Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 204
Filtrar
1.
Sci Rep ; 14(1): 10433, 2024 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714696

RESUMO

Toxoplasma gondii (T. gondii) is a protozoan parasite that infects approximately one-third of the global human population, often leading to chronic infection. While acute T. gondii infection can cause neural damage in the central nervous system and result in toxoplasmic encephalitis, the consequences of T. gondii chronic infection (TCI) are generally asymptomatic. However, emerging evidence suggests that TCI may be linked to behavioral changes or mental disorders in hosts. Astrocyte polarization, particularly the A1 subtype associated with neuronal apoptosis, has been identified in various neurodegenerative diseases. Nevertheless, the role of astrocyte polarization in TCI still needs to be better understood. This study aimed to establish a mouse model of chronic TCI and examine the transcription and expression levels of glial fibrillary acidic protein (GFAP), C3, C1q, IL-1α, and TNF-α in the brain tissues of the mice. Quantitative real-time PCR (qRT-PCR), enzyme-linked immunosorbent assay, and Western blotting were employed to assess these levels. Additionally, the expression level of the A1 astrocyte-specific marker C3 was evaluated using indirect fluorescent assay (IFA). In mice with TCI, the transcriptional and expression levels of the inflammatory factors C1q, IL-1α, and TNF-α followed an up-down-up pattern, although they remained elevated compared to the control group. These findings suggest a potential association between astrocyte polarization towards the A1 subtype and synchronized changes in these three inflammatory mediators. Furthermore, immunofluorescence assay (IFA) revealed a significant increase in the A1 astrocytes (GFAP+C3+) proportion in TCI mice. This study provides evidence that TCI can induce astrocyte polarization, a biological process that may be influenced by changes in the levels of three inflammatory factors: C1q, IL-1α, and TNF-α. Additionally, the release of neurotoxic substances by A1 astrocytes may be associated with the development of TCI.


Assuntos
Astrócitos , Encéfalo , Toxoplasma , Animais , Astrócitos/metabolismo , Astrócitos/parasitologia , Astrócitos/patologia , Camundongos , Toxoplasma/patogenicidade , Toxoplasma/fisiologia , Encéfalo/parasitologia , Encéfalo/metabolismo , Encéfalo/patologia , Modelos Animais de Doenças , Feminino , Doença Crônica , Polaridade Celular , Proteína Glial Fibrilar Ácida/metabolismo , Proteína Glial Fibrilar Ácida/genética , Toxoplasmose/metabolismo , Toxoplasmose/parasitologia , Toxoplasmose/patologia , Fator de Necrose Tumoral alfa/metabolismo , Toxoplasmose Cerebral/parasitologia , Toxoplasmose Cerebral/patologia , Toxoplasmose Cerebral/metabolismo
2.
Molecules ; 27(17)2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36080339

RESUMO

BACKGROUND: Toxoplasma gondii, an intracellular protozoan parasite, exists in the host brain as cysts, which can result in Toxoplasmic Encephalitis (TE) and neurological diseases. However, few studies have been conducted on TE, particularly on how to prevent it. Previous proteomics studies have showed that the expression of C3 in rat brains was up-regulated after T. gondii infection. METHODS: In this study, we used T. gondii to infect mice and bEnd 3 cells to confirm the relation between T. gondii and the expression of C3. BEnd3 cells membrane proteins which directly interacted with C3a were screened by pull down. Finally, animal behavior experiments were conducted to compare the differences in the inhibitory ability of TE by four chemotherapeutic compounds (SB290157, CVF, NSC23766, and Anxa1). RESULTS: All chemotherapeutic compounds in this study can inhibit TE and cognitive behavior in the host. However, Anxa 1 is the most suitable material to inhibit mice TE. CONCLUSION: T. gondii infection promotes TE by promoting host C3 production. Anxa1 was selected as the most appropriate material to prevent TE among four chemotherapeutic compounds closely related to C3.


Assuntos
Toxoplasma , Toxoplasmose Cerebral , Animais , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Camundongos , Proteômica , Toxoplasmose Cerebral/tratamento farmacológico , Toxoplasmose Cerebral/metabolismo , Toxoplasmose Cerebral/parasitologia
3.
Elife ; 102021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34877929

RESUMO

The cellular barriers of the central nervous system proficiently protect the brain parenchyma from infectious insults. Yet, the single-celled parasite Toxoplasma gondii commonly causes latent cerebral infection in humans and other vertebrates. Here, we addressed the role of the cerebral vasculature in the passage of T. gondii to the brain parenchyma. Shortly after inoculation in mice, parasites mainly localized to cortical capillaries, in preference over post-capillary venules, cortical arterioles or meningeal and choroidal vessels. Early invasion to the parenchyma (days 1-5) occurred in absence of a measurable increase in blood-brain barrier (BBB) permeability, perivascular leukocyte cuffs or hemorrhage. However, sparse focalized permeability elevations were detected adjacently to replicative parasite foci. Further, T. gondii triggered inflammatory responses in cortical microvessels and endothelium. Pro- and anti-inflammatory treatments of mice with LPS and hydrocortisone, respectively, impacted BBB permeability and parasite loads in the brain parenchyma. Finally, pharmacological inhibition or Cre/loxP conditional knockout of endothelial focal adhesion kinase (FAK), a BBB intercellular junction regulator, facilitated parasite translocation to the brain parenchyma. The data reveal that the initial passage of T. gondii to the central nervous system occurs principally across cortical capillaries. The integrity of the microvascular BBB restricts parasite transit, which conversely is exacerbated by the inflammatory response.


Assuntos
Barreira Hematoencefálica/parasitologia , Capilares/fisiologia , Toxoplasma/fisiologia , Toxoplasmose Cerebral/parasitologia , Animais , Encéfalo/parasitologia , Feminino , Masculino , Camundongos , Carga Parasitária , Permeabilidade
4.
PLoS One ; 16(10): e0258199, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34610039

RESUMO

The Apicomplexa protozoan Toxoplasma gondii is a mandatory intracellular parasite and the causative agent of toxoplasmosis. This illness is of medical importance due to its high prevalence worldwide and may cause neurological alterations in immunocompromised persons. In chronically infected immunocompetent individuals, this parasite forms tissue cysts mainly in the brain. In addition, T. gondii infection has been related to mental illnesses such as schizophrenia, bipolar disorder, depression, obsessive-compulsive disorder, as well as mood, personality, and other behavioral changes. In the present study, we evaluated the kinetics of behavioral alterations in a model of chronic infection, assessing anxiety, depression and exploratory behavior, and their relationship with neuroinflammation and parasite cysts in brain tissue areas, blood-brain-barrier (BBB) integrity, and cytokine status in the brain and serum. Adult female C57BL/6 mice were infected by gavage with 5 cysts of the ME-49 type II T. gondii strain, and analyzed as independent groups at 30, 60 and 90 days postinfection (dpi). Anxiety, depressive-like behavior, and hyperactivity were detected in the early (30 dpi) and long-term (60 and 90 dpi) chronic T. gondii infection, in a direct association with the presence of parasite cysts and neuroinflammation, independently of the brain tissue areas, and linked to BBB disruption. These behavioral alterations paralleled the upregulation of expression of tumor necrosis factor (TNF) and CC-chemokines (CCL2/MCP-1, CCL3/MIP-1α, CCL4/MIP-1ß and CCL5/RANTES) in the brain tissue. In addition, increased levels of interferon-gamma (IFNγ), TNF and CCL2/MCP-1 were detected in the peripheral blood, at 30 and 60 dpi. Our data suggest that the persistence of parasite cysts induces sustained neuroinflammation, and BBB disruption, thus allowing leakage of cytokines of circulating plasma into the brain tissue. Therefore, all these factors may contribute to behavioral changes (anxiety, depressive-like behavior, and hyperactivity) in chronic T. gondii infection.


Assuntos
Comportamento Animal , Barreira Hematoencefálica/patologia , Barreira Hematoencefálica/parasitologia , Inflamação/parasitologia , Toxoplasma/fisiologia , Toxoplasmose Cerebral/parasitologia , Animais , Ansiedade/complicações , Ansiedade/fisiopatologia , Edema Encefálico/complicações , Edema Encefálico/fisiopatologia , Doença Crônica , Citocinas/metabolismo , Depressão/complicações , Depressão/fisiopatologia , Feminino , Inflamação/fisiopatologia , Locomoção , Camundongos Endogâmicos C57BL , Força Muscular , Parasitos/fisiologia , Fatores de Tempo , Toxoplasmose Cerebral/fisiopatologia , Regulação para Cima
5.
Front Immunol ; 12: 681242, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34367142

RESUMO

Toxoplasma gondii is an obligate intracellular parasite capable of establishing persistent infection within the host brain and inducing severe neuropathology. Peptides are important native molecules responsible for a wide range of biological functions within the central nervous system. However, peptidome profiling in host brain during T. gondii infection has never been investigated. Using a label-free peptidomics approach (LC-MS/MS), we identified a total of 2,735 endogenous peptides from acutely infected, chronically infected and control brain samples following T. gondii infection. Quantitative analysis revealed 478 and 344 significantly differentially expressed peptides (DEPs) in the acute and chronic infection stages, respectively. Functional analysis of DEPs by Gene Ontology suggested these DEPs mainly originated from cell part and took part in cellular process. We also identified three novel neuropeptides derived from the precursor protein cholecystokinin. These results demonstrated the usefulness of quantitative peptidomics in determining bioactive peptides and elucidating their functions in the regulation of behavior modification during T. gondii infection.


Assuntos
Encéfalo/metabolismo , Encéfalo/parasitologia , Neuropeptídeos/metabolismo , Proteômica , Toxoplasma , Toxoplasmose Cerebral/metabolismo , Toxoplasmose Cerebral/parasitologia , Animais , Encéfalo/patologia , Cromatografia Líquida , Biologia Computacional/métodos , Feminino , Interações Hospedeiro-Parasita , Imuno-Histoquímica , Camundongos , Proteômica/métodos , Espectrometria de Massas em Tandem , Toxoplasmose Animal , Toxoplasmose Cerebral/patologia
6.
Eur J Med Res ; 26(1): 65, 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34193287

RESUMO

BACKGROUND/AIMS: One of the opportunistic pathogens which cause serious problems in the human immune system is Toxoplasma gondii, with toxoplasma encephalitis (TE) seen in patients affected by it. The treatment of these patients is limited, and if not treated on time, death will be possible. METHODS: In this study, the effects of the treatment with different doses of fluconazole (FLZ) in combination with the current treatment of acute toxoplasmosis on reducing the mortality rate and the parasitic load in the murine model in vivo were studied. The mice were treated with different doses of fluconazole alone, sulfadiazine, and pyrimethamine plus fluconazole. A day after the end of the treatment and 1 day before death, the mice's brains were collected, and after DNA extraction and molecular tests, the parasite burden was detected. RESULTS: This study showed that a 10-day treatment with 20 mg/kg of fluconazole combined with sulfadiazine and pyrimethamine 1.40 mg/kg per day affected acute toxoplasmosis and reduced the parasitic load significantly in brain tissues and also increased the survival rate of all mice in this group until the last day of the study, in contrast to other treatment groups. These results also indicate the positive effects of combined therapy on Toxoplasma gondii and the prevention of relapse. CONCLUSIONS: Reducing the parasitic burden and increasing the survival rate were more effective against acute toxoplasmosis in the combined treatment of different doses of fluconazole with current treatments than current treatments without fluconazole. In other words, combination therapy with fluconazole plus pyrimethamine reduced the parasitic burden in the brain significantly, so it could be a replacement therapy in patients with intolerance sulfadiazine.


Assuntos
Encéfalo/parasitologia , Fluconazol/uso terapêutico , Pirimetamina/uso terapêutico , Sulfadiazina/uso terapêutico , Toxoplasma/isolamento & purificação , Toxoplasmose Cerebral/parasitologia , Inibidores de 14-alfa Desmetilase/uso terapêutico , Doença Aguda , Animais , Antiprotozoários/uso terapêutico , Encéfalo/diagnóstico por imagem , Modelos Animais de Doenças , Quimioterapia Combinada , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Toxoplasmose Cerebral/diagnóstico , Toxoplasmose Cerebral/tratamento farmacológico
7.
Sci Rep ; 11(1): 14029, 2021 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-34234237

RESUMO

Toxoplasma gondii is an opportunistic protozoan pathogen with a wide geographic distribution. The chronic phase of toxoplasmosis is often asymptomatic in humans and is characterized by tissue cysts throughout the central nervous system and muscle cells. T. gondii and other pathogens with tropism for the central nervous system are considered risk factors in the etiology of several neuropsychiatric disorders, such as schizophrenia and bipolar disorder, besides neurological diseases. Currently, it is known that cerebral toxoplasmosis increases dopamine levels in the brain and it is related to behavioral changes in animals and humans. Here we evaluate whether chronic T. gondii infection, using the cystogenic ME-49 strain, could induce behavioral alterations associated with neuropsychiatric disorders and glutamatergic neurotransmission dysfunction. We observed that the startle amplitude is reduced in the infected animals as well as glutamate and D-serine levels in prefrontal cortical and hippocampal tissue homogenates. Moreover, we did not detect alterations in social preference and spontaneous alternation despite severe motor impairment. Thus, we conclude that behavioral and cognitive aspects are maintained even though severe neural damage is observed by chronic infection of C57Bl/6 mice with the ME-49 strain.


Assuntos
Ácido Glutâmico/metabolismo , Transtornos Mentais/etiologia , Transtornos Mentais/metabolismo , Reflexo de Sobressalto , Serina/metabolismo , Toxoplasmose Cerebral/complicações , Toxoplasmose Cerebral/parasitologia , Animais , Comportamento Animal , Peso Corporal , Encéfalo/metabolismo , Encéfalo/parasitologia , Encéfalo/patologia , Hipocampo/metabolismo , Transtornos Mentais/diagnóstico , Transtornos Mentais/psicologia , Camundongos , Neurotransmissores/metabolismo , Córtex Pré-Frontal/metabolismo , Comportamento Social , Toxoplasma
8.
Front Immunol ; 12: 606963, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34054794

RESUMO

Toxoplasma gondii infection can trigger autoreactivity by different mechanisms. In the case of ocular toxoplasmosis, disruption of the blood-retinal barrier may cause exposure of confined retinal antigens such as recoverin. Besides, cross-reactivity can be induced by molecular mimicry of parasite antigens like HSP70, which shares 76% identity with the human ortholog. Autoreactivity can be a determining factor of clinical manifestations in the eye and in the central nervous system. We performed a prospective observational study to determine the presence of autoantibodies against recoverin and HSP70 by indirect ELISA in the serum of 65 patients with ocular, neuro-ophthalmic and congenital cerebral toxoplasmosis. We found systemic autoantibodies against recoverin and HSP70 in 33.8% and 15.6% of individuals, respectively. The presence of autoantibodies in cases of OT may be related to the severity of clinical manifestations, while in cases with CNS involvement they may have a protective role. Unexpectedly, anti-recoverin antibodies were found in patients with cerebral involvement, without ocular toxoplasmosis; therefore, we analyzed and proved cross-reactivity between recoverin and a brain antigen, hippocalcin, so the immunological phenomenon occurring in one immune-privileged organ (e.g. the central nervous system) could affect the environment of another (egg. the eye).


Assuntos
Autoanticorpos/imunologia , Autoantígenos/imunologia , Interações Hospedeiro-Parasita/imunologia , Toxoplasmose Cerebral/imunologia , Toxoplasmose Congênita/imunologia , Toxoplasmose Ocular/imunologia , Adolescente , Adulto , Sequência de Aminoácidos , Antígenos de Protozoários/imunologia , Criança , Pré-Escolar , Reações Cruzadas/imunologia , Feminino , Proteínas de Choque Térmico HSP70/química , Proteínas de Choque Térmico HSP70/imunologia , Hipocalcina/química , Hipocalcina/imunologia , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Recoverina/química , Recoverina/imunologia , Toxoplasma/imunologia , Toxoplasmose Cerebral/diagnóstico , Toxoplasmose Cerebral/parasitologia , Toxoplasmose Congênita/diagnóstico , Toxoplasmose Congênita/parasitologia , Toxoplasmose Ocular/diagnóstico , Toxoplasmose Ocular/parasitologia , Adulto Jovem
9.
Elife ; 102021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33904393

RESUMO

Many of the world's warm-blooded species are chronically infected with Toxoplasma gondii tissue cysts, including an estimated one-third of the global human population. The cellular processes that permit long-term persistence within the cyst are largely unknown for T. gondii and related coccidian parasites that impact human and animal health. Herein, we show that genetic ablation of TgATG9 substantially reduces canonical autophagy and compromises bradyzoite viability. Transmission electron microscopy revealed numerous structural abnormalities occurring in ∆atg9 bradyzoites. Intriguingly, abnormal mitochondrial networks were observed in TgATG9-deficient bradyzoites, some of which contained numerous different cytoplasmic components and organelles. ∆atg9 bradyzoite fitness was drastically compromised in vitro and in mice, with very few brain cysts identified in mice 5 weeks post-infection. Taken together, our data suggests that TgATG9, and by extension autophagy, is critical for cellular homeostasis in bradyzoites and is necessary for long-term persistence within the cyst of this coccidian parasite.


Assuntos
Autofagia , Encéfalo/parasitologia , Proteínas de Membrana/metabolismo , Proteínas de Protozoários/metabolismo , Toxoplasma/metabolismo , Toxoplasmose Cerebral/parasitologia , Animais , Encéfalo/patologia , Linhagem Celular , Modelos Animais de Doenças , Feminino , Interações Hospedeiro-Parasita , Humanos , Estágios do Ciclo de Vida , Proteínas de Membrana/genética , Proteínas de Membrana/ultraestrutura , Camundongos Endogâmicos CBA , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Proteínas de Protozoários/genética , Proteínas de Protozoários/ultraestrutura , Fatores de Tempo , Toxoplasma/genética , Toxoplasma/patogenicidade , Toxoplasma/ultraestrutura , Toxoplasmose Cerebral/patologia , Vacúolos/genética , Vacúolos/metabolismo , Vacúolos/ultraestrutura , Virulência
10.
Turkiye Parazitol Derg ; 45(1): 49-55, 2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33685069

RESUMO

Toxoplasma gondii is an intracellular protozoan parasite. Approximately 30% of the global population is infected by T. gondii. In chronically infected individuals, the parasite resides in tissue cysts, especially in the brain. There is a growing interest in the role of parasitologic agents in the causation of neuropsychological disorders. In this review, we have explained the interactions between Toxoplasma and its host, mechanisms, and consequences on neural and psychological diseases.


Assuntos
Transtornos Neurocognitivos/etiologia , Toxoplasma/patogenicidade , Toxoplasmose/complicações , Encéfalo/parasitologia , Doença Crônica , Interações Hospedeiro-Parasita , Humanos , Transtornos Neurocognitivos/parasitologia , Toxoplasmose/parasitologia , Toxoplasmose Cerebral/complicações , Toxoplasmose Cerebral/parasitologia
11.
Parasitol Int ; 81: 102280, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33401016

RESUMO

A 47-year-old man was admitted to a hospital for disturbance of consciousness. He was diagnosed with multiple hemorrhagic brain abscesses in bilateral hemispheres with human immunodeficiency virus (HIV) infection, and was transferred to our hospital for further examination and treatment. On admission, although he could respond to pain stimuli, he could not talk or communicate. His laboratory data on admission revealed CD4-positive T cell count of 67 cells/µL, and HIV1-RNA viral load of 5.6 × 105 copies/mL. Both the serum IgG Toxoplasma gondii antibody and the cerebrospinal fluid polymerase chain reaction for Toxoplasma gondii DNA were positive. He was diagnosed with cerebral toxoplasmosis and HIV infection. His level of consciousness worsened, and the number of hemorrhagic lesions had increased in both hemispheres and the left thalamus on the computed tomography scan following two weeks of antitoxoplasma therapy. These newly discovered hemorrhagic lesions revealed in the CT had been found as the high intensity signal regions of initial fluid-attenuated inversion recovery magnetic resonance imaging. After five weeks of treatment, the hemorrhagic lesions gradually improved along with the patient's consciousness. Antiretroviral therapy was initiated six weeks following antitoxoplama therapy with reassurance that immune reconstitution inflammatory syndrome did not occur. After approximately four months of antitoxoplasma therapy, the patient was discharged into a group home with residual left hemiparesis on maintenance antitoxoplasma and antiretroviral therapy. Clinicians should recognize the delay of clinical and radiological improvement for hemorrhagic cerebral toxoplasmosis and patiently continue the antitoxoplasma therapy.


Assuntos
Encéfalo/patologia , Hemorragia/patologia , Toxoplasmose Cerebral/patologia , Adulto , Encéfalo/diagnóstico por imagem , Feminino , Infecções por HIV/virologia , Hemorragia/diagnóstico por imagem , Hemorragia/parasitologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Toxoplasmose Cerebral/diagnóstico por imagem , Toxoplasmose Cerebral/parasitologia , Resultado do Tratamento
12.
J Ethnopharmacol ; 267: 113525, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33129946

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Hypericum perforatum L. has been widely used as a natural antidepressant. However, it is unknown whether it is effective in treating infection-induced neuropsychiatric disorders. AIM OF THE STUDY: In order to evaluate the effectiveness of H. perforatum against infection with neurotropic parasite Toxoplasma gondii, which has been linked to neuropsychiatric disorders, this study investigated the anti-Toxoplasma activity using in vitro models. MATERIALS AND METHODS: Dried alcoholic extracts were prepared from three Hypericum species: H. perforatum, H. erectum, and H. ascyron. H. perforatum extract was further separated by solvent-partitioning. Hyperforin and hypericin levels in the extracts and fractions were analyzed by high resolution LC-MS. Anti-Toxoplasma activities were tested in vitro, using cell lines (Vero and Raw264), murine primary mixed glia, and primary neuron-glia. Toxoplasma proliferation and stage conversion were analyzed by qPCR. Infection-induced damages to the host cells were analyzed by Sulforhodamine B cytotoxicity assay (Vero) and immunofluorescent microscopy (neurons). Infection-induced inflammatory responses in glial cells were analysed by qPCR and immunofluorescent microscopy. RESULTS: Hyperforin was identified only in H. perforatum among the three tested species, whereas hypericin was present in H. perforatum and H. erectum. H. perforatum extract and hyperforin-enriched fraction, as well as hyperforin, exhibited significant anti-Toxoplasma property as well as inhibitory activity against infection-induced inflammatory responses in glial cells. In addition, H. perforatum-derived hyperforin-enriched fraction restored neuro-supportive environment in mixed neuron-glia culture. CONCLUSIONS: H. perforatum and its major constituent hyperforin are promising anti-Toxoplasma agents that could potentially protect neurons and glial cells against infection-induced damages. Further study is warranted to establish in vivo efficacy.


Assuntos
Coccidiostáticos/farmacologia , Hypericum , Neuroglia/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Floroglucinol/análogos & derivados , Extratos Vegetais/farmacologia , Terpenos/farmacologia , Toxoplasma/efeitos dos fármacos , Toxoplasmose Cerebral/tratamento farmacológico , Animais , Chlorocebus aethiops , Coccidiostáticos/isolamento & purificação , Citocinas , Hypericum/química , Mediadores da Inflamação/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neuroglia/metabolismo , Neuroglia/parasitologia , Neuroglia/patologia , Fármacos Neuroprotetores/isolamento & purificação , Floroglucinol/isolamento & purificação , Floroglucinol/farmacologia , Extratos Vegetais/isolamento & purificação , Células RAW 264.7 , Terpenos/isolamento & purificação , Toxoplasma/crescimento & desenvolvimento , Toxoplasmose Cerebral/metabolismo , Toxoplasmose Cerebral/parasitologia , Toxoplasmose Cerebral/patologia , Células Vero
13.
BMC Infect Dis ; 20(1): 923, 2020 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-33276733

RESUMO

BACKGROUND: This study aims to evaluate specific risk factors influencing prognosis of HIV-infected patients with toxoplasma encephalitis (TE) in order to develop a prognostic risk scoring system for them. METHODS: This is a six-center retrospective study of hospitalized HIV/TE patients. Data including six-week mortality after diagnosis, baseline characteristics, clinical features, laboratory tests and radiological characteristics of eligible patients were assimilated for risk model establishing. RESULTS: In this study, the six-week mortality among 94 retrospective cases was 11.7% (11/94). Seven specific risk factors, viz. time from symptom onset to presentation, fever, dizziness, CD4+ T-cell counts, memory deficits, patchy brain lesions, and disorders of consciousness were calculated to be statistically associated with mortality. A criterion value of '9' was selected as the optimal cut-off value of the established model. The AUC of the ROC curve of this scoring model was 0.976 (p < 0.001). The sensitivity and specificity of the risk scoring model was 100.0 and 86.9%, respectively, which were 81.8 and 94.1% of this scoring model in the verification cohort, respectively. CONCLUSIONS: The developed scoring system was established with simple risk factors, which also allows expeditious implementation of accurate prognostication, and appropriate therapeutic interventions in HIV-infected patients with TE.


Assuntos
Infecções Oportunistas Relacionadas com a AIDS/epidemiologia , HIV , Encefalite Infecciosa/epidemiologia , Projetos de Pesquisa , Toxoplasma , Toxoplasmose Cerebral/epidemiologia , Infecções Oportunistas Relacionadas com a AIDS/virologia , Adulto , Comorbidade , Feminino , Humanos , Encefalite Infecciosa/mortalidade , Encefalite Infecciosa/parasitologia , Masculino , Pessoa de Meia-Idade , Prognóstico , Estudos Prospectivos , Estudos Retrospectivos , Fatores de Risco , Sensibilidade e Especificidade , Toxoplasmose Cerebral/mortalidade , Toxoplasmose Cerebral/parasitologia
14.
Nat Commun ; 11(1): 3687, 2020 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-32703941

RESUMO

Microglia, resident immune cells of the CNS, are thought to defend against infections. Toxoplasma gondii is an opportunistic infection that can cause severe neurological disease. Here we report that during T. gondii infection a strong NF-κB and inflammatory cytokine transcriptional signature is overrepresented in blood-derived macrophages versus microglia. Interestingly, IL-1α is enriched in microglia and IL-1ß in macrophages. We find that mice lacking IL-1R1 or IL-1α, but not IL-1ß, have impaired parasite control and immune cell infiltration within the brain. Further, we show that microglia, not peripheral myeloid cells, release IL-1α ex vivo. Finally, we show that ex vivo IL-1α release is gasdermin-D dependent, and that gasdermin-D and caspase-1/11 deficient mice show deficits in brain inflammation and parasite control. These results demonstrate that microglia and macrophages are differently equipped to propagate inflammation, and that in chronic T. gondii infection, microglia can release the alarmin IL-1α, promoting neuroinflammation and parasite control.


Assuntos
Interleucina-1alfa/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Microglia/imunologia , Proteínas de Ligação a Fosfato/metabolismo , Toxoplasma/imunologia , Toxoplasmose Cerebral/imunologia , Animais , Encéfalo/citologia , Encéfalo/imunologia , Encéfalo/parasitologia , Encéfalo/patologia , Células Cultivadas , Doença Crônica , Modelos Animais de Doenças , Humanos , Interleucina-1alfa/genética , Interleucina-1alfa/imunologia , Interleucina-1beta/imunologia , Interleucina-1beta/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Knockout , Microglia/metabolismo , Proteínas de Ligação a Fosfato/genética , Proteínas de Ligação a Fosfato/imunologia , Toxoplasma/isolamento & purificação , Toxoplasmose Cerebral/sangue , Toxoplasmose Cerebral/parasitologia , Toxoplasmose Cerebral/patologia
15.
Microvasc Res ; 131: 104024, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32502488

RESUMO

Congenital toxoplasmosis is a parasitic disease that occurs due vertical transmission of the protozoan Toxoplasma gondii (T. gondii) during pregnancy. The parasite crosses the placental barrier and reaches the developing brain, infecting progenitor, glial, neuronal and vascular cell types. Although the role of Radial glia (RG) neural stem cells in the development of the brain vasculature has been recently investigated, the impact of T. gondii infection in these events is not yet understood. Herein, we studied the role of T. gondii infection on RG cell function and its interaction with endothelial cells. By infecting isolated RG cultures with T. gondii tachyzoites, we observed a cytotoxic effect with reduced numbers of RG populations together with decrease neuronal and oligodendrocyte progenitor populations. Conditioned medium (CM) from RG control cultures increased ZO-1 protein levels and organization on endothelial bEnd.3 cells membranes, which was impaired by CM from infected RG, accompanied by decreased trans-endothelial electrical resistance (TEER). ELISA assays revealed reduced levels of anti-inflammatory cytokine TGF-ß1 in CM from T. gondii-infected RG cells. Treatment with recombinant TGF-ß1 concomitantly with CM from infected RG cultures led to restoration of ZO-1 staining in bEnd.3 cells. Congenital infection in Swiss Webster mice led to abnormalities in the cortical microvasculature in comparison to uninfected embryos. Our results suggest that infection of RG cells by T. gondii negatively modulates cytokine secretion, which might contribute to endothelial loss of barrier properties, thus leading to impairment of neurovascular interaction establishment.


Assuntos
Diferenciação Celular , Córtex Cerebral/irrigação sanguínea , Células Endoteliais/parasitologia , Células Ependimogliais/parasitologia , Microvasos/parasitologia , Acoplamento Neurovascular , Toxoplasma/patogenicidade , Toxoplasmose Cerebral/parasitologia , Toxoplasmose Congênita/parasitologia , Animais , Linhagem Celular , Modelos Animais de Doenças , Impedância Elétrica , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Células Ependimogliais/metabolismo , Células Ependimogliais/patologia , Camundongos Endogâmicos C57BL , Microvasos/metabolismo , Microvasos/patologia , Junções Íntimas/metabolismo , Junções Íntimas/parasitologia , Junções Íntimas/patologia , Toxoplasmose Cerebral/metabolismo , Toxoplasmose Cerebral/patologia , Toxoplasmose Congênita/metabolismo , Toxoplasmose Congênita/patologia , Fator de Crescimento Transformador beta1/metabolismo , Proteína da Zônula de Oclusão-1/metabolismo
16.
Medicine (Baltimore) ; 99(20): e20146, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32443329

RESUMO

BACKGROUND: An increased frequency of toxoplasma encephalitis, caused by Toxoplasma gondii, has been reported in AIDS patients, especially in those with CD4+ T cell counts <100 cells/µL. Several guidelines recommend the combination of pyrimethamine, sulfadiazine, and leucovorin as the preferred regimen for AIDS-associated toxoplasma encephalitis. However, it is not commonly used in China due to limited access to pyrimethamine and sulfadiazine. The synergistic sulfonamides tablet formulation is a combination of trimethoprim (TMP), sulfadiazine and sulfamethoxazole (SMX), and is readily available in China. Considering its constituent components, we hypothesize that this drug may be used as a substitute for sulfadiazine and TMP-SMX. We have therefore designed the present trial, and propose to investigate the efficacy and safety of synergistic sulfonamides combined with clindamycin for the treatment of toxoplasma encephalitis. METHODS/DESIGN: This study will be an open-labeled, multi-center, prospective, randomized, and controlled trial. A total of 200 patients will be randomized into TMP-SMX plus azithromycin group, and synergistic sulfonamides plus clindamycin group at a ratio of 1:1. All participants will be invited to participate in a 48-week follow-up schedule once enrolled. The primary outcomes will be clinical response rate and all-cause mortality at 12 weeks. The secondary outcomes will be clinical response rate and all-cause mortality at 48 weeks, and adverse events at each visit during the follow-up period. DISCUSSION: We hope that the results of this study will be able to provide reliable evidence for the efficacy and safety of synergistic sulfonamides for its use in AIDS patients with toxoplasma encephalitis. TRIAL REGISTRATION: This study was registered as one of 12 clinical trials under the name of a general project at chictr.gov on February 1, 2019, and the registration number of the general project is ChiCTR1900021195. This study is still recruiting now, and the first patient was screened on March 22, 2019.


Assuntos
Síndrome da Imunodeficiência Adquirida/tratamento farmacológico , Infecções por HIV/tratamento farmacológico , Toxoplasmose Cerebral/complicações , Infecções Oportunistas Relacionadas com a AIDS/complicações , Infecções Oportunistas Relacionadas com a AIDS/tratamento farmacológico , Infecções Oportunistas Relacionadas com a AIDS/epidemiologia , Síndrome da Imunodeficiência Adquirida/mortalidade , Adolescente , Adulto , Anti-Infecciosos/uso terapêutico , Antiprotozoários/uso terapêutico , China/epidemiologia , Clindamicina/uso terapêutico , Quimioterapia Combinada/métodos , Feminino , Infecções por HIV/mortalidade , Humanos , Leucovorina/uso terapêutico , Masculino , Estudos Prospectivos , Pirimetamina/uso terapêutico , Sulfadiazina/uso terapêutico , Sulfametoxazol/uso terapêutico , Sulfonamidas/uso terapêutico , T-Linfocitopenia Idiopática CD4-Positiva , Toxoplasma/efeitos dos fármacos , Toxoplasma/parasitologia , Toxoplasmose Cerebral/tratamento farmacológico , Toxoplasmose Cerebral/parasitologia , Combinação Trimetoprima e Sulfametoxazol/uso terapêutico , Complexo Vitamínico B/uso terapêutico
17.
PLoS One ; 15(5): e0232552, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32374791

RESUMO

Toxoplasma gondii is an obligate intracellular parasite which is capable of establishing life-long chronic infection in any mammalian host. During the intracellular life cycle, the parasite secretes an array of proteins into the parasitophorous vacuole (PV) where it resides. Specialized organelles called the dense granules secrete GRA proteins that are known to participate in nutrient acquisition, immune evasion, and host cell-cycle manipulation. Although many GRAs have been discovered which are expressed during the acute infection mediated by tachyzoites, little is known about those that participate in the chronic infection mediated by the bradyzoite form of the parasite. In this study, we sought to uncover novel bradyzoite-upregulated GRA proteins using proximity biotinylation, which we previously used to examine the secreted proteome of the tachyzoites. Using a fusion of the bradyzoite upregulated protein MAG1 to BirA* as bait and a strain with improved switch efficiency, we identified a number of novel GRA proteins which are expressed in bradyzoites. After using the CRISPR/Cas9 system to characterize these proteins by gene knockout, we focused on one of these GRAs (GRA55) and found it was important for the establishment or maintenance of cysts in the mouse brain. These findings highlight new components of the GRA proteome of the tissue-cyst life stage of T. gondii and identify potential targets that are important for maintenance of parasite persistence in vivo.


Assuntos
Proteínas de Protozoários/metabolismo , Toxoplasma/fisiologia , Animais , Biotinilação , Encéfalo/metabolismo , Encéfalo/parasitologia , Sistemas CRISPR-Cas , Feminino , Técnicas de Inativação de Genes , Genes de Protozoários , Humanos , Estágios do Ciclo de Vida , Camundongos , Camundongos Endogâmicos C57BL , Proteoma/metabolismo , Proteínas de Protozoários/genética , Toxoplasma/genética , Toxoplasma/crescimento & desenvolvimento , Toxoplasmose Animal/metabolismo , Toxoplasmose Animal/parasitologia , Toxoplasmose Cerebral/metabolismo , Toxoplasmose Cerebral/parasitologia , Vacúolos/metabolismo , Virulência
18.
Dis Model Mech ; 13(7)2020 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-32461265

RESUMO

Toxoplasma gondii is an obligate intracellular parasite capable of invading any nucleated cell. Three main clonal lineages (type I, II, III) exist and murine models have driven the understanding of general and strain-specific immune mechanisms underlying Toxoplasma infection. However, murine models are limited for studying parasite-leukocyte interactions in vivo, and discrepancies exist between cellular immune responses observed in mouse versus human cells. Here, we developed a zebrafish infection model to study the innate immune response to Toxoplasma in vivo By infecting the zebrafish hindbrain ventricle, and using high-resolution microscopy techniques coupled with computer vision-driven automated image analysis, we reveal that Toxoplasma invades brain cells and replicates inside a parasitophorous vacuole to which type I and III parasites recruit host cell mitochondria. We also show that type II and III strains maintain a higher infectious burden than type I strains. To understand how parasites are cleared in vivo, we further analyzed Toxoplasma-macrophage interactions using time-lapse microscopy and three-dimensional correlative light and electron microscopy (3D CLEM). Time-lapse microscopy revealed that macrophages are recruited to the infection site and play a key role in Toxoplasma control. High-resolution 3D CLEM revealed parasitophorous vacuole breakage in brain cells and macrophages in vivo, suggesting that cell-intrinsic mechanisms may be used to destroy the intracellular niche of tachyzoites. Together, our results demonstrate in vivo control of Toxoplasma by macrophages, and highlight the possibility that zebrafish may be further exploited as a novel model system for discoveries within the field of parasite immunity.This article has an associated First Person interview with the first author of the paper.


Assuntos
Macrófagos/parasitologia , Rombencéfalo/microbiologia , Toxoplasma/crescimento & desenvolvimento , Toxoplasmose Animal/parasitologia , Toxoplasmose Cerebral/parasitologia , Peixe-Zebra/parasitologia , Animais , Modelos Animais de Doenças , Interações Hospedeiro-Parasita , Macrófagos/imunologia , Macrófagos/ultraestrutura , Microscopia Confocal , Microscopia Eletrônica de Varredura , Microscopia de Fluorescência , Microscopia de Vídeo , Carga Parasitária , Rombencéfalo/imunologia , Rombencéfalo/ultraestrutura , Fatores de Tempo , Toxoplasma/imunologia , Toxoplasma/ultraestrutura , Toxoplasmose Animal/imunologia , Toxoplasmose Animal/patologia , Toxoplasmose Cerebral/imunologia , Toxoplasmose Cerebral/patologia
19.
Epidemiol Infect ; 148: e142, 2020 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-32364106

RESUMO

Cerebral toxoplasmosis is a leading cause of the central nervous system disorders in acquired immune deficiency syndrome. This study aimed to investigate the clinical course of cerebral toxoplasmosis in human immunodeficiency virus (HIV)-infected individuals. The study included 90 HIV-infected patients with cerebral toxoplasmosis, who underwent inpatient treatment. In case of positive enzyme immunoassay, HIV infection was confirmed with the immunoblot test. The HIV-1 ribonucleic acid level was determined using the polymerase chain reaction method. The flow cytometry was used for counting CD4 (cluster of differentiation 4 cells). Pathomorphological examination included the autopsy, gross and microscopic examination of internal organs, histological and other methods. The incidence of cerebral toxoplasmosis significantly increases at the CD4 count below 100 cells/µl, P < 0.001, and at the HIV viral load above 50 copies/ml, P < 0.05. The clinical picture of cerebral toxoplasmosis included focal symptoms, cognitive impairment, toxic syndrome, mild cerebral symptoms and a meningeal symptom. Given the absence of a specific clinical picture and the absence of abnormal laboratory and instrumental findings, the cerebral toxoplasmosis needs to be diagnosed with a number diagnostic methods combined: clinical examination, laboratory testing, immunological examination, molecular genetic testing and neuroradiological imaging.


Assuntos
Infecções Oportunistas Relacionadas com a AIDS/parasitologia , Infecções por HIV/complicações , Infecções por HIV/parasitologia , Toxoplasmose Cerebral/complicações , Toxoplasmose Cerebral/epidemiologia , Infecções Oportunistas Relacionadas com a AIDS/epidemiologia , Adulto , Feminino , Infecções por HIV/epidemiologia , Infecções por HIV/virologia , Humanos , Masculino , Federação Russa/epidemiologia , Toxoplasmose Cerebral/parasitologia , Carga Viral
20.
BMC Genomics ; 21(1): 46, 2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-31937240

RESUMO

BACKGROUND: Increasing evidence has shown that circular RNAs (circRNAs) are involved in neurodegenerative disorders, but their roles in neurological toxoplasmosis are yet to know. This study examined miRNA and circRNA expressions in mouse brain following oral infection with T. gondii Pru strain. RESULTS: Total RNA extracted from acutely infected (11 days post infection (DPI)), chronically infected (35 DPI) and uninfected mouse brain samples were subjected to genome-wide small RNA sequencing. In the acutely infected mice, 9 circRNAs and 20 miRNAs were upregulated, whereas 67 circRNAs and 28 miRNAs were downregulated. In the chronically infected mice, 2 circRNAs and 42 miRNAs were upregulated, whereas 1 circRNA and 29 miRNAs were downregulated. Gene ontology analysis predicted that the host genes that produced the dysregulated circRNAs in the acutely infected brain were primarily involved in response to stimulus and ion binding activities. Furthermore, predictive interaction networks of circRNA-miRNA and miRNA-mRNA were constructed based on genome-wide transcriptome sequencing and computational analyses, which might suggest the putative functions of miRNAs and circRNAs as a large class of post-transcriptional regulators. CONCLUSIONS: These findings will shed light on circRNA-miRNA interactions during the pathogenesis of toxoplasmosis, and they will lay solid foundation for studying the potential regulation roles of miRNAs and circRNAs in T. gondii induced pathogenesis.


Assuntos
Encéfalo/metabolismo , Encéfalo/parasitologia , MicroRNAs , RNA Circular , Toxoplasmose Cerebral/genética , Toxoplasmose Cerebral/parasitologia , Transcriptoma , Animais , Encéfalo/patologia , Biologia Computacional , Epistasia Genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Ontologia Genética , Redes Reguladoras de Genes , Camundongos , Fatores de Tempo , Toxoplasma , Toxoplasmose Animal , Toxoplasmose Cerebral/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...