Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 241
Filtrar
1.
J Biol Chem ; 300(4): 107137, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38447793

RESUMO

Experimental studies in flies, mice, and humans suggest a significant role of impaired axonal transport in the pathogenesis of Alzheimer's disease (AD). The mechanisms underlying these impairments in axonal transport, however, remain poorly understood. Here we report that the Swedish familial AD mutation causes a standstill of the amyloid precursor protein (APP) in the axons at the expense of its reduced anterograde transport. The standstill reflects the perturbed directionality of the axonal transport of APP, which spends significantly more time traveling in the retrograde direction. This ineffective movement is accompanied by an enhanced association of dynactin-1 with APP, which suggests that reduced anterograde transport of APP is the result of enhanced activation of the retrograde molecular motor dynein by dynactin-1. The impact of the Swedish mutation on axonal transport is not limited to the APP vesicles since it also reverses the directionality of a subset of early endosomes, which become enlarged and aberrantly accumulate in distal locations. In addition, it also reduces the trafficking of lysosomes due to their less effective retrograde movement. Altogether, our experiments suggest a pivotal involvement of retrograde molecular motors and transport in the mechanisms underlying impaired axonal transport in AD and reveal significantly more widespread derangement of axonal transport pathways in the pathogenesis of AD.


Assuntos
Doença de Alzheimer , Precursor de Proteína beta-Amiloide , Transporte Axonal , Animais , Humanos , Camundongos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Transporte Axonal/genética , Axônios/metabolismo , Axônios/patologia , Complexo Dinactina/metabolismo , Complexo Dinactina/genética , Dineínas/metabolismo , Endossomos/metabolismo , Endossomos/genética , Lisossomos/metabolismo , Mutação , Variação Genética
2.
JCI Insight ; 8(9)2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-36928301

RESUMO

Gain-of-function mutations in the housekeeping gene GARS1, which lead to the expression of toxic versions of glycyl-tRNA synthetase (GlyRS), cause the selective motor and sensory pathology characterizing Charcot-Marie-Tooth disease (CMT). Aberrant interactions between GlyRS mutants and different proteins, including neurotrophin receptor tropomyosin receptor kinase receptor B (TrkB), underlie CMT type 2D (CMT2D); however, our pathomechanistic understanding of this untreatable peripheral neuropathy remains incomplete. Through intravital imaging of the sciatic nerve, we show that CMT2D mice displayed early and persistent disturbances in axonal transport of neurotrophin-containing signaling endosomes in vivo. We discovered that brain-derived neurotrophic factor (BDNF)/TrkB impairments correlated with transport disruption and overall CMT2D neuropathology and that inhibition of this pathway at the nerve-muscle interface perturbed endosome transport in wild-type axons. Accordingly, supplementation of muscles with BDNF, but not other neurotrophins, completely restored physiological axonal transport in neuropathic mice. Together, these findings suggest that selectively targeting muscles with BDNF-boosting therapies could represent a viable therapeutic strategy for CMT2D.


Assuntos
Doença de Charcot-Marie-Tooth , Camundongos , Animais , Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/patologia , Transporte Axonal/genética , Fator Neurotrófico Derivado do Encéfalo/genética , Mutação
3.
J Cell Sci ; 136(5)2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36655764

RESUMO

Neuronal function depends on axonal transport by kinesin superfamily proteins (KIFs). KIF1A is the molecular motor that transports synaptic vesicle precursors, synaptic vesicles, dense core vesicles and active zone precursors. KIF1A is regulated by an autoinhibitory mechanism; many studies, as well as the crystal structure of KIF1A paralogs, support a model whereby autoinhibited KIF1A is monomeric in solution, whereas activated KIF1A is dimeric on microtubules. KIF1A-associated neurological disorder (KAND) is a broad-spectrum neuropathy that is caused by mutations in KIF1A. More than 100 point mutations have been identified in KAND. In vitro assays show that most mutations are loss-of-function mutations that disrupt the motor activity of KIF1A, whereas some mutations disrupt its autoinhibition and abnormally hyperactivate KIF1A. Studies on disease model worms suggests that both loss-of-function and gain-of-function mutations cause KAND by affecting the axonal transport and localization of synaptic vesicles. In this Review, we discuss how the analysis of these mutations by molecular genetics, single-molecule assays and force measurements have helped to reveal the physiological significance of KIF1A function and regulation, and what physical parameters of KIF1A are fundamental to axonal transport.


Assuntos
Transporte Axonal , Doenças do Sistema Nervoso , Humanos , Transporte Axonal/genética , Transporte Axonal/fisiologia , Cinesinas/genética , Cinesinas/metabolismo , Microtúbulos/metabolismo , Doenças do Sistema Nervoso/genética , Doenças do Sistema Nervoso/metabolismo , Neurônios/metabolismo , Vesículas Sinápticas/genética , Vesículas Sinápticas/metabolismo
4.
ACS Nano ; 16(12): 20470-20487, 2022 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-36459488

RESUMO

Cargo transport by molecular motors along microtubules is essential for the function of eukaryotic cells, in particular neurons in which axonal transport defects constitute the early pathological features of neurodegenerative diseases. Mainly studied in motor and sensory neurons, axonal transport is still difficult to characterize in neurons of the brain in absence of appropriate in vivo tools. Here, we measured fast axonal transport by tracing the second harmonic generation (SHG) signal of potassium titanyl phosphate (KTP) nanocrystals (nanoKTP) endocytosed by brain neurons of zebrafish (Zf) larvae. Thanks to the optical translucency of Zf larvae and to the perfect photostability of nanoKTP SHG, we achieved a high scanning speed of 20 frames (of ≈90 µm × 60 µm size) per second in Zf brain. We focused our study on endolysosomal vesicle transport in axons of known polarization, separately analyzing kinesin and dynein motor-driven displacements. To validate our assay, we used either loss-of-function mutations of dynein or kinesin 1 or the dynein inhibitor dynapyrazole and quantified several transport parameters. We successfully demonstrated that dynapyrazole reduces the nanoKTP mobile fraction and retrograde run length consistently, while the retrograde run length increased in kinesin 1 mutants. Taking advantage of nanoKTP SHG directional emission, we also quantified fluctuations of vesicle orientation. Thus, by combining endocytosis of nanocrystals having a nonlinear response, fast two-photon microscopy, and high-throughput analysis, we are able to finely monitor fast axonal transport in vivo in the brain of a vertebrate and reveal subtle axonal transport alterations. The high spatiotemporal resolution achieved in our model may be relevant to precisely investigate axonal transport impairment associated with disease models.


Assuntos
Dineínas , Cinesinas , Animais , Cinesinas/metabolismo , Dineínas/metabolismo , Peixe-Zebra/metabolismo , Transporte Axonal/genética , Microscopia , Larva/metabolismo , Axônios , Microtúbulos/metabolismo , Encéfalo/metabolismo
5.
Proc Natl Acad Sci U S A ; 119(32): e2113795119, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35917346

RESUMO

KIF1A is a kinesin superfamily motor protein that transports synaptic vesicle precursors in axons. Cargo binding stimulates the dimerization of KIF1A molecules to induce processive movement along microtubules. Mutations in human Kif1a lead to a group of neurodegenerative diseases called KIF1A-associated neuronal disorder (KAND). KAND mutations are mostly de novo and autosomal dominant; however, it is unknown if the function of wild-type KIF1A motors is inhibited by heterodimerization with mutated KIF1A. Here, we have established Caenorhabditis elegans models for KAND using CRISPR-Cas9 technology and analyzed the effects of human KIF1A mutation on axonal transport. In our C. elegans models, both heterozygotes and homozygotes exhibited reduced axonal transport. Suppressor screening using the disease model identified a mutation that recovers the motor activity of mutated human KIF1A. In addition, we developed in vitro assays to analyze the motility of heterodimeric motors composed of wild-type and mutant KIF1A. We find that mutant KIF1A significantly impaired the motility of heterodimeric motors. Our data provide insight into the molecular mechanism underlying the dominant nature of de novo KAND mutations.


Assuntos
Transporte Axonal , Caenorhabditis elegans , Cinesinas , Doenças Neurodegenerativas , Vesículas Sinápticas , Animais , Transporte Axonal/genética , Caenorhabditis elegans/genética , Modelos Animais de Doenças , Genes Dominantes , Humanos , Cinesinas/genética , Atividade Motora/genética , Mutação , Doenças Neurodegenerativas/genética , Vesículas Sinápticas/genética , Vesículas Sinápticas/metabolismo
6.
Viruses ; 14(5)2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35632655

RESUMO

HSV-1 is a human pathogen that establishes a lifelong infection in the host. HSV-1 is transported by retrograde axonal transport to sensory neurons in the peripheral nervous system where latent viral genomes can reactivate. The resulting virus travels via anterograde axonal transport to the periphery and can cause clinical disease. CTCF insulators flank the LAT and IE regions of HSV-1 and during latency and maintain the integrity of transcriptional domains through a myriad of functions, including enhancer-blocking or barrier-insulator functions. Importantly, during reactivation, CTCF protein is evicted from the HSV-1 genome, especially from the CTRL2 insulator. CTRL2 is a functional insulator downstream of the 5'exon region of the LAT, so these results suggest that the disruption of this insulator may be required for efficient HSV-1 reactivation. To further explore this, we used a recombinant virus containing a deletion of the CTRL2 insulator (ΔCTRL2) in a rabbit ocular model of HSV-1 infection and induced reactivation. We show that, in the absence of the CTRL2 insulator, HSV-1 established an equivalent latent infection in rabbits, but those rabbits failed to efficiently reactivate from latency. Furthermore, we found a significant decrease in the expression of the gene Us9-, a gene that codes for a type II membrane protein that has been shown to be required for anterograde transport in neurons. Taken together, these results suggest that the functions of the CTRL2 insulator and Us9 activation in reactivating neurons are intrinsically linked through the regulation of a gene responsible for the axonal transport of HSV-1 to the periphery.


Assuntos
Herpes Simples , Herpesvirus Humano 1 , Animais , Transporte Axonal/genética , Fator de Ligação a CCCTC/genética , Fator de Ligação a CCCTC/metabolismo , Genoma Viral , Herpes Simples/genética , Herpesvirus Humano 1/fisiologia , Coelhos
7.
Cell Rep ; 39(1): 110598, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35385738

RESUMO

Understanding the pathogenic mechanisms of disease mutations is critical to advancing treatments. ALS-associated mutations in the gene encoding the microtubule motor KIF5A result in skipping of exon 27 (KIF5AΔExon27) and the encoding of a protein with a novel 39 amino acid residue C-terminal sequence. Here, we report that expression of ALS-linked mutant KIF5A results in dysregulated motor activity, cellular mislocalization, altered axonal transport, and decreased neuronal survival. Single-molecule analysis revealed that the altered C terminus of mutant KIF5A results in a constitutively active state. Furthermore, mutant KIF5A possesses altered protein and RNA interactions and its expression results in altered gene expression/splicing. Taken together, our data support the hypothesis that causative ALS mutations result in a toxic gain of function in the intracellular motor KIF5A that disrupts intracellular trafficking and neuronal homeostasis.


Assuntos
Esclerose Lateral Amiotrófica , Esclerose Lateral Amiotrófica/genética , Transporte Axonal/genética , Mutação com Ganho de Função , Humanos , Cinesinas/genética , Mutação/genética
8.
Methods Mol Biol ; 2431: 465-479, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35412293

RESUMO

The development and functions of neurons are supported by axonal transport. Axonal transport is a complex process whose regulation involves multiple molecules, such as microtubules, microtubule-associated proteins, kinases, molecular motors, and motor binding proteins. Gain of function and loss of function mutations of genes that encode these proteins often lead to human axonal neuropathy. Caenorhabditis elegans provides a powerful genetic system to study the consequences of gene mutations for axonal transport. Here, we discuss advantages and limitations of using C. elegans, propose standard criteria, and describe methods to analyze the impact of gene mutations on axonal transport in C. elegans. To obtain solid conclusions, it is necessary to image single neurons in vivo labeled by a specific promoter and to confirm that a mutation changes the localization of a cargo. The motility parameters of the transported cargo should then be analyzed in the mutant. This method enables the axonal transport of proteins and organelles, such as synaptic vesicle precursors and mitochondria, to be analyzed.


Assuntos
Transporte Axonal , Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Transporte Axonal/genética , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Humanos , Cinesinas , Microscopia de Fluorescência/métodos , Mutação , Proteínas do Tecido Nervoso/metabolismo
9.
Ann Neurol ; 91(5): 716-729, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35178738

RESUMO

OBJECTIVE: The objective of this study is to develop a novel method for monitoring the integrity of motor neurons in vivo by quantifying net retrograde axonal transport. METHODS: The method uses single photon emission computed tomography to quantify retrograde transport to spinal cord of tetanus toxin fragment C (125 I-TTC) following intramuscular injection. We characterized the transport profiles in 3 transgenic mouse models carrying amyotrophic lateral sclerosis (ALS)-associated genes, aging mice, and SOD1G93A transgenic mice following CRISPR/Cas9 gene editing. Lastly, we studied the effect of prior immunization of tetanus toxoid on the transport profile of TTC. RESULTS: This technique defines a quantitative profile of net retrograde axonal transport of TTC in living mice. The profile is distinctly abnormal in transgenic SOD1G93A mice as young as 65 days (presymptomatic) and worsens with disease progression. Moreover, this method detects a distinct therapeutic benefit of gene editing in transgenic SOD1G93A mice well before other clinical parameters (eg, grip strength) show improvement. Symptomatic transgenic PFN1C71G/C71G ALS mice display gross reductions in net retrograde axonal transport, which is also disturbed in asymptomatic mice harboring a human C9ORF72 transgene with an expanded GGGGCC repeat motif. In wild-type mice, net retrograde axonal transport declines with aging. Lastly, prior immunization with tetanus toxoid does not preclude use of this assay. INTERPRETATION: This assay of net retrograde axonal transport has broad potential clinical applications and should be particularly valuable as a physiological biomarker that permits early detection of benefit from potential therapies for motor neuron diseases. ANN NEUROL 2022;91:716-729.


Assuntos
Esclerose Lateral Amiotrófica , Transporte Axonal , Esclerose Lateral Amiotrófica/diagnóstico por imagem , Esclerose Lateral Amiotrófica/genética , Animais , Transporte Axonal/genética , Biomarcadores , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Transgênicos , Profilinas , Medula Espinal/diagnóstico por imagem , Medula Espinal/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1 , Toxoide Tetânico
10.
Development ; 148(24)2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34940839

RESUMO

It is more than 25 years since the discovery that kinesin 1 is phosphorylated by several protein kinases. However, fundamental questions still remain as to how specific protein kinase(s) contribute to particular motor functions under physiological conditions. Because, within an whole organism, kinase cascades display considerable crosstalk and play multiple roles in cell homeostasis, deciphering which kinase(s) is/are involved in a particular process has been challenging. Previously, we found that GSK3ß plays a role in motor function. Here, we report that a particular site on kinesin 1 motor domain (KHC), S314, is phosphorylated by GSK3ß in vivo. The GSK3ß-phosphomimetic-KHCS314D stalled kinesin 1 motility without dissociating from microtubules, indicating that constitutive GSK3ß phosphorylation of the motor domain acts as a STOP. In contrast, uncoordinated mitochondrial motility was observed in CRISPR/Cas9-GSK3ß non-phosphorylatable-KHCS314A Drosophila larval axons, owing to decreased kinesin 1 attachment to microtubules and/or membranes, and reduced ATPase activity. Together, we propose that GSK3ß phosphorylation fine-tunes kinesin 1 movement in vivo via differential phosphorylation, unraveling the complex in vivo regulatory mechanisms that exist during axonal motility of cargos attached to multiple kinesin 1 and dynein motors.


Assuntos
Movimento Celular/genética , Proteínas de Drosophila/genética , Glicogênio Sintase Quinase 3 beta/genética , Cinesinas/genética , Microtúbulos/genética , Adenosina Trifosfatases/genética , Animais , Transporte Axonal/genética , Axônios/metabolismo , Sistemas CRISPR-Cas/genética , Movimento Celular/fisiologia , Drosophila melanogaster/genética , Dineínas/genética , Larva/genética , Neurônios/metabolismo , Fosforilação/genética , Domínios Proteicos/genética
11.
PLoS Genet ; 17(11): e1009940, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34843479

RESUMO

The UNC-104/KIF1A motor is crucial for axonal transport of synaptic vesicles, but how the UNC-104/KIF1A motor is activated in vivo is not fully understood. Here, we identified point mutations located in the motor domain or the inhibitory CC1 domain, which resulted in gain-of-function alleles of unc-104 that exhibit hyperactive axonal transport and abnormal accumulation of synaptic vesicles. In contrast to the cell body localization of wild type motor, the mutant motors accumulate on neuronal processes. Once on the neuronal process, the mutant motors display dynamic movement similarly to wild type motors. The gain-of-function mutation on the motor domain leads to an active dimeric conformation, releasing the inhibitory CC1 region from the motor domain. Genetically engineered mutations in the motor domain or CC1 of UNC-104, which disrupt the autoinhibitory interface, also led to the gain of function and hyperactivation of axonal transport. Thus, the CC1/motor domain-mediated autoinhibition is crucial for UNC-104/KIF1A-mediated axonal transport in vivo.


Assuntos
Transporte Axonal/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas do Tecido Nervoso/genética , Neurônios/metabolismo , Vesículas Sinápticas/genética , Animais , Caenorhabditis elegans/genética , Mutação com Ganho de Função/genética , Engenharia Genética , Cinesinas/genética , Domínios Proteicos
12.
Neurotherapeutics ; 18(4): 2269-2285, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34606075

RESUMO

Inherited peripheral neuropathies are a genetically and phenotypically diverse group of disorders that lead to degeneration of peripheral neurons with resulting sensory and motor dysfunction. Genetic neuropathies that primarily cause axonal degeneration, as opposed to demyelination, are most often classified as Charcot-Marie-Tooth disease type 2 (CMT2) and are the focus of this review. Gene identification efforts over the past three decades have dramatically expanded the genetic landscape of CMT and revealed several common pathological mechanisms among various forms of the disease. In some cases, identification of the precise genetic defect and/or the downstream pathological consequences of disease mutations have yielded promising therapeutic opportunities. In this review, we discuss evidence for pathogenic overlap among multiple forms of inherited neuropathy, highlighting genetic defects in axonal transport, mitochondrial dynamics, organelle-organelle contacts, and local axonal protein translation as recurrent pathological processes in inherited axonal neuropathies. We also discuss how these insights have informed emerging treatment strategies, including specific approaches for single forms of neuropathy, as well as more general approaches that have the potential to treat multiple types of neuropathy. Such therapeutic opportunities, made possible by improved understanding of molecular and cellular pathogenesis and advances in gene therapy technologies, herald a new and exciting phase in inherited peripheral neuropathy.


Assuntos
Doença de Charcot-Marie-Tooth , Transporte Axonal/genética , Axônios/patologia , Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/terapia , Humanos , Mutação/genética
13.
Nat Commun ; 12(1): 5878, 2021 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-34620845

RESUMO

Microtubule (MT)-based transport is an evolutionary conserved process finely tuned by posttranslational modifications. Among them, α-tubulin acetylation, primarily catalyzed by a vesicular pool of α-tubulin N-acetyltransferase 1 (Atat1), promotes the recruitment and processivity of molecular motors along MT tracks. However, the mechanism that controls Atat1 activity remains poorly understood. Here, we show that ATP-citrate lyase (Acly) is enriched in vesicles and provide Acetyl-Coenzyme-A (Acetyl-CoA) to Atat1. In addition, we showed that Acly expression is reduced upon loss of Elongator activity, further connecting Elongator to Atat1 in a pathway regulating α-tubulin acetylation and MT-dependent transport in projection neurons, across species. Remarkably, comparable defects occur in fibroblasts from Familial Dysautonomia (FD) patients bearing an autosomal recessive mutation in the gene coding for the Elongator subunit ELP1. Our data may thus shine light on the pathophysiological mechanisms underlying FD.


Assuntos
ATP Citrato (pro-S)-Liase/metabolismo , Transporte Axonal/fisiologia , ATP Citrato (pro-S)-Liase/genética , Acetilcoenzima A/metabolismo , Acetilação , Acetiltransferases/genética , Animais , Transporte Axonal/genética , Drosophila melanogaster , Disautonomia Familiar/metabolismo , Feminino , Fibroblastos/metabolismo , Humanos , Larva , Masculino , Camundongos , Microtúbulos/metabolismo , Processamento de Proteína Pós-Traducional , Tubulina (Proteína)/metabolismo
14.
EMBO J ; 40(20): e107158, 2021 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-34515347

RESUMO

Nucleolin is a multifunctional RNA Binding Protein (RBP) with diverse subcellular localizations, including the nucleolus in all eukaryotic cells, the plasma membrane in tumor cells, and the axon in neurons. Here we show that the glycine arginine rich (GAR) domain of nucleolin drives subcellular localization via protein-protein interactions with a kinesin light chain. In addition, GAR sequences mediate plasma membrane interactions of nucleolin. Both these modalities are in addition to the already reported involvement of the GAR domain in liquid-liquid phase separation in the nucleolus. Nucleolin transport to axons requires the GAR domain, and heterozygous GAR deletion mice reveal reduced axonal localization of nucleolin cargo mRNAs and enhanced sensory neuron growth. Thus, the GAR domain governs axonal transport of a growth controlling RNA-RBP complex in neurons, and is a versatile localization determinant for different subcellular compartments. Localization determination by GAR domains may explain why GAR mutants in diverse RBPs are associated with neurodegenerative disease.


Assuntos
Nucléolo Celular/metabolismo , Gânglios Espinais/metabolismo , Cinesinas/metabolismo , Neurônios/metabolismo , Fosfoproteínas/química , Proteínas de Ligação a RNA/química , Nervo Isquiático/metabolismo , Sequência de Aminoácidos , Animais , Transporte Axonal/genética , Linhagem Celular Tumoral , Nucléolo Celular/ultraestrutura , Gânglios Espinais/citologia , Expressão Gênica , Células HEK293 , Células HeLa , Humanos , Cinesinas/genética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Mutação , Neurônios/citologia , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Cultura Primária de Células , Domínios Proteicos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Nervo Isquiático/citologia , Nucleolina
15.
Int J Mol Sci ; 22(18)2021 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-34575995

RESUMO

Amyotrophic Lateral Sclerosis (ALS), neurodegenerative motor neuron disorder is characterized as multisystem disease with important contribution of genetic factors. The etiopahogenesis of ALS is not fully elucidate, but the dominant theory at present relates to RNA processing, as well as protein aggregation and miss-folding, oxidative stress, glutamate excitotoxicity, inflammation and epigenetic dysregulation. Additionally, as mitochondria plays a leading role in cellular homeostasis maintenance, a rising amount of evidence indicates mitochondrial dysfunction as a substantial contributor to disease onset and progression. The aim of this review is to summarize most relevant findings that link genetic factors in ALS pathogenesis with different mechanisms with mitochondrial involvement (respiratory chain, OXPHOS control, calcium buffering, axonal transport, inflammation, mitophagy, etc.). We highlight the importance of a widening perspective for better understanding overlapping pathophysiological pathways in ALS and neurodegeneration in general. Finally, current and potentially novel therapies, especially gene specific therapies, targeting mitochondrial dysfunction are discussed briefly.


Assuntos
Esclerose Lateral Amiotrófica , Mitocôndrias , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Esclerose Lateral Amiotrófica/terapia , Animais , Transporte Axonal/genética , Cálcio/metabolismo , Transporte de Elétrons/genética , Humanos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Mitofagia/genética , Fosforilação Oxidativa , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo
16.
Signal Transduct Target Ther ; 6(1): 325, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34465723

RESUMO

Alzheimer's disease (AD) is characterized by progressive synaptic dysfunction, neuronal death, and brain atrophy, with amyloid-ß (Aß) plaque deposits and hyperphosphorylated tau neurofibrillary tangle accumulation in the brain tissue, which all lead to loss of cognitive function. Pathogenic mutations in the well-known AD causal genes including APP, PSEN1, and PSEN2 impair a variety of pathways, including protein processing, axonal transport, and metabolic homeostasis. Here we identified a missense variant rs117916664 (c.896T>C, p.Asn299Ser [p.N299S]) of the acetyl-CoA acyltransferase 1 (ACAA1) gene in a Han Chinese AD family by whole-genome sequencing and validated its association with early-onset familial AD in an independent cohort. Further in vitro and in vivo evidence showed that ACAA1 p.N299S contributes to AD by disturbing its enzymatic activity, impairing lysosomal function, and aggravating the Aß pathology and neuronal loss, which finally caused cognitive impairment in a murine model. Our findings reveal a fundamental role of peroxisome-mediated lysosomal dysfunction in AD pathogenesis.


Assuntos
Acetil-CoA C-Aciltransferase/genética , Doença de Alzheimer/genética , Disfunção Cognitiva/genética , Predisposição Genética para Doença , Idade de Início , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/genética , Animais , Transporte Axonal/genética , Disfunção Cognitiva/patologia , Modelos Animais de Doenças , Estudos de Associação Genética , Humanos , Lisossomos/genética , Lisossomos/patologia , Camundongos , Mutação de Sentido Incorreto/genética , Neurônios/patologia , Placa Amiloide , Sequenciamento Completo do Genoma
17.
J Cell Biol ; 220(7)2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-34014261

RESUMO

Autophagy is a degradative pathway required to maintain homeostasis. Neuronal autophagosomes form constitutively at the axon terminal and mature via lysosomal fusion during dynein-mediated transport to the soma. How the dynein-autophagosome interaction is regulated is unknown. Here, we identify multiple dynein effectors on autophagosomes as they transit along the axons of primary neurons. In the distal axon, JIP1 initiates autophagosomal transport. Autophagosomes in the mid-axon require HAP1 and Huntingtin. We find that HAP1 is a dynein activator, binding the dynein-dynactin complex via canonical and noncanonical interactions. JIP3 is on most axonal autophagosomes, but specifically regulates the transport of mature autolysosomes. Inhibiting autophagosomal transport disrupts maturation, and inhibiting autophagosomal maturation perturbs the association and function of dynein effectors; thus, maturation and transport are tightly linked. These results reveal a novel maturation-based dynein effector handoff on neuronal autophagosomes that is key to motility, cargo degradation, and the maintenance of axonal health.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Autofagossomos/genética , Axônios/metabolismo , Proteína Huntingtina/genética , Proteínas do Tecido Nervoso/genética , Autofagia/genética , Transporte Axonal/genética , Complexo Dinactina/genética , Dineínas/genética , Homeostase , Humanos , Lisossomos/genética , Proteínas Associadas aos Microtúbulos/genética , Neurônios/metabolismo , Neurônios/patologia , Fagossomos/genética
18.
Hum Mol Genet ; 30(16): 1535-1542, 2021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-34002226

RESUMO

Parkinson's disease (PD) is a neurodegenerative disease with movement disorders including resting tremor, rigidity, bradykinesia and postural instability. Recent studies have identified a new PD associated gene, TMEM230 (transmembrane protein 230). However, the pathological roles of TMEM230 and its variants are not fully understood. TMEM230 gene encodes two protein isoforms. Isoform2 is the major protein form (~95%) in human. In this study, we overexpress isoform2 TMEM230 variants (WT or PD-linked *184Wext*5 mutant) or knockdown endogenous protein in cultured SH-5Y5Y cells and mouse primary hippocampus neurons to study their pathological roles. We found that overexpression of WT and mutant TMEM230 or knockdown of endogenous TMEM230-induced neurodegeneration and impaired mitochondria transport at the retrograde direction in axons. Mutant TMEM230 caused more severe neurotoxicity and mitochondrial transport impairment than WT-TMEM230 did. Our results demonstrate that maintaining TMEM230 protein levels is critical for neuron survival and axon transport. These findings suggest that mutant-TMEM230-induced mitochondrial transport impairment could be the early event leading to neurite injury and neurodegeneration in PD development.


Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Animais , Transporte Axonal/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mutação , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Doença de Parkinson/genética
19.
Cell Rep ; 35(2): 108980, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33852844

RESUMO

The huntingtin (HTT) protein transports various organelles, including vesicles containing neurotrophic factors, from embryonic development throughout life. To better understand how HTT mediates axonal transport and why this function is disrupted in Huntington's disease (HD), we study vesicle-associated HTT and find that it is dimethylated at a highly conserved arginine residue (R118) by the protein arginine methyltransferase 6 (PRMT6). Without R118 methylation, HTT associates less with vesicles, anterograde trafficking is diminished, and neuronal death ensues-very similar to what occurs in HD. Inhibiting PRMT6 in HD cells and neurons exacerbates mutant HTT (mHTT) toxicity and impairs axonal trafficking, whereas overexpressing PRMT6 restores axonal transport and neuronal viability, except in the presence of a methylation-defective variant of mHTT. In HD flies, overexpressing PRMT6 rescues axonal defects and eclosion. Arginine methylation thus regulates HTT-mediated vesicular transport along the axon, and increasing HTT methylation could be of therapeutic interest for HD.


Assuntos
Transporte Axonal/genética , Epigênese Genética , Proteína Huntingtina/genética , Doença de Huntington/genética , Proteínas Nucleares/genética , Proteína-Arginina N-Metiltransferases/genética , Vesículas Transportadoras/metabolismo , Sequência de Aminoácidos , Animais , Arginina/metabolismo , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Morte Celular , Modelos Animais de Doenças , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Proteína Huntingtina/metabolismo , Doença de Huntington/metabolismo , Doença de Huntington/patologia , Metilação , Camundongos , Camundongos Transgênicos , Junção Neuromuscular/genética , Junção Neuromuscular/metabolismo , Junção Neuromuscular/patologia , Neurônios/metabolismo , Neurônios/patologia , Proteínas Nucleares/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteína-Arginina N-Metiltransferases/metabolismo , Vesículas Transportadoras/genética , Vesículas Transportadoras/patologia
20.
Cell Rep ; 35(2): 108973, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33852866

RESUMO

Fast axonal transport of neuropeptide-containing dense core vesicles (DCVs), endolysosomal organelles, and presynaptic components is critical for maintaining neuronal functionality. How the transport of DCVs is orchestrated remains an important unresolved question. The small GTPase Rab2 mediates DCV biogenesis and endosome-lysosome fusion. Here, we use Drosophila to demonstrate that Rab2 also plays a critical role in bidirectional axonal transport of DCVs, endosomes, and lysosomal organelles, most likely by controlling molecular motors. We further show that the lysosomal motility factor Arl8 is required as well for axonal transport of DCVs, but unlike Rab2, it is also critical for DCV exit from cell bodies into axons. We also provide evidence that the upstream regulators of Rab2 and Arl8, Ema and BORC, activate these GTPases during DCV transport. Our results uncover the mechanisms underlying axonal transport of DCVs and reveal surprising parallels between the regulation of DCV and lysosomal motility.


Assuntos
Fatores de Ribosilação do ADP/genética , Transporte Axonal/genética , Vesículas de Núcleo Denso/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Neurônios/metabolismo , Proteína rab2 de Ligação ao GTP/genética , Fatores de Ribosilação do ADP/metabolismo , Animais , Vesículas de Núcleo Denso/ultraestrutura , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Endossomos/metabolismo , Endossomos/ultraestrutura , Regulação da Expressão Gênica , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Lisossomos/metabolismo , Lisossomos/ultraestrutura , Fusão de Membrana , Proteínas de Transporte de Monossacarídeos/genética , Proteínas de Transporte de Monossacarídeos/metabolismo , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Neurônios/ultraestrutura , Biogênese de Organelas , Ligação Proteica , Transdução de Sinais , Proteína rab2 de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...