Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 385
Filtrar
1.
Eur J Med Chem ; 271: 116407, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38663283

RESUMO

Xanthine oxidoreductase (XOR) and uric acid transporter 1 (URAT1) are two most widely studied targets involved in production and reabsorption of uric acid, respectively. Marketed drugs almost target XOR or URAT1, but sometimes, single agents might not achieve aim of lowering uric acid to ideal value in clinic. Thus, therapeutic strategies of combining XOR inhibitors with uricosuric drugs were proposed and implemented. Based on our initial work of virtual screening, A and B were potential hits for dual-targeted inhibitors on XOR/URAT1. By docking A/B with XOR/URAT1 respectively, compounds I1-7 were designed to get different degree of inhibition effect on XOR and URAT1, and I7 showed the best inhibitory effect on XOR (IC50 = 0.037 ± 0.001 µM) and URAT1 (IC50 = 546.70 ± 32.60 µM). Further docking research on I7 with XOR/URAT1 led to the design of compounds II with the significantly improved inhibitory activity on XOR and URAT1, such as II11 and II15. Especially, for II15, the IC50 of XOR is 0.006 ± 0.000 µM, superior to that of febuxostat (IC50 = 0.008 ± 0.000 µM), IC50 of URAT1 is 12.90 ± 2.30 µM, superior to that of benzbromarone (IC50 = 27.04 ± 2.55 µM). In acute hyperuricemia mouse model, II15 showed significant uric acid lowering effect. The results suggest that II15 had good inhibitory effect on XOR/URAT1, with the possibility for further investigation in in-vivo models of hyperuricemia.


Assuntos
Desenho de Fármacos , Inibidores Enzimáticos , Transportadores de Ânions Orgânicos , Proteínas de Transporte de Cátions Orgânicos , Piridinas , Animais , Piridinas/farmacologia , Piridinas/química , Piridinas/síntese química , Camundongos , Humanos , Relação Estrutura-Atividade , Transportadores de Ânions Orgânicos/antagonistas & inibidores , Transportadores de Ânions Orgânicos/metabolismo , Proteínas de Transporte de Cátions Orgânicos/antagonistas & inibidores , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Estrutura Molecular , Simulação de Acoplamento Molecular , Xantina Desidrogenase/antagonistas & inibidores , Xantina Desidrogenase/metabolismo , Relação Dose-Resposta a Droga , Hiperuricemia/tratamento farmacológico , Hiperuricemia/metabolismo , Masculino , Ácido Úrico/metabolismo
2.
Mediators Inflamm ; 2023: 4926474, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37124063

RESUMO

Background: Solute carrier organic anion transporter family member 4A1 (SLCO4A1), a member of solute carrier organic anion family, is a key gene regulating bile metabolism, organic anion transport, and ABC transport. However, the association of SLCO4A1 with prognosis and tumor immune infiltration in colon adenocarcinoma (COAD) remains indistinct. Methods: Firstly, we explored the expression level of SLCO4A1 in COAD via GEPIA, Oncomine, and UALCAN databases. Secondly, we used the Kaplan-Meier plotter and PrognoScan databases to investigate the effect of SLCO4A1 on prognosis in COAD patients. In addition, the correlation between SLCO4A1 and tumor immune infiltration was studied by using TIMER and TISIDB databases. Results: Our results showed that SLCO4A1 was overexpressed in COAD tissues. At the same time, our study showed that high expression of SLCO4A1 was associated with poor overall survival, disease-free survival, and disease-specific survival in COAD patients. The expression level of SLCO4A1 was negatively linked to the infiltrating levels of B cells, CD8+ T cells, and dendritic cells in COAD. Moreover, the expression of SLCO4A1 was significantly correlated with numerous immune markers in COAD. Conclusions: These results indicated that SLCO4A1 could be associated with the prognosis of COAD patients and the levels of tumor immune infiltration. Our study suggested that SLCO4A1 could be a valuable biomarker for evaluating prognosis and tumor immune infiltration in COAD patients.


Assuntos
Neoplasias do Colo , Transportadores de Ânions Orgânicos , Humanos , Transportadores de Ânions Orgânicos/antagonistas & inibidores , Transportadores de Ânions Orgânicos/genética , Transportadores de Ânions Orgânicos/metabolismo , Neoplasias do Colo/imunologia , Neoplasias do Colo/patologia , Neoplasias do Colo/terapia , Regulação Neoplásica da Expressão Gênica , Biomarcadores , Análise de Sobrevida , Linfócitos do Interstício Tumoral/imunologia
3.
Clin Pharmacol Ther ; 112(3): 653-664, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35490380

RESUMO

Probenecid is used to treat gout and hyperuricemia as well as increase plasma levels of antiviral drugs and antibiotics. In vivo, probenecid mainly inhibits the renal SLC22 organic anion transporters OAT1 (SLC22A6), OAT3 (SLC22A8), and URAT1 (SLC22A12). To understand the endogenous role of these transporters in humans, we administered probenecid to 20 healthy participants and metabolically profiled the plasma and urine before and after dosage. Hundreds of metabolites were significantly altered, indicating numerous drug-metabolite interactions. We focused on potential OAT1 substrates by identifying 97 metabolites that were significantly elevated in the plasma and decreased in the urine, indicating OAT-mediated clearance. These included signaling molecules, antioxidants, and gut microbiome products. In contrast, urate was the only metabolite significantly decreased in the plasma and elevated in the urine, consistent with an effect on renal reuptake by URAT1. Additional support comes from metabolomics analyses of our Oat1 and Oat3 knockout mice, where over 50% of the metabolites that were likely OAT substrates in humans were elevated in the serum of the mice. Fifteen of these compounds were elevated in both knockout mice, whereas six were exclusive to the Oat1 knockout and 4 to the Oat3 knockout. These may be endogenous biomarkers of OAT function. We also propose a probenecid stress test to evaluate kidney proximal tubule organic anion transport function in kidney disease. Consistent with the Remote Sensing and Signaling Theory, the profound changes in metabolite levels following probenecid treatment support the view that SLC22 transporters are hubs in the regulation of systemic human metabolism.


Assuntos
Transportadores de Ânions Orgânicos , Proteínas de Transporte de Cátions Orgânicos , Animais , Ânions/metabolismo , Ânions/farmacologia , Humanos , Rim/metabolismo , Camundongos , Camundongos Knockout , Proteína 1 Transportadora de Ânions Orgânicos/antagonistas & inibidores , Proteína 1 Transportadora de Ânions Orgânicos/metabolismo , Transportadores de Ânions Orgânicos/antagonistas & inibidores , Transportadores de Ânions Orgânicos/metabolismo , Transportadores de Ânions Orgânicos Sódio-Independentes/antagonistas & inibidores , Transportadores de Ânions Orgânicos Sódio-Independentes/metabolismo , Proteínas de Transporte de Cátions Orgânicos/antagonistas & inibidores , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Probenecid/farmacologia
4.
Eur J Med Chem ; 229: 114092, 2022 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-34998055

RESUMO

Verinurad (RDEA3170) is a selective URAT1 inhibitor under investigation for the treatment of gout and hyperuricemia. In an effort to further improve the pharmacodynamics/pharmacokinetics of verinurad and to increase the structural diversity, we designed novel verinurad analogs by introducing a linker (e.g. aminomethyl, amino or oxygen) between the naphthalene and the pyridine ring to increase the flexibility. These compounds were synthesized and tested for their in vitro URAT1-inhibitory activity. Most compounds exhibited potent inhibitory activities against URAT1 with IC50 values ranging from 0.24 µM to 16.35 µM. Among them, compound KPH2f exhibited the highest URAT1-inhibitory activity with IC50 of 0.24 µM, comparable to that of verinurad (IC50 = 0.17 µM). KPH2f also inhibited GLUT9 with an IC50 value of 9.37 ± 7.10 µM, indicating the dual URAT1/GLUT9 targeting capability. In addition, KPH2f showed little effects on OAT1 and ABCG2, and thus was unlikely to cause OAT1/ABCG2-mediated drug-drug interactions and/or to neutralize the uricosuric effects of URAT1/GLUT9 inhibitors. Importantly, KPH2f (10 mg/kg) was equally effective in reducing serum uric acid levels and exhibited higher uricosuric effects in a mice hyperuricemia model, as compared to verinurad (10 mg/kg). Furthermore, KPH2f demonstrated favorable pharmacokinetic properties with an oral bioavailability of 30.13%, clearly better than that of verinurad (21.47%). Moreover, KPH2f presented benign safety profiles without causing hERG toxicity, cytotoxicity in vitro (lower than verinurad), and renal damage in vivo. Collectively, these results suggest that KPH2f represents a novel, safe and effective dual URAT1/GLUT9 inhibitor with improved druggabilities and is worthy of further investigation as an anti-hyperuricemic drug candidate.


Assuntos
Proteínas Facilitadoras de Transporte de Glucose/antagonistas & inibidores , Hiperuricemia/tratamento farmacológico , Naftalenos/química , Transportadores de Ânions Orgânicos/antagonistas & inibidores , Proteínas de Transporte de Cátions Orgânicos/antagonistas & inibidores , Propionatos/química , Piridinas/química , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Humanos , Rim , Naftalenos/toxicidade , Proteína 1 Transportadora de Ânions Orgânicos/metabolismo , Propionatos/toxicidade , Piridinas/toxicidade , Ácido Úrico/sangue
5.
Biochem Pharmacol ; 196: 114731, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34407453

RESUMO

Cholesterol esterification proteins Sterol-O acyltransferases (SOAT) 1 and 2 are emerging prognostic markers in many cancers. These enzymes utilise fatty acids conjugated to coenzyme A to esterify cholesterol. Cholesterol esterification is tightly regulated and enables formation of lipid droplets that act as storage organelles for lipid soluble vitamins and minerals, and as cholesterol reservoirs. In cancer, this provides rapid access to cholesterol to maintain continual synthesis of the plasma membrane. In this systematic review and meta-analysis, we summarise the current depth of understanding of the role of this metabolic pathway in pan-cancer development. A systematic search of PubMed, Scopus, Web of Science, and Cochrane Library for preclinical studies identified eight studies where cholesteryl ester concentrations were compared between tumour and adjacent-normal tissue, and 24 studies where cholesterol esterification was blocked by pharmacological or genetic approaches. Tumour tissue had a significantly greater concentration of cholesteryl esters than non-tumour tissue (p < 0.0001). Pharmacological or genetic inhibition of SOAT was associated with significantly smaller tumours of all types (p ≤ 0.002). SOAT inhibition increased tumour apoptosis (p = 0.007), CD8 + lymphocyte infiltration and cytotoxicity (p ≤ 0.05), and reduced proliferation (p = 0.0003) and metastasis (p < 0.0001). Significant risk of publication bias was found and may have contributed to a 32% overestimation of the meta-analysed effect size. Avasimibe, the most frequently used SOAT inhibitor, was effective at doses equivalent to those previously reported to be safe and tolerable in humans. This work indicates that SOAT inhibition should be explored in clinical trials as an adjunct to existing anti-neoplastic agents.


Assuntos
Anticolesterolemiantes/administração & dosagem , Colesterol/genética , Colesterol/metabolismo , Transportadores de Ânions Orgânicos/genética , Transportadores de Ânions Orgânicos/metabolismo , Carga Tumoral/efeitos dos fármacos , Animais , Antineoplásicos/administração & dosagem , Ensaios Clínicos como Assunto/métodos , Esterificação/efeitos dos fármacos , Esterificação/fisiologia , Humanos , Transportadores de Ânions Orgânicos/antagonistas & inibidores , Carga Tumoral/fisiologia , Ureia/administração & dosagem , Ureia/análogos & derivados , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
6.
Acta Pharmacol Sin ; 43(1): 121-132, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33767379

RESUMO

Urate transporter 1 (URAT1) and glucose transporter 9 (GLUT9) are important targets for the development of uric acid-lowering drugs. We previously showed that the flexible linkers of URAT1 inhibitors could enhance their potency. In this study we designed and synthesized CDER167, a novel RDEA3710 analogue, by introducing a linker (methylene) between the naphthalene and pyridine rings to increase flexibility, and characterized its pharmacological and pharmacokinetics properties in vitro and in vivo. We showed that CDER167 exerted dual-target inhibitory effects on both URAT1 and GLUT9: CDER167 concentration-dependently inhibited the uptake of [14C]-uric acid in URAT1-expressing HEK293 cells with an IC50 value of 2.08 ± 0.31 µM, which was similar to that of RDEA3170 (its IC50 value was 1.47 ± 0.23 µM). Using site-directed mutagenesis, we demonstrated that CDER167 might interact with URAT1 at S35 and F365. In GLUT9-expressing HEK293T cells, CDER167 concentration-dependently inhibited GLUT9 with an IC50 value of 91.55 ± 15.28 µM, whereas RDEA3170 at 100 µM had no effect on GLUT9. In potassium oxonate-induced hyperuricemic mice, oral administration of CDER167 (10 mg·kg-1 · d-1) for 7 days was more effective in lowering uric acid in blood and significantly promoted uric acid excretion in urine as compared with RDEA3170 (20 mg·kg-1 · d-1) administered. The animal experiment proved the safety of CDER167. In addition, CDER167 displayed better bioavailability than RDEA3170, better metabolic stability and no hERG toxicity at 100 µM. These results suggest that CDER167 deserves further investigation as a candidate antihyperuricemic drug targeting URAT1 and GLUT9.


Assuntos
Proteínas Facilitadoras de Transporte de Glucose , Hiperuricemia , Transportadores de Ânions Orgânicos , Proteínas de Transporte de Cátions Orgânicos , Humanos , Células Cultivadas , Relação Dose-Resposta a Droga , Proteínas Facilitadoras de Transporte de Glucose/antagonistas & inibidores , Proteínas Facilitadoras de Transporte de Glucose/genética , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Células HEK293 , Hiperuricemia/tratamento farmacológico , Hiperuricemia/metabolismo , Estrutura Molecular , Transportadores de Ânions Orgânicos/antagonistas & inibidores , Transportadores de Ânions Orgânicos/genética , Transportadores de Ânions Orgânicos/metabolismo , Proteínas de Transporte de Cátions Orgânicos/antagonistas & inibidores , Proteínas de Transporte de Cátions Orgânicos/genética , Proteínas de Transporte de Cátions Orgânicos/metabolismo , RNA Mensageiro/antagonistas & inibidores , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Relação Estrutura-Atividade
7.
Bioorg Chem ; 117: 105444, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34775203

RESUMO

As a promising therapeutic target for gout, hURAT1 has attracted increasing attention. In this work, we identified a novel scaffold of hURAT1 inhibitors from a personal natural product database of verified herb-treated gout. First, we constructed more than 800 natural compounds from Chinese medicine that were verified to treat gout. Following the application of both shape-based and docking-based virtual screening (VS) methods, taking into account the shape similarity and flexibility of the target, we identified isopentenyl dihydroflavones that might inhibit hURAT1. Specifically, 9 compounds with commercial availability were tested with biochemical assays for the inhibition of 14C-uric acid uptake in high-expression hURAT1 cells (HEK293-hURAT1), and their structure-activity relationship was evaluated. As a result, 8-isopentenyl dihydroflavone was identified as a novel scaffold of hURAT1 inhibitors since isobavachin (DHF3) inhibited hURAT1 with an IC50 value of 0.39 ± 0.17 µM, which was comparable to verinurad with an IC50 value of 0.32 ± 0.23 µM. Remarkably, isobavachin also displayed an eminent effect in the decline of serum uric acid in vivo experiments. Taken together, isobavachin is a promising candidate for the treatment of hyperuricemia and gout.


Assuntos
Produtos Biológicos/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Flavonas/farmacologia , Hiperuricemia/tratamento farmacológico , Simulação de Acoplamento Molecular , Transportadores de Ânions Orgânicos/antagonistas & inibidores , Proteínas de Transporte de Cátions Orgânicos/antagonistas & inibidores , Animais , Produtos Biológicos/química , Relação Dose-Resposta a Droga , Medicamentos de Ervas Chinesas/química , Flavonas/química , Hiperuricemia/metabolismo , Masculino , Medicina Tradicional Chinesa , Camundongos , Camundongos Endogâmicos , Estrutura Molecular , Transportadores de Ânions Orgânicos/metabolismo , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Relação Estrutura-Atividade
8.
Pharmacol Res Perspect ; 9(5): e00877, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34619012

RESUMO

Epyrifenacil is a novel herbicide that acts as an inhibitor of protoporphyrinogen oxidase (PPO) and produces hepatotoxicity in rodents by inhibiting PPO. Our previous research revealed that the causal substance of hepatotoxicity is S-3100-CA, a major metabolite of epyrifenacil, and that human hepatocyte uptake of S-3100-CA was significantly lower than rodent one, suggesting less relevant to hepatotoxicity in humans. To clarify the species difference in the uptake of S-3100-CA, we focused on organic anion transporting polypeptides (OATPs) and carried out an uptake assay using human, rat, and mouse OATP hepatic isoforms-expressing 293FT cells. As a result, all the examined OATPs were found to contribute to the S-3100-CA uptake, suggesting that the species difference was not due to the differences in selectivity toward OATP isoforms. When [14 C]epyrifenacil was administered to mice, the liver concentration of S-3100-CA was higher in males than in females. Furthermore, when [14 C]epyrifenacil was administered with OATP inhibitors, the liver/plasma ratio of S-3100-CA was significantly decreased by rifampicin, an Oatp1a1/Oatp1a4 inhibitor in mice, but not by digoxin, an Oatp1a4-specific inhibitor. This result indicates that Oatp1a1, the predominant transporter in male mice, is the main contributor to the hepatic transport of S-3100-CA, and consequently to the gender difference. Moreover, we conclude that the species difference in the hepatic uptake of S-3100-CA observed in our previous research is not due to differences in the selectivity toward OATP isoforms but rather to the significantly higher expression of OATPs which mediate uptake of S-3100-CA in rodents than in humans.


Assuntos
Herbicidas , Fígado , Proteínas de Transporte de Cátions Orgânicos , Pirimidinas , Animais , Feminino , Humanos , Masculino , Camundongos , Ratos , Ácidos Carboxílicos/metabolismo , Digoxina/farmacologia , Herbicidas/metabolismo , Fígado/metabolismo , Transportadores de Ânions Orgânicos/antagonistas & inibidores , Transportadores de Ânions Orgânicos/metabolismo , Transportadores de Ânions Orgânicos Sódio-Independentes , Proteínas de Transporte de Cátions Orgânicos/antagonistas & inibidores , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Protoporfirinogênio Oxidase/antagonistas & inibidores , Piridinas/metabolismo , Pirimidinas/metabolismo , Rifampina/farmacologia
9.
Cancer Chemother Pharmacol ; 88(6): 941-952, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34477937

RESUMO

INTRODUCTION: Fedratinib, an oral, selective Janus kinase 2 inhibitor, has been shown to inhibit P-glycoprotein (P-gp), breast cancer resistance protein (BCRP), organic anion transporting polypeptide (OATP) 1B1, OATP1B3, organic cation transporter (OCT) 2, and multidrug and toxin extrusion (MATE) 1 and MATE2-K in vitro. The objective of this study was to evaluate the influence of fedratinib on the pharmacokinetics (PK) of digoxin (P-gp substrate), rosuvastatin (OATP1B1/1B3 and BCRP substrate), and metformin (OCT2 and MATE1/2-K substrate). METHODS: In this nonrandomized, fixed-sequence, open-label study, 24 healthy adult participants received single oral doses of digoxin 0.25 mg, rosuvastatin 10 mg, and metformin 1000 mg administered as a drug cocktail (day 1, period 1). After a 6-day washout, participants received oral fedratinib 600 mg 1 h before the cocktail on day 7 (period 2). An oral glucose tolerance test (OGTT) was performed to determine possible influences of fedratinib on the antihyperglycemic effect of metformin. RESULTS: Plasma exposure to the three probe drugs was generally comparable in the presence or absence of fedratinib. Reduced metformin renal clearance by 36% and slightly higher plasma glucose levels after OGTT were observed in the presence of fedratinib. Single oral doses of the cocktail ± fedratinib were generally well tolerated. CONCLUSIONS: These results suggest that fedratinib has minimal impact on the exposure of P-gp, BCRP, OATP1B1/1B3, OCT2, and MATE1/2-K substrates. Since renal clearance of metformin was decreased in the presence of fedratinib, caution should be exercised in using coadministered drugs that are renally excreted via OCT2 and MATEs. TRIAL REGISTRATION: Clinicaltrials.gov NCT04231435 on January 18, 2020.


Assuntos
Digoxina/farmacocinética , Interações Medicamentosas , Metformina/farmacocinética , Pirrolidinas/farmacologia , Rosuvastatina Cálcica/farmacocinética , Sulfonamidas/farmacologia , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Administração Oral , Adolescente , Adulto , Idoso , Anticolesterolemiantes/farmacocinética , Transporte Biológico , Cardiotônicos/farmacocinética , Estudos de Casos e Controles , Feminino , Seguimentos , Voluntários Saudáveis , Humanos , Hipoglicemiantes/farmacocinética , Masculino , Pessoa de Meia-Idade , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/metabolismo , Ensaios Clínicos Controlados não Aleatórios como Assunto , Transportadores de Ânions Orgânicos/antagonistas & inibidores , Transportadores de Ânions Orgânicos/metabolismo , Distribuição Tecidual , Adulto Jovem
10.
Toxicol Appl Pharmacol ; 429: 115704, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34474082

RESUMO

Organic anion-transporting polypeptide 2B1 (OATP2B1) is a multispecific transporter mediating the cellular uptake of steroids and numerous drugs. OATP2B1 is abundantly expressed in the intestine and is also present in various tumors. Increased steroid hormone uptake by OATP2B1 has been suggested to promote progression of hormone dependent tumors. 13α-estrones are effective inhibitors of endogenous estrogen formation and are potential candidates to inhibit proliferation of hormone dependent cancers. Recently, we have identified a variety of 13α/ß-estrone-based inhibitors of OATP2B1. However, the nature of this interaction, whether these inhibitors are potential transported substrates of OATP2B1 and hence may be enriched in OATP2B1-overexpressing cells, has not yet been investigated. In the current study we explored the antiproliferative effect of the most effective OATP2B1 inhibitor 13α/ß-estrones in control and OATP2B1-overexpressing A431 carcinoma cells. We found an increased antiproliferative effect of 3-O-benzyl 13α/ß-estrones in both mock transfected and OATP2B1-overexpressing cells. However, C-2 halogenated 13α-estrones had a selective OATP2B1-mediated cell growth inhibitory effect. In order to demonstrate that increased sensitization can be attributed to OATP2B1-mediated cellular uptake, tritium labeled 2-bromo-13α-estrone was synthesized for direct transport measurements. These experiments revealed increased accumulation of [3H]2-bromo-13α-estrone due to OATP2B1 function. Our results indicate that C-2 halogenated 13α-estrones are good candidates in the design of anti-cancer drugs targeting OATP2B1.


Assuntos
Antineoplásicos/farmacologia , Carcinoma de Células Escamosas/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Estrona/farmacologia , Moduladores de Transporte de Membrana/farmacologia , Transportadores de Ânions Orgânicos/antagonistas & inibidores , Neoplasias Cutâneas/tratamento farmacológico , Antineoplásicos/metabolismo , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Estrona/análogos & derivados , Estrona/metabolismo , Humanos , Moduladores de Transporte de Membrana/metabolismo , Transportadores de Ânions Orgânicos/genética , Transportadores de Ânions Orgânicos/metabolismo , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia
11.
Pharmacol Res ; 172: 105850, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34450308

RESUMO

BACKGROUND AND PURPOSE: Pralsetinib is an FDA-approved oral small-molecule inhibitor for treatment of rearranged during transfection (RET) proto-oncogene fusion-positive non-small cell lung cancer. We investigated how the efflux transporters ABCB1 and ABCG2, the SLCO1A/1B uptake transporters and the drug-metabolizing enzyme CYP3A influence pralsetinib pharmacokinetics. EXPERIMENTAL APPROACH: In vitro, transepithelial pralsetinib transport was assessed. In vivo, pralsetinib (10 mg/kg) was administered orally to relevant genetically modified mouse models. Pralsetinib concentrations in cell medium, plasma samples and organ homogenates were measured using liquid chromatography-tandem mass spectrometry. KEY RESULTS: Pralsetinib was efficiently transported by human (h)ABCB1 and mouse (m)Abcg2, but not hACBG2. In vivo, mAbcb1a/1b markedly and mAbcg2 slightly limited pralsetinib brain penetration (6.3-and 1.8-fold, respectively). Testis distribution showed similar results. Abcb1a/1b;Abcg2-/- mice showed 1.5-fold higher plasma exposure, 23-fold increased brain penetration, and 4-fold reduced recovery of pralsetinib in the small intestinal content. mSlco1a/1b deficiency did not affect pralsetinib oral availability or tissue exposure. Oral coadministration of the ABCB1/ABCG2 inhibitor elacridar boosted pralsetinib plasma exposure (1.3-fold) and brain penetration (19.6-fold) in wild-type mice. Additionally, pralsetinib was a modest substrate of mCYP3A, but not of hCYP3A4, which did not noticeably restrict the oral availability or tissue distribution of pralsetinib. CONCLUSIONS AND IMPLICATIONS: SLCO1A/1B and CYP3A4 are unlikely to affect the pharmacokinetics of pralsetinib, but ABCG2 and especially ABCB1 markedly limit its brain and testis penetration, as well as oral availability. These effects are mostly reversed by oral coadministration of the ABCB1/ABCG2 inhibitor elacridar. These insights may be useful in the further clinical development of pralsetinib.


Assuntos
Antineoplásicos/farmacocinética , Transportadores de Ânions Orgânicos/metabolismo , Inibidores de Proteínas Quinases/farmacocinética , Proteínas Proto-Oncogênicas c-ret/antagonistas & inibidores , Pirazóis/farmacocinética , Piridinas/farmacocinética , Pirimidinas/farmacocinética , Administração Oral , Animais , Antineoplásicos/sangue , Disponibilidade Biológica , Encéfalo/metabolismo , Citocromo P-450 CYP3A/genética , Feminino , Masculino , Camundongos Knockout , Transportadores de Ânions Orgânicos/antagonistas & inibidores , Transportadores de Ânions Orgânicos/genética , Inibidores de Proteínas Quinases/sangue , Pirazóis/sangue , Piridinas/sangue , Pirimidinas/sangue , Testículo/metabolismo
12.
Drug Des Devel Ther ; 15: 3241-3254, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34349501

RESUMO

PURPOSE: Berberine (BBR) is an active component of Phellodendri Cortex (PC), which is a traditional Chinese medicine that has been prescribed clinically for hyperuricemia (HUA) for hundreds of years. Many studies reported the anti-inflammatory and nephroprotective properties of BBR and PC; however, the therapeutic effects of BBR on HUA have not been explored. This study aims to investigate the efficacy and mechanism of BBR for treating HUA. METHODS: The mechanism of BBR in the treatment of HUA were predicted by network pharmacology. A mouse model of HUA established by potassium oxonate and hypoxanthine was used to verify the prediction. The levels of serum uric acid (UA), urea nitrogen (BUN) and creatinine (CRE) were determined by biochemical test kits. Hematoxylin and eosin staining of kidney tissues was used to observe the kidney damage. ELISA kits were applied to detect the levels of interleukin (IL)-1ß and IL-18 in serum and kidney tissues. Quantitative real-time PCR and Western blotting were adopted to analyze the expression of NLRP3, ASC, Caspase1, IL-1ß and URAT1. The expressions of URAT1 in the kidney tubules were visualized by immunohistochemical staining. Molecular docking was used to assess the interaction between URAT1 and BBR. RESULTS: The network pharmacology screened out 82 genes and several inflammation-related signaling pathways related to the anti-hyperuricemia effect of BBR. In the in vivo experiment, BBR substantially decreased the level of UA, BUN and CRE, and alleviated the kidney damage in mice with HUA. BBR reduced IL-1ß and IL-18, and downregulated expressions of NLRP3, ASC, Caspase1 and IL-1ß. BBR also inhibited expression of URAT1 and exhibited strong affinity with this target in silico docking. CONCLUSION: BBR exerts anti-HUA and nephroprotective effects via inhibiting activation of NLRP3 inflammasome and correcting the aberrant expression of URAT1 in kidney. BBR might be a novel therapeutic agent for treating HUA.


Assuntos
Berberina/uso terapêutico , Hiperuricemia/tratamento farmacológico , Nefropatias/tratamento farmacológico , Farmacologia em Rede , Animais , Berberina/farmacologia , Modelos Animais de Doenças , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/patologia , Masculino , Camundongos , Simulação de Acoplamento Molecular , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Transportadores de Ânions Orgânicos/análise , Transportadores de Ânions Orgânicos/antagonistas & inibidores , Ácido Úrico/sangue
13.
Mol Pharm ; 18(8): 2997-3009, 2021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-34283621

RESUMO

Physiologically based pharmacokinetic (PBPK) models are increasingly used in drug development to simulate changes in both systemic and tissue exposures that arise as a result of changes in enzyme and/or transporter activity. Verification of these model-based simulations of tissue exposure is challenging in the case of transporter-mediated drug-drug interactions (tDDI), in particular as these may lead to differential effects on substrate exposure in plasma and tissues/organs of interest. Gadoxetate, a promising magnetic resonance imaging (MRI) contrast agent, is a substrate of organic-anion-transporting polypeptide 1B1 (OATP1B1) and multidrug resistance-associated protein 2 (MRP2). In this study, we developed a gadoxetate PBPK model and explored the use of liver-imaging data to achieve and refine in vitro-in vivo extrapolation (IVIVE) of gadoxetate hepatic transporter kinetic data. In addition, PBPK modeling was used to investigate gadoxetate hepatic tDDI with rifampicin i.v. 10 mg/kg. In vivo dynamic contrast-enhanced (DCE) MRI data of gadoxetate in rat blood, spleen, and liver were used in this analysis. Gadoxetate in vitro uptake kinetic data were generated in plated rat hepatocytes. Mean (%CV) in vitro hepatocyte uptake unbound Michaelis-Menten constant (Km,u) of gadoxetate was 106 µM (17%) (n = 4 rats), and active saturable uptake accounted for 94% of total uptake into hepatocytes. PBPK-IVIVE of these data (bottom-up approach) captured reasonably systemic exposure, but underestimated the in vivo gadoxetate DCE-MRI profiles and elimination from the liver. Therefore, in vivo rat DCE-MRI liver data were subsequently used to refine gadoxetate transporter kinetic parameters in the PBPK model (top-down approach). Active uptake into the hepatocytes refined by the liver-imaging data was one order of magnitude higher than the one predicted by the IVIVE approach. Finally, the PBPK model was fitted to the gadoxetate DCE-MRI data (blood, spleen, and liver) obtained with and without coadministered rifampicin. Rifampicin was estimated to inhibit active uptake transport of gadoxetate into the liver by 96%. The current analysis highlighted the importance of gadoxetate liver data for PBPK model refinement, which was not feasible when using the blood data alone, as is common in PBPK modeling applications. The results of our study demonstrate the utility of organ-imaging data in evaluating and refining PBPK transporter IVIVE to support the subsequent model use for quantitative evaluation of hepatic tDDI.


Assuntos
Meios de Contraste/farmacocinética , Gadolínio DTPA/farmacocinética , Fígado/diagnóstico por imagem , Fígado/metabolismo , Imageamento por Ressonância Magnética/métodos , Rifampina/farmacocinética , Animais , Transporte Biológico Ativo/efeitos dos fármacos , Biomarcadores/metabolismo , Células Cultivadas , Meios de Contraste/administração & dosagem , Meios de Contraste/metabolismo , Interações Medicamentosas , Gadolínio DTPA/administração & dosagem , Gadolínio DTPA/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Masculino , Modelos Animais , Transportadores de Ânions Orgânicos/antagonistas & inibidores , Transportadores de Ânions Orgânicos/metabolismo , Ratos , Rifampina/administração & dosagem , Rifampina/metabolismo
14.
CPT Pharmacometrics Syst Pharmacol ; 10(9): 1018-1031, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34164937

RESUMO

Quantitative assessment of drug-drug interactions (DDIs) involving breast cancer resistance protein (BCRP) inhibition is challenged by overlapping substrate/inhibitor specificity. This study used physiologically-based pharmacokinetic (PBPK) modeling to delineate the effects of inhibitor drugs on BCRP- and organic anion transporting polypeptide (OATP)1B-mediated disposition of rosuvastatin, which is a recommended BCRP clinical probe. Initial static model analysis using in vitro inhibition data suggested BCRP/OATP1B DDI risk while considering regulatory cutoff criteria for a majority of inhibitors assessed (25 of 27), which increased rosuvastatin plasma exposure to varying degree (~ 0-600%). However, rosuvastatin area under plasma concentration-time curve (AUC) was minimally impacted by BCRP inhibitors with calculated G-value (= gut concentration/inhibition potency) below 100. A comprehensive PBPK model accounting for intestinal (OATP2B1 and BCRP), hepatic (OATP1B, BCRP, and MRP4), and renal (OAT3) transport mechanisms was developed for rosuvastatin. Adopting in vitro inhibition data, rosuvastatin plasma AUC changes were predicted within 25% error for 9 of 12 inhibitors evaluated via PBPK modeling. This study illustrates the adequacy and utility of a mechanistic model-informed approach in quantitatively assessing BCRP-mediated DDIs.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Modelos Biológicos , Proteínas de Neoplasias/metabolismo , Transportadores de Ânions Orgânicos/metabolismo , Rosuvastatina Cálcica/farmacocinética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Adolescente , Adulto , Idoso , Área Sob a Curva , Interações Medicamentosas , Feminino , Células HEK293 , Humanos , Intestinos/metabolismo , Rim/metabolismo , Fígado/metabolismo , Masculino , Pessoa de Meia-Idade , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Proteínas de Neoplasias/antagonistas & inibidores , Transportadores de Ânions Orgânicos/antagonistas & inibidores , Adulto Jovem
15.
Food Funct ; 12(18): 8274-8287, 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34180933

RESUMO

Accumulating evidence has shown that chronic injection of D-galactose (D-gal) can mimic natural ageing and induce liver and kidney injury. Previous studies showed that D-gal increased uric acid (UA) levels in mice. The increase in UA levels caused inflammation, accelerated oxidative stress, and aggravated liver and kidney injury. Oxidative stress and inflammation play vital roles in the ageing process. Therefore, reducing the levels of UA in ageing mice improved liver and kidney injury. Glucose transporter 9 (GLUT9) is responsible for the reabsorption of UA in the body, and its inhibition helps downregulate UA levels. The present study investigated the UA-lowering activity of the GLUT9 inhibitor resveratrol (RSV) using the patch clamping technique established in our laboratory in vitro. This research is the first study to demonstrate that RSV effectively inhibits UA uptake via GLUT9 (IC50 = 68.77 µM) in vitro. An in vivo study was also performed to investigate the possible protective effect of RSV on D-gal-induced liver and kidney injury. RSV significantly reduced serum UA levels via the downregulation of GLUT9 mRNA and protein expression and promoted the excretion of excess UA through urine. Biochemical analysis showed that RSV significantly downregulated abnormal increases in serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), blood urea nitrogen (BUN) and creatinine (CRE) caused by long-term D-gal treatment, which effectively improved pathological damage, increased superoxide dismutase (SOD) activity and decreased the content of malondialdehyde (MDA) in the liver and kidneys. RSV also downregulated the expression of the inflammatory cytokines, interleukin IL-6, IL-1ß and tumor necrosis factor (TNF)-α in the liver and kidneys of ageing mice. Our findings provide new insights into the treatment strategies for ageing-induced liver and kidney injury and reveal a new mechanism of RSV-induced reduction in UA levels in ageing individuals.


Assuntos
Envelhecimento/efeitos dos fármacos , Galactose/toxicidade , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Resveratrol/farmacologia , Ácido Úrico/metabolismo , Animais , Sobrevivência Celular/efeitos dos fármacos , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Células Epiteliais/efeitos dos fármacos , Feminino , Proteínas Facilitadoras de Transporte de Glucose/antagonistas & inibidores , Proteínas Facilitadoras de Transporte de Glucose/genética , Rim/efeitos dos fármacos , Túbulos Renais/citologia , Fígado/efeitos dos fármacos , Masculino , Camundongos , Estrutura Molecular , Transportadores de Ânions Orgânicos/antagonistas & inibidores , Transportadores de Ânions Orgânicos/genética , Transportadores de Ânions Orgânicos/metabolismo , Resveratrol/química
16.
Bioorg Chem ; 112: 104914, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33932771

RESUMO

Organic anion-transporting polypeptide 2B1 (OATP2B1) is a multispecific membrane transporter mediating the cellular uptake of various exo- and endobiotics, including drugs and steroid hormones. Increased uptake of steroid hormones by OATP2B1 may increase tumor proliferation. Therefore, understanding OATP2B1's substrate/inhibitor recognition and inhibition of its function, e.g., in hormone-dependent tumors, would be highly desirable. To identify the crucial structural features that correlate with OATP2B1 inhibition, here we designed modifications at four positions of the estrane skeleton. 13α- or 13ß-estrone phosphonates modified at ring A or ring D were synthesized. Hirao and Cu(I)-catalyzed azide-alkyne click reactions served in the syntheses as key steps. 13ß-Derivatives displayed outstanding OATP2B1 inhibitory action with IC50 values in the nanomolar range (41-87 nM). A BODIPY-13α-estrone conjugate was additionally synthesized, modified at C-3-O of the steroid, containing a four-carbon linker between the triazole moiety and the BODIPY core. The fluorescent conjugate displayed efficient, submicromolar OATP2B1 inhibitory potency. The newly identified inhibitors and the structure-activity relationships specified here promote our understanding about drug recognition of OATP2B1.


Assuntos
Desenho de Fármacos , Estrona/farmacologia , Transportadores de Ânions Orgânicos/antagonistas & inibidores , Organofosfonatos/farmacologia , Relação Dose-Resposta a Droga , Estrona/síntese química , Estrona/química , Humanos , Estrutura Molecular , Transportadores de Ânions Orgânicos/metabolismo , Organofosfonatos/síntese química , Organofosfonatos/química , Relação Estrutura-Atividade
17.
Clin Transl Sci ; 14(5): 1924-1934, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34058067

RESUMO

The impact of organic anion-transporting polypeptide (OATP) inhibition on systemic and liver exposures of three OATP substrates was investigated in cynomolgus monkeys. A monkey physiologically-based pharmacokinetic (PBPK) model was constructed to describe the exposure changes followed by OATP functional attenuation. Rosuvastatin, bromfenac, and carotegrast were administered as a single intravenous cassette dose (0.5 mg/kg each) in monkeys with and without predosing with rifampin (RIF; 20 mg/kg) orally. The plasma exposure of rosuvastatin, bromfenac, carotegrast, and OATP biomarkers, coproporphyrin I (CP-I) and CP-III were increased 2.3, 2.1, 9.1, 5.4, and 8.8-fold, respectively, when compared to the vehicle group. The liver to plasma ratios of rosuvastatin and bromfenac were reduced but the liver concentration of the drugs remained unchanged by RIF treatment. The liver concentrations of carotegrast, CP-I, and CP-III were unchanged at 1 h but increased at 6 h in the RIF-treated group. The passive permeability, active uptake, and biliary excretion were characterized in suspended and sandwich-cultured monkey hepatocytes and then incorporated into the monkey PBPK model. As demonstrated by the PBPK model, the plasma exposure is increased through OATP inhibition while liver exposure is maintained by passive permeability driven from an elevated plasma level. Liver exposure is sensitive to the changes of metabolism and biliary clearances. The model further suggested the involvement of additional mechanisms for hepatic uptakes of rosuvastatin and bromfenac, and of the inhibition of biliary excretion for carotegrast, CP-I, and CP-III by RIF. Collectively, impaired OATP function would not reduce the liver exposure of its substrates in monkeys.


Assuntos
Benzofenonas/farmacocinética , Bromobenzenos/farmacocinética , Modelos Biológicos , Transportadores de Ânions Orgânicos/antagonistas & inibidores , Fenilalanina/análogos & derivados , Quinazolinonas/farmacocinética , Rosuvastatina Cálcica/farmacocinética , Animais , Área Sob a Curva , Benzofenonas/administração & dosagem , Bromobenzenos/administração & dosagem , Interações Medicamentosas , Eliminação Hepatobiliar , Fígado/metabolismo , Macaca fascicularis , Masculino , Modelos Animais , Transportadores de Ânions Orgânicos/metabolismo , Fenilalanina/administração & dosagem , Fenilalanina/farmacocinética , Quinazolinonas/administração & dosagem , Rosuvastatina Cálcica/administração & dosagem
18.
Anal Biochem ; 626: 114246, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-33965427

RESUMO

The urate transporter 1 (URAT1) inhibitors were considered a very promising class of uricosuric agents for the treatment of hyperuricemia and gout. In vitro activity testing of these compounds has been conducted by radio-labeling uric acid for a long time. However, relatively few offer the convenience and speed of fluorescence-based assays. Herein, we report the development of a non-radioactive cell-based method for the screening of URAT1 inhibitors using the human embryonic kidney 293T cells stably expressing human URAT1, and 6-carboxyfluorescein (6-CFL) as a substrate. The URAT1-mediated transport of 6-CFL was time dependent and saturable (Km = 239.5 µM, Vmax = 6.2 pmol/well/min, respectively). Molecules known to interact with organic anion transporters, including benzbromarone, probenecid, and lesinurad, demonstrated concentration-dependent inhibition of 6-CFL transport by URAT1. Moreover, we screened a small subset of compounds, and identified compound 4 as a promising URAT1 inhibitor. This in vitro assay may be employed to screen for novel URAT1 inhibitors, which are effective against hyperuricemia.


Assuntos
Fluoresceínas/química , Fluorescência , Ensaios de Triagem em Larga Escala/métodos , Transportadores de Ânions Orgânicos/antagonistas & inibidores , Proteínas de Transporte de Cátions Orgânicos/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Células HEK293 , Humanos
19.
Biol Pharm Bull ; 44(5): 653-658, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33952821

RESUMO

Alogliptin (ALG), an inhibitor of dipeptidylpeptidase-4, is used in the management of type 2 diabetes mellitus, and has a high absorption rate (>60-71%), despite its low lipophilicity (logP=-1.4). Here, we aimed to clarify the mechanism of its intestinal absorption. ALG uptake into Caco-2 cells was time-, temperature-, and concentration-dependent, but was not saturated at concentrations up to 10 mmol/L. The uptake was significantly inhibited by the organic anion transporting polypeptide (OATP) substrate fexofenadine and by the OATP inhibitor 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS), but was not inhibited by organic cation transporter (OCT)/organic cation/carnitine transporter (OCTN) or peptide transporter 1 (PEPT1) substrates. Grapefruit, orange, and apple juices and their constituents, which are known to strongly inhibit intestinal OATPs, significantly inhibited ALG uptake into Caco-2 cells. The pH dependence was bell-shaped, indicating the involvement of a pH-sensitive transporter. However, ALG uptake by HEK293 cells overexpressing OATP2B1, a key intestinal OATP transporter of amphiphilic drugs, was not different from that of mock cells. In a rat in vivo study, apple juice reduced systemic exposure to orally administered ALG without changing the terminal half-life. These observations suggest that intestinal absorption of ALG is carrier-mediated, and involves a fruit-juice-sensitive transporter other than OATP2B1.


Assuntos
Interações Alimento-Droga , Sucos de Frutas e Vegetais , Transportadores de Ânions Orgânicos/metabolismo , Piperidinas/farmacocinética , Uracila/análogos & derivados , Ácido 4,4'-Di-Isotiocianoestilbeno-2,2'-Dissulfônico/farmacologia , Administração Oral , Animais , Células CACO-2 , Citrus paradisi , Citrus sinensis , Diabetes Mellitus Tipo 2/tratamento farmacológico , Células HEK293 , Meia-Vida , Humanos , Absorção Intestinal , Masculino , Malus , Transportadores de Ânions Orgânicos/antagonistas & inibidores , Piperidinas/administração & dosagem , Ratos , Terfenadina/análogos & derivados , Terfenadina/farmacologia , Uracila/administração & dosagem , Uracila/farmacocinética
20.
J Pharm Pharm Sci ; 24: 227-236, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34048668

RESUMO

PURPOSE: Remdesivir and its active metabolite are predominantly eliminated via renal route; however, information regarding renal uptake transporters is limited. In the present study, the interaction of remdesivir and its nucleoside analog GS-441524 with OATP4C1 was evaluated to provide the detailed information about its renal handling. METHODS: We used HK-2 cells, a proximal tubular cell line derived from normal kidney, to confirm the transport of remdesivir and GS-441524. To assess the involvement of OATP4C1 in handling remdesivir and GS-441524, the uptake study of remdesivir and GS-441524 was performed by using OATP4C1-overexpressing Madin-Darby canine kidney II (MDCKII) cells. Moreover, we also evaluated the IC50 and Ki value of remdesivir. RESULTS: The time-dependent remdesivir uptake in HK-2 cells was observed. The results of inhibition study using OATs and OCT2 inhibitors and OATP4C1 knockdown suggested the involvement of renal drug transporter OATP4C1. Remdesivir was taken up by OATP4C1/MDCKII cells. OATP4C1-mediated uptake of remdesivir increased linearly up to 10 min and reached a steady state at 30 min. Remdesivir inhibited OATP4C1-mediated transport in a concentration-dependent manner with the IC50 and apparent Ki values of 42 ± 7.8 µM and 37 ± 6.9 µM, respectively. CONCLUSIONS: We have provided novel information about renal handling of remdesivir. Furthermore, we evaluated the potential drug interaction via OATP4C1 by calculating the Ki value of remdesivir. OATP4C1 may play a pivotal role in remdesivir therapy for COVID-19, particularly in patients with kidney injury.


Assuntos
Monofosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , Antivirais/metabolismo , Tratamento Farmacológico da COVID-19 , Furanos/metabolismo , Túbulos Renais Proximais/metabolismo , Transportadores de Ânions Orgânicos/metabolismo , Pirróis/metabolismo , Triazinas/metabolismo , Adenosina/análogos & derivados , Monofosfato de Adenosina/metabolismo , Monofosfato de Adenosina/uso terapêutico , Alanina/metabolismo , Alanina/uso terapêutico , Animais , Antivirais/uso terapêutico , COVID-19/metabolismo , Linhagem Celular , Cães , Relação Dose-Resposta a Droga , Aprovação de Drogas , Furanos/uso terapêutico , Humanos , Rim/efeitos dos fármacos , Rim/metabolismo , Túbulos Renais Proximais/efeitos dos fármacos , Células Madin Darby de Rim Canino , Transportadores de Ânions Orgânicos/antagonistas & inibidores , Pirróis/uso terapêutico , Triazinas/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...