causing whooping cough. Bordetella bronchiseptica, although it harbors an intact 12-kb ptx-ptl operon, does not express PT due to an inactive ptx promoter (Pptx), which contains 18 SNPs (single nucleotide polymorphisms) relative to B. pertussis Pptx. A systematic analysis of these SNPs was undertaken to define the degree of mutational divergence necessary to activate B. bronchiseptica Pptx. A single change (C-13T), which created a better - 10 element, was capable of activating B. bronchiseptica Pptx sufficiently to allow secretion of low but measureable levels of active PT. Three additional changes in the BvgA-binding region, only in the context of C-13T mutant, raised the expression of PT to B. pertussis levels. These results illuminate a logical evolutionary pathway for acquisition of this key virulence trait in the evolution of B. pertussis from a B. bronchiseptica-like common ancestor.


Assuntos
Proteínas de Bactérias/genética , Infecções por Bordetella/metabolismo , Bordetella bronchiseptica/fisiologia , Regulação Bacteriana da Expressão Gênica , Mutação , Toxina Pertussis/metabolismo , Regiões Promotoras Genéticas , Sequência de Aminoácidos , Infecções por Bordetella/microbiologia , Infecções por Bordetella/patologia , Evolução Molecular , Toxina Pertussis/genética , Homologia de Sequência
8.
IEEE/ACM Trans Comput Biol Bioinform ; 18(5): 1885-1892, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-31831431

RESUMO

Pertussis vaccine is produced from physicochemically inactivated toxin for many years. Recent advancements in immunoinformatics [N. Tomar and R. K. De, "Immunoinformatics: an integrated scenario," Immunology, vol. 131, no. 2, pp. 153-168, 2010] and structural bioinformatics can provide a new multidisciplinary approach to overcome the concerns including unwanted antibodies and incomplete population coverage. In this study we focused on solving the challenging issues by designing a multi-epitope vaccine (MEV) using rational bioinformatics analyses. The frequencies of All HLA DP, DQ, and DR alleles were evaluated in almost all countries. Strong binder surface epitopes on the pertussis toxin were selected based on our novel filtration strategy. Finally, the population coverage of MEV was determined in the candidate country. Filtration steps yielded 312 strong binder epitopes. Finally, 8 surface strong binder epitopes were selected as candidate epitopes. The population coverage of the MEV in France and the world was 98 and 100 percent, respectively. Our algorithm successfully filtered many unwanted strong binder epitopes. Considering the HLA type of all individuals in a country, we theoretically provided the maximum chance to all humans to be vaccinated efficiently. Application of a MEV would be led to production of highly efficient target specific antibodies, significant reduction of unwanted antibodies, and avoid possible raising of auto-antibodies as well.


Assuntos
Algoritmos , Biologia Computacional/métodos , Vacina contra Coqueluche , Anticorpos Antibacterianos/imunologia , Epitopos/química , Epitopos/genética , Epitopos/imunologia , Epitopos/metabolismo , Humanos , Modelos Moleculares , Toxina Pertussis/química , Toxina Pertussis/genética , Toxina Pertussis/imunologia , Toxina Pertussis/metabolismo , Vacina contra Coqueluche/química , Vacina contra Coqueluche/genética , Vacina contra Coqueluche/imunologia , Vacina contra Coqueluche/metabolismo
9.
PLoS One ; 15(8): e0227157, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32817719

RESUMO

In mice, experimental influenza virus infection stimulates CD8 T cell infiltration of the airways. Virus is cleared by day 9, and between days 8 and 9 there is an abrupt change in CD8 T cell motility behavior transitioning from low velocity and high confinement on day 8, to high velocity with continued high confinement on day 9. We hypothesized that loss of virus and/or antigen signals in the context of high chemokine levels drives the T cells into a rapid surveillance mode. Virus infection induces chemokine production, which may change when the virus is cleared. We therefore sought to examine this period of rapid changes to the T cell environment in the tissue and seek evidence on the roles of peptide-MHC and chemokine receptor interactions. Experiments were performed to block G protein coupled receptor (GPCR) signaling with Pertussis toxin (Ptx). Ptx treatment generally reduced cell velocities and mildly increased confinement suggesting chemokine mediated arrest (velocity <2 µm/min) (Friedman RS, 2005), except on day 8 when velocity increased and confinement was relieved. Blocking specific peptide-MHC with monoclonal antibody unexpectedly decreased velocities on days 7 through 9, suggesting TCR/peptide-MHC interactions promote cell mobility in the tissue. Together, these results suggest the T cells are engaged with antigen bearing and chemokine producing cells that affect motility in ways that vary with the day after infection. The increase in velocities on day 9 were reversed by addition of specific peptide, consistent with the idea that antigen signals become limiting on day 9 compared to earlier time points. Thus, antigen and chemokine signals act to alternately promote and restrict CD8 T cell motility until the point of virus clearance, suggesting the switch in motility behavior on day 9 may be due to a combination of limiting antigen in the presence of high chemokine signals as the virus is cleared.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Movimento Celular/fisiologia , Vírus da Influenza A/imunologia , Animais , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/fisiologia , Movimento Celular/efeitos dos fármacos , Quimiocinas/imunologia , Vírus da Influenza A/patogenicidade , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Orthomyxoviridae , Infecções por Orthomyxoviridae/imunologia , Toxina Pertussis/metabolismo , Toxina Pertussis/farmacologia , Receptores de Quimiocinas , Receptores Acoplados a Proteínas G/metabolismo
10.
ACS Infect Dis ; 6(4): 588-602, 2020 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-31899865

RESUMO

The targeted pathogen-selective approach to drug development holds promise to minimize collateral damage to the beneficial microbiome. The AB5-topology pertussis toxin (PtxS1-S5) is a major virulence factor of Bordetella pertussis, the causative agent of the highly contagious respiratory disease whooping cough. Once internalized into the host cell, PtxS1 ADP-ribosylates α-subunits of the heterotrimeric Gαi-superfamily, thereby disrupting G-protein-coupled receptor signaling. Here, we report the discovery of the first small molecules inhibiting the ADP-ribosyltransferase activity of pertussis toxin. We developed protocols to purify milligram-levels of active recombinant B. pertussis PtxS1 from Escherichia coli and an in vitro high throughput-compatible assay to quantify NAD+ consumption during PtxS1-catalyzed ADP-ribosylation of Gαi. Two inhibitory compounds (NSC228155 and NSC29193) with low micromolar IC50-values (3.0 µM and 6.8 µM) were identified in the in vitro NAD+ consumption assay that also were potent in an independent in vitro assay monitoring conjugation of ADP-ribose to Gαi. Docking and molecular dynamics simulations identified plausible binding poses of NSC228155 and in particular of NSC29193, most likely owing to the rigidity of the latter ligand, at the NAD+-binding pocket of PtxS1. NSC228155 inhibited the pertussis AB5 holotoxin-catalyzed ADP-ribosylation of Gαi in living human cells with a low micromolar IC50-value (2.4 µM). NSC228155 and NSC29193 might prove to be useful hit compounds in targeted B. pertussis-selective drug development.


Assuntos
ADP Ribose Transferases/antagonistas & inibidores , ADP Ribose Transferases/metabolismo , Descoberta de Drogas , Toxina Pertussis/antagonistas & inibidores , Toxina Pertussis/metabolismo , Bordetella pertussis/efeitos dos fármacos , Bordetella pertussis/patogenicidade , Escherichia coli/genética , Escherichia coli/metabolismo , Células HEK293 , Humanos , Concentração Inibidora 50 , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , NAD/metabolismo
11.
J Mol Med (Berl) ; 98(1): 97-110, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31811326

RESUMO

Pertussis toxin (PTX) is a potent virulence factor in patients suffering from whooping cough, but in its detoxified version, it is applied for vaccination. It is thought to contribute to the pathology of the disease including various CNS malfunctions. Based on its enzymatic activity, PTX disrupts GPCR-dependent signaling by modifying the α-subunit of heterotrimeric Gi/o-proteins. It is also extensively used as a research tool to study neuronal functions in vivo and in vitro. However, data demonstrating the penetration of PTX from the blood into the brain are missing. Here, we examined the Gαi/o-modifying activity of PTX in murine brains after its parenteral application. Ex vivo biodistribution analysis of [124I]-PTX displayed poor distribution to the brain while relatively high concentrations were visible in the pancreas. PTX affected CNS and endocrine functions of the pancreas as shown by open-field and glucose tolerance tests, respectively. However, while pancreatic islet Gαi/o-proteins were modified, their neuronal counterparts in brain tissue were resistant towards PTX as indicated by different autoradiographic and immunoblot SDS-PAGE analyses. In contrast, PTX easily modified brain Gαi/o-proteins ex vivo. An attempt to increase BBB permeability by application of hypertonic mannitol did not show PTX activity on neuronal G proteins. Consistent with these findings, in vivo MRI analysis did not point to an increased blood-brain barrier (BBB) permeability following PTX treatment. Our data demonstrate that the CNS is protected from PTX. Thus, we hypothesize that the BBB hinders PTX to penetrate into the CNS and to deliver its enzymatic activity to brain Gαi/o-proteins. KEY MESSAGES: i.p. applied PTX is poorly retained in the brain while reaches high concentration in the pancreas. Pancreatic islet Gαi/o- but not cerebral Gαi/o-proteins are modified by i.p. administered PTX. Gαi/o-proteins from isolated cerebral cell membranes were easily modified by PTX ex vivo. CNS is protected from i.p. administered PTX. PTX does not permeabilize the BBB.


Assuntos
Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Injeções/métodos , Neuroproteção , Toxina Pertussis/administração & dosagem , Toxina Pertussis/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Barreira Hematoencefálica/diagnóstico por imagem , Barreira Hematoencefálica/metabolismo , Permeabilidade Capilar/efeitos dos fármacos , Membrana Celular/metabolismo , Feminino , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/antagonistas & inibidores , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/deficiência , Radioisótopos do Iodo , Ilhotas Pancreáticas/diagnóstico por imagem , Ilhotas Pancreáticas/metabolismo , Imageamento por Ressonância Magnética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Distribuição Tecidual
12.
J Med Microbiol ; 69(1): 111-119, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31778110

RESUMO

Introduction. Differences between the genomic and virulence profile of Bordetella pertussis circulating strains and vaccine strains are considered as one of the important reasons for the resurgence of whooping cough (pertussis) in the world. Genetically inactivated B. pertussis is one of the new strategies to generate live-attenuated vaccines against whooping cough.Aim. The aim of this study was to construct a B. pertussis strain based on a predominant profile of circulating Iranian isolates that produces inactivated pertussis toxin (PTX).Methodology. The B. pertussis strain BPIP91 with predominant genomic and virulence pattern was selected from the biobank of the Pasteur Institute of Iran. A BPIP91 derivative with R9K and E129G alterations in the S1 subunit of PTX (S1mBPIP91) was constructed by the site-directed mutagenesis and homologous recombination. Genetic stability and antigen expression of S1mBPIP91 were tested by serially in vitro passages and immunoblot analyses, respectively. The reduction in toxicity of S1mBPIP91 was determined by Chinese hamster ovary (CHO) cell clustering.Results. All constructs and S1mBPIP91 were confirmed via restriction enzyme analysis and DNA sequencing. The engineered mutations in S1mBPIP91 were stable after 20 serial in vitro passages. The production of virulence factors was also confirmed in S1mBPIP91. The CHO cell-clustering test demonstrated the reduction in PTX toxicity in S1mBPIP91.Conclusion. A B. pertussis of the predominant genomic and virulence lineage in Iran was successfully engineered to produce inactive PTX. This attenuated strain will be useful to further studies to develop both whole cell and acellular pertussis vaccines.


Assuntos
Antígenos de Bactérias/genética , Bordetella pertussis/genética , Bordetella pertussis/imunologia , Proteínas Mutantes/genética , Toxina Pertussis/genética , Vacina contra Coqueluche/genética , Animais , Antígenos de Bactérias/metabolismo , Antígenos de Bactérias/toxicidade , Células CHO , Sobrevivência Celular/efeitos dos fármacos , Cricetulus , Irã (Geográfico) , Mutagênese Sítio-Dirigida , Proteínas Mutantes/metabolismo , Proteínas Mutantes/toxicidade , Toxina Pertussis/metabolismo , Toxina Pertussis/toxicidade , Vacina contra Coqueluche/efeitos adversos , Engenharia de Proteínas , Vacinas Atenuadas/efeitos adversos , Vacinas Atenuadas/genética
13.
Toxins (Basel) ; 11(8)2019 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-31349590

RESUMO

Pertussis toxin (PT) is a multimeric complex of six proteins. The PTS1 subunit is an ADP-ribosyltransferase that inactivates the alpha subunit of heterotrimeric Gi/o proteins. The remaining PT subunits form a pentamer that positions PTS1 in and above the central cavity of the triangular structure. Adhesion of this pentamer to glycoprotein or glycolipid conjugates on the surface of a target cell leads to endocytosis of the PT holotoxin. Vesicle carriers then deliver the holotoxin to the endoplasmic reticulum (ER) where PTS1 dissociates from the rest of the toxin, unfolds, and exploits the ER-associated degradation pathway for export to the cytosol. Refolding of the cytosolic toxin allows it to regain an active conformation for the disruption of cAMP-dependent signaling events. This review will consider the intracellular trafficking of PT and the order-disorder-order transitions of PTS1 that are essential for its cellular activity.


Assuntos
Toxina Pertussis/metabolismo , Animais , Citosol/metabolismo , Humanos , Subunidades Proteicas , Transporte Proteico
14.
J Mol Cell Cardiol ; 131: 132-145, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31009605

RESUMO

Although only ß2-adrenergic receptors (ßAR) dually couple with stimulatory G protein (Gs) and inhibitory G protein (Gi), inactivation of Gi enhances both ß1AR and ß2AR responsiveness. We hypothesize that Gi restrains spontaneous adenylyl cyclase (AC) activity independent of receptor activation. Subcellular localization of the AC5/6 subtypes varies contributing to the compartmentation of ßAR signaling. The primary objectives were to determine: (1) if ß1AR-mediated inotropic responses were dependent upon either AC5 or AC6; (2) if intrinsic Gi inhibition is AC subtype selective and (3) the role of phosphodiesterases (PDE) 3/4 to regulate ß1AR responsiveness. ß1AR-mediated increases in contractile force and cAMP accumulation in cardiomyocytes were measured from wild type, AC5 and AC6 knockout (KO) mice, with or without pertussis toxin (PTX) pretreatment to inactivate Gi and/or after selective inhibition of PDEs 3/4. Noradrenaline potency at ß1ARs was increased in AC6 KO. PDE4 inhibition increased noradrenaline potency in wild type and AC5 KO, but not AC6 KO. PTX increased noradrenaline potency only in wild type but increased the maximal ß1AR response in all mouse strains. PDE3 inhibition increased noradrenaline potency only in AC5 KO that was treated prior with PTX. ß1AR-evoked cAMP accumulation was increased more by PDE4 inhibition than PDE3 inhibition in wild type and AC5 KO that was amplified by Gi inhibition. These data indicate that ß1AR-mediated inotropic responses are not dependent upon either AC5 or AC6 alone. Inactivation of Gi enhanced ß1AR-mediated inotropic responses despite not coupling to Gi, consistent with Gi exerting a tonic receptor independent inhibition upon AC5/6. PDE4 seems the primary regulator of ß1AR signaling through AC6 in wild type. AC6 KO results in a reorganization of ß1AR compartmentation characterized by signaling through AC5 regulated by Gi, PDE3 and PDE4 that maintains normal contractile function.


Assuntos
Adenilil Ciclases/metabolismo , Isoformas de Proteínas/metabolismo , Receptores Adrenérgicos beta 1/metabolismo , Animais , AMP Cíclico/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Feminino , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Ventrículos do Coração/efeitos dos fármacos , Ventrículos do Coração/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Contração Miocárdica/efeitos dos fármacos , Contração Miocárdica/fisiologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Norepinefrina/farmacologia , Toxina Pertussis/metabolismo , Inibidores da Fosfodiesterase 4/farmacologia , Receptores Adrenérgicos beta 2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
15.
Biomed Res Int ; 2019: 9630793, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30941374

RESUMO

BACKGROUND: A recombinant BCG strain expressing the genetically detoxified S1 subunit of pertussis toxin 9K/129G (rBCG-S1PT), previously constructed by our research group, demonstrated the ability to develop high protection in mouse models of pertussis challenge which correlated with the induction of a Th1 immune response pattern. The Th1 immune response induced by rBCG-S1PT treatment was also confirmed in the murine orthotopic bladder cancer model, in which the intravesical instillation of rBCG-S1PT resulted in an improved antitumor effect. Based on these observations, we hypothesize that the reengineering of the S1PT expression in BCG could increase the efficiency of the protective Th1 immune response in order to develop a new alternative of immunotherapy in bladder cancer treatment. OBJECTIVES: To construct rBCG strains expressing S1PT from extrachromosomal (rBCG-S1PT) and integrative vectors (rBCG-Sli), or their combination, generating the bivalent strain (rBCG-S1+S1i), and to evaluate the respective immunogenicity of rBCG strains in mice. METHODS: Mycobacterial plasmids were constructed by cloning the s1pt gene under integrative and extrachromosomal vectors and used to transform BCG, individually or in combination. Antigen expression and localization were confirmed by Western blot. Mice were immunized with wild-type BCG or the rBCG strains, and cytokines quantification and flow cytometry analysis were performed in splenocytes culture stimulated with mycobacterial-specific proteins. FINDINGS: S1PT expression was confirmed in all rBCG strains. The extrachromosomal vector directs S1PT to the cell wall-associated fraction, while the integrative vector directs its expression mainly to the intracellular fraction. Higher levels of IFN-γ were observed in the splenocytes culture from the group immunized with rBCG-S1i in comparison to BCG or rBCG-S1PT. rBCG-S1+S1i showed higher levels of CD4+ IFN-γ + and double-positive CD4+ IFN-γ + TNF-α + T cells. CONCLUSIONS: rBCG-S1+S1i was able to express the two forms of S1PT and elicited higher induction of polyfunctional CD4+ T cells, indicating enhanced immunogenicity and suggesting its use as immunotherapy for bladder cancer.


Assuntos
Vacina BCG/imunologia , Linfócitos T CD4-Positivos/imunologia , Imunidade Celular , Mycobacterium bovis/fisiologia , Toxina Pertussis/metabolismo , Subunidades Proteicas/metabolismo , Vacinas Sintéticas/imunologia , Animais , Citocinas/biossíntese , Citocinas/metabolismo , Feminino , Imunização , Mediadores da Inflamação/metabolismo , Camundongos Endogâmicos BALB C , Fenótipo , Plasmídeos/metabolismo , Baço/citologia
16.
Sci Signal ; 11(548)2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30228224

RESUMO

G protein-coupled receptors (GPCRs) are major drug targets. Developing a method to measure the activities of GPCRs is essential for pharmacology and drug screening. However, it is difficult to measure the effects of a drug by monitoring the receptor on the cell surface; thus, changes in the concentrations of downstream signaling molecules, which depend on the signaling pathway selectivity of the receptor, are often used as an index of receptor activity. We show that single-molecule imaging analysis provides an alternative method for assessing the effects of ligands on GPCRs. Using total internal reflection fluorescence microscopy (TIRFM), we monitored the dynamics of the diffusion of metabotropic glutamate receptor 3 (mGluR3), a class C GPCR, under various ligand conditions. Our single-molecule tracking analysis demonstrated that increases and decreases in the average diffusion coefficient of mGluR3 quantitatively reflected the ligand-dependent inactivation and activation of receptors, respectively. Through experiments with inhibitors and dual-color single-molecule imaging analysis, we found that the diffusion of receptor molecules was altered by common physiological events associated with GPCRs, including G protein binding, and receptor accumulation in clathrin-coated pits. We also confirmed that agonist also decreased the average diffusion coefficient for class A and B GPCRs, demonstrating that this parameter is a good index for estimating ligand effects on many GPCRs regardless of their phylogenetic groups, the chemical properties of the ligands, or G protein-coupling selectivity.


Assuntos
Proteínas de Ligação ao GTP/metabolismo , Microscopia de Fluorescência/métodos , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Aminoácidos/metabolismo , Células HEK293 , Humanos , Ligantes , Toxina Pertussis/metabolismo , Toxina Pertussis/farmacologia , Ligação Proteica/efeitos dos fármacos , Ensaio Radioligante/métodos , Receptores Acoplados a Proteínas G/análise , Receptores Acoplados a Proteínas G/genética , Receptores de Glutamato Metabotrópico/análise , Receptores de Glutamato Metabotrópico/genética , Receptores de Glutamato Metabotrópico/metabolismo , Xantenos/metabolismo
17.
Cell Microbiol ; 20(12): e12948, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30152075

RESUMO

Pertussis toxin (PTx) is a major protective antigen produced by Bordetella pertussis that is included in all current acellular vaccines. Of several well-characterized monoclonal antibodies binding this toxin, the humanised hu1B7 and hu11E6 antibodies are highly protective in multiple in vitro and in vivo assays. In this study, we determine the molecular mechanisms of protection mediated by these antibodies. Neither antibody directly binds the B. pertussis bacterium nor supports antibody-dependent complement cytotoxicity. Both antibodies, either individually or as a cocktail, form multivalent complexes with soluble PTx that bind the FcγRIIb receptor more tightly than antibody alone, suggesting that the antibodies may accelerate PTx clearance via immune complex formation. However, a receptor binding assay and cellular imaging indicate that the main mechanism used by hu11E6 is competitive inhibition of PTx binding to its cellular receptor. In contrast, the main hu1B7 neutralising mechanism appears to be inhibition of PTx internalisation and retrograde trafficking. We assessed the effects of hu1B7 on PTx retrograde trafficking in CHO-K1 cells using quantitative immunofluorescence microscopy. In the absence of hu1B7 or after incubation with an isotype control antibody, PTx colocalizes to organelles in a manner consistent with retrograde transport. However, after preincubation with hu1B7, PTx appears restricted to the membrane surface with colocalization to organelles associated with retrograde transport significantly reduced. Together, these data support a model whereby hu11E6 and hu1B7 interfere with PTx receptor binding and PTx retrograde trafficking, respectively.


Assuntos
Anticorpos Monoclonais Humanizados/farmacologia , Bordetella pertussis/efeitos dos fármacos , Toxina Pertussis/metabolismo , Animais , Anticorpos Monoclonais Humanizados/metabolismo , Bordetella pertussis/imunologia , Bordetella pertussis/metabolismo , Células CHO , Cricetulus , Endocitose/efeitos dos fármacos , Humanos , Toxina Pertussis/toxicidade , Transporte Proteico/efeitos dos fármacos , Receptores de IgG/metabolismo
18.
J Biol Chem ; 293(16): 6161-6171, 2018 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-29487132

RESUMO

The dopamine D2 receptor (D2R) is a G protein-coupled receptor (GPCR) that is critical for many central nervous system functions. The D2R carries out these functions by signaling through two transducers: G proteins and ß-arrestins (ßarrs). Selectively engaging either the G protein or ßarr pathway may be a way to improve drugs targeting GPCRs. The current model of GPCR signal transduction posits a chain of events where G protein activation ultimately leads to ßarr recruitment. GPCR kinases (GRKs), which are regulated by G proteins and whose kinase action facilitates ßarr recruitment, bridge these pathways. Therefore, ßarr recruitment appears to be intimately tied to G protein activation via GRKs. Here we sought to understand how GRK2 action at the D2R would be disrupted when G protein activation is eliminated and the effect of this on ßarr recruitment. We used two recently developed biased D2R mutants that can preferentially interact either with G proteins or ßarrs as well as a ßarr-biased D2R ligand, UNC9994. With these functionally selective tools, we investigated the mechanism whereby the ßarr-preferring D2R achieves ßarr pathway activation in the complete absence of G protein activation. We describe how direct, G protein-independent recruitment of GRK2 drives interactions at the ßarr-preferring D2R and also contributes to ßarr recruitment at the WT D2R. Additionally, we found an additive interaction between the ßarr-preferring D2R mutant and UNC9994. These results reveal that the D2R can directly recruit GRK2 without G protein activation and that this mechanism may have relevance to achieving ßarr-biased signaling.


Assuntos
Quinase 2 de Receptor Acoplado a Proteína G/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Receptores de Dopamina D2/metabolismo , Agonistas de Dopamina/farmacologia , Transferência de Energia , Quinase 2 de Receptor Acoplado a Proteína G/antagonistas & inibidores , Quinase 2 de Receptor Acoplado a Proteína G/genética , Quinase 3 de Receptor Acoplado a Proteína G/antagonistas & inibidores , Células HEK293 , Humanos , Modelos Teóricos , Mutação , Toxina Pertussis/metabolismo , Fosforilação , Ligação Proteica , Inibidores de Proteínas Quinases/farmacologia , Receptores de Dopamina D2/genética , Transdução de Sinais , beta-Arrestinas/metabolismo
19.
Anal Biochem ; 540-541: 15-19, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29108883

RESUMO

ADP-ribosyltransferase activities have been observed in many prokaryotic and eukaryotic species and viruses and are involved in many cellular processes, including cell signalling, DNA repair, gene regulation and apoptosis. In a number of bacterial toxins, mono ADP-ribosyltransferase is the main cause of host cell cytotoxicity. Several approaches have been used to analyse this biological system from measuring its enzyme products to its functions. By using a mono ADP-ribose binding protein we have now developed an ELISA method to estimate native pertussis toxin mono ADP-ribosyltransferase activity and its residual activities in pertussis vaccines as an example. This new approach is easy to perform and adaptable in most laboratories. In theory, this assay system is also very versatile and could measure the enzyme activity in other bacteria such as Cholera, Clostridium, E. coli, Diphtheria, Pertussis, Pseudomonas, Salmonella and Staphylococcus by just switching to their respective peptide substrates. Furthermore, this mono ADP-ribose binding protein could also be used for staining mono ADP-ribosyl products resolved on gels or membranes.


Assuntos
ADP Ribose Transferases/análise , ADP Ribose Transferases/metabolismo , Ensaios Enzimáticos/métodos , Ensaio de Imunoadsorção Enzimática , Toxina Pertussis/metabolismo , Vacinas Conjugadas/metabolismo , ADP Ribose Transferases/antagonistas & inibidores , Cromatografia Líquida de Alta Pressão , Clostridium/enzimologia , Escherichia coli/enzimologia , Escherichia coli/metabolismo , Humanos , Peptídeos/química , Peptídeos/metabolismo , Toxina Pertussis/análise , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , Vacinas Conjugadas/análise
20.
Future Microbiol ; 12: 1247-1259, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28980823

RESUMO

AIM: Bordetella pertussis has been shown to release outer membrane vesicles (OMV) both in vitro and in vivo but little is known about their biological role during the initial phases of B. pertussis infection of the airways. RESULTS: We have demonstrated that OMV are released by B. pertussis in a human ciliated-airway cell model and purified vesicles can interact with host cells. Binding and uptake are strictly Bvg-regulated and OMV-associated pertussis toxin contributes to host-cell intoxication. Furthermore, we have shown that OMV act as iron-delivery systems complementing the B. pertussis growth defect in iron-limiting conditions. CONCLUSION: We have proved that OMV play different roles in B. pertussis physiopathology and we opened new perspectives to be further investigated.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Bordetella pertussis/patogenicidade , Membrana Celular/ultraestrutura , Toxina Pertussis/metabolismo , Coqueluche/microbiologia , Células A549 , Animais , Células CHO , Cricetulus , Interações Hospedeiro-Patógeno , Humanos , Ferro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...