Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Handb Clin Neurol ; 195: 183-250, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37562870

RESUMO

Advances in the field of neurogenetics have practical applications in rapid diagnosis on blood and body fluids to extract DNA, obviating the need for invasive investigations. The ability to obtain a presymptomatic diagnosis through genetic screening and biomarkers can be a guide to life-saving disease-modifying therapy or enzyme replacement therapy to compensate for the deficient disease-causing enzyme. The benefits of a comprehensive neurogenetic evaluation extend to family members in whom identification of the causal gene defect ensures carrier detection and at-risk counseling for future generations. This chapter explores the many facets of the neurogenetic evaluation in adult and pediatric motor disorders as a primer for later chapters in this volume and a roadmap for the future applications of genetics in neurology.


Assuntos
Transtornos Motores , Doenças do Sistema Nervoso , Neurologia , Neurociências , Humanos , Criança , Doenças do Sistema Nervoso/diagnóstico , Transtornos Motores/genética , Testes Genéticos
2.
J Neurosci ; 43(21): 3949-3969, 2023 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-37037606

RESUMO

Autism spectrum disorder (ASD) is a neurodevelopmental disorder with highly heritable heterogeneity. Mutations of CUB and sushi multiple domains 3 (CSMD3) gene have been reported in individuals with ASD. However, the underlying mechanisms of CSMD3 for the onset of ASD remain unexplored. Here, using male CSMD3 knock-out (CSMD3 -/-) mice, we found that genetic deletion of CSMD3 produced core autistic-like symptoms (social interaction deficits, restricted interests, and repetitive and stereotyped behaviors) and motor dysfunction in mice, indicating that the CSMD3 gene can be considered as a candidate for ASD. Moreover, we discovered that the ablation of CSMD3 in mice led to abnormal cerebellar Purkinje cell (PC) morphology in Crus I/II lobules, including aberrant developmental dendritogenesis and spinogenesis of PCs. Furthermore, combining in vivo fiber photometry calcium imaging and ex vivo electrophysiological recordings, we showed that the CSMD3 -/- mice exhibited an increased neuronal activity (calcium fluorescence signals) in PCs of Crus I/II lobules in response to movement activity, as well as an enhanced intrinsic excitability of PCs and an increase of excitatory rather than inhibitory synaptic input to the PCs, and an impaired long-term depression at the parallel fiber-PC synapse. These results suggest that CSMD3 plays an important role in the development of cerebellar PCs. Loss of CSMD3 causes abnormal PC morphology and dysfunction in the cerebellum, which may underlie the pathogenesis of motor deficits and core autistic-like symptoms in CSMD3 -/- mice. Our findings provide novel insight into the pathophysiological mechanisms by which CSMD3 mutations cause impairments in cerebellar function that may contribute to ASD.SIGNIFICANCE STATEMENT Autism spectrum disorder (ASD) is a neurodevelopmental disorder with highly heritable heterogeneity. Advances in genomic analysis have contributed to numerous candidate genes for the risk of ASD. Recently, a novel giant gene CSMD3 encoding a protein with CUB and sushi multiple domains (CSMDs) has been identified as a candidate gene for ASD. However, the underlying mechanisms of CSMD3 for the onset of ASD remain largely unknown. Here, we unravel that loss of CSMD3 results in abnormal morphology, increased intrinsic excitabilities, and impaired synaptic plasticity in cerebellar PCs, subsequently leading to motor deficits and ASD-like behaviors in mice. These results provide novel insight into the pathophysiological mechanisms by which CSMD3 mutations cause impairments in cerebellar function that may contribute to ASD.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Transtornos Motores , Animais , Masculino , Camundongos , Cálcio/metabolismo , Cerebelo/fisiologia , Camundongos Knockout , Transtornos Motores/genética , Transtornos Motores/metabolismo , Células de Purkinje/fisiologia
3.
J Neurosci ; 43(19): 3567-3581, 2023 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-36977578

RESUMO

Metachromatic leukodystrophy (MLD) is a rare, inherited, demyelinating lysosomal storage disorder caused by mutations in the arylsulfatase-A gene (ARSA). In patients, levels of functional ARSA enzyme are diminished and lead to deleterious accumulation of sulfatides. Herein, we demonstrate that intravenous administration of HSC15/ARSA restored the endogenous murine biodistribution of the corresponding enzyme, and overexpression of ARSA corrected disease biomarkers and ameliorated motor deficits in Arsa KO mice of either sex. In treated Arsa KO mice, when compared with intravenously administered AAV9/ARSA, significant increases in brain ARSA activity, transcript levels, and vector genomes were observed with HSC15/ARSA Durability of transgene expression was established in neonate and adult mice out to 12 and 52 weeks, respectively. Levels and correlation between changes in biomarkers and ARSA activity required to achieve functional motor benefit was also defined. Finally, we demonstrated blood-nerve, blood-spinal and blood-brain barrier crossing as well as the presence of circulating ARSA enzyme activity in the serum of healthy nonhuman primates of either sex. Together, these findings support the use of intravenous delivery of HSC15/ARSA-mediated gene therapy for the treatment of MLD.SIGNIFICANCE STATEMENT Herein, we describe the method of gene therapy adeno-associated virus (AAV) capsid and route of administration selection leading to an efficacious gene therapy in a mouse model of metachromatic leukodystrophy. We demonstrate the therapeutic outcome of a new naturally derived clade F AAV capsid (AAVHSC15) in a disease model and the importance of triangulating multiple end points to increase the translation into higher species via ARSA enzyme activity and biodistribution profile (with a focus on the CNS) with that of a key clinically relevant biomarker.


Assuntos
Arilsulfatases , Terapia Genética , Leucodistrofia Metacromática , Animais , Camundongos , Macaca fascicularis , Arilsulfatases/genética , Camundongos Knockout , Leucodistrofia Metacromática/genética , Leucodistrofia Metacromática/fisiopatologia , Leucodistrofia Metacromática/terapia , Modelos Animais de Doenças , Dependovirus/genética , Terapia Genética/métodos , Vetores Genéticos/administração & dosagem , Encéfalo/enzimologia , Transtornos Motores/genética , Transtornos Motores/terapia , Administração Intravenosa , Biomarcadores/análise , Barreira Hematoencefálica , Masculino , Feminino , Humanos
4.
Brain ; 145(10): 3500-3508, 2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-35594156

RESUMO

Amyotrophic lateral sclerosis, when viewed as a biological entity rather than a clinical syndrome, probably evolves along a continuum, with the initial clinically silent phase eventually evolving into clinically manifest amyotrophic lateral sclerosis. Since motor neuron degeneration is incremental and cumulative over time, it stands to reason that the clinical syndrome of amyotrophic lateral sclerosis is probably preceded by a prodromal state characterized by minor motor abnormalities that are initially insufficient to permit a diagnosis of amyotrophic lateral sclerosis. This prodromal period, however, is usually missed, given the invariably long delays between symptom onset and diagnostic evaluation. The Pre-Symptomatic Familial ALS Study, a cohort study of pre-symptomatic gene mutation carriers, offers a unique opportunity to observe what is typically unseen. Here we describe the clinical characterization of 20 pre-symptomatic mutation carriers (in SOD1, FUS and C9orf72) whose phenoconversion to clinically manifest disease has been prospectively studied. In so doing, we observed a prodromal phase of mild motor impairment in 11 of 20 phenoconverters. Among the n = 12 SOD1 A4V mutation carriers, phenoconversion was characterized by abrupt onset of weakness, with a short (1-3.5 months) prodromal period observable in a small minority (n = 3); the observable prodrome invariably involved the lower motor neuron axis. By contrast, in all n = 3 SOD1 I113T mutation carriers, diffuse lower motor neuron and upper motor neuron signs evolved insidiously during a prodromal period that extended over a period of many years; prodromal manifestations eventually coalesced into a clinical syndrome that is recognizable as amyotrophic lateral sclerosis. Similarly, in all n = 3 C9orf72 hexanucleotide repeat expansion mutation carriers, focal or multifocal manifestations of disease evolved gradually over a prodromal period of 1-2 years. Clinically manifest ALS also emerged following a prodromal period of mild motor impairment, lasting >4 years and ∼9 months, respectively, in n = 2 with other gene mutations (SOD1 L106V and FUS c.521del6). On the basis of this empirical evidence, we conclude that mild motor impairment is an observable state that precedes clinically manifest disease in three of the most common genetic forms of amyotrophic lateral sclerosis (SOD1, FUS, C9orf72), and perhaps in all genetic amyotrophic lateral sclerosis; we also propose that this might be true of non-genetic amyotrophic lateral sclerosis. As a diagnostic label, mild motor impairment provides the language to describe the indeterminate (and sometimes intermediate) transition between the unaffected state and clinically manifest amyotrophic lateral sclerosis. Recognizing mild motor impairment as a distinct clinical entity should generate fresh urgency for developing biomarkers reflecting the earliest events in the degenerative cascade, with potential to reduce the diagnostic delay and to permit earlier therapeutic intervention.


Assuntos
Esclerose Lateral Amiotrófica , Transtornos Motores , Humanos , Esclerose Lateral Amiotrófica/diagnóstico , Esclerose Lateral Amiotrófica/genética , Proteína C9orf72/genética , Sintomas Prodrômicos , Superóxido Dismutase-1/genética , Estudos de Coortes , Diagnóstico Tardio , Transtornos Motores/genética , Mutação/genética , Biomarcadores
5.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35165191

RESUMO

FOXP1 syndrome caused by haploinsufficiency of the forkhead box protein P1 (FOXP1) gene is a neurodevelopmental disorder that manifests motor dysfunction, intellectual disability, autism, and language impairment. In this study, we used a Foxp1+/- mouse model to address whether cognitive and motor deficits in FOXP1 syndrome are associated with mitochondrial dysfunction and oxidative stress. Here, we show that genes with a role in mitochondrial biogenesis and dynamics (e.g., Foxo1, Pgc-1α, Tfam, Opa1, and Drp1) were dysregulated in the striatum of Foxp1+/- mice at different postnatal stages. Furthermore, these animals exhibit a reduced mitochondrial membrane potential and complex I activity, as well as decreased expression of the antioxidants superoxide dismutase 2 (Sod2) and glutathione (GSH), resulting in increased oxidative stress and lipid peroxidation. These features can explain the reduced neurite branching, learning and memory, endurance, and motor coordination that we observed in these animals. Taken together, we provide strong evidence of mitochondrial dysfunction in Foxp1+/- mice, suggesting that insufficient energy supply and excessive oxidative stress underlie the cognitive and motor impairment in FOXP1 deficiency.


Assuntos
Fatores de Transcrição Forkhead/genética , Deficiência Intelectual/genética , Transtornos Motores/genética , Proteínas Repressoras/genética , Animais , Transtorno do Espectro Autista/genética , Transtorno Autístico/metabolismo , Cognição/fisiologia , Modelos Animais de Doenças , Fatores de Transcrição Forkhead/deficiência , Fatores de Transcrição Forkhead/metabolismo , Haploinsuficiência/genética , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/genética , Mitocôndrias/metabolismo , Atividade Motora/genética , Transtornos Motores/metabolismo , Transtornos do Neurodesenvolvimento/metabolismo , Neurogênese , Estresse Oxidativo/fisiologia , Proteínas Repressoras/deficiência , Proteínas Repressoras/metabolismo
6.
Mol Neurobiol ; 58(10): 4921-4943, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34227061

RESUMO

Spinocerebellar ataxia (SCA) is a neurodegenerative disorder characterized by ataxia and cerebellar atrophy. A number of different mutations gives rise to different types of SCA with characteristic ages of onset, symptomatology, and rates of progression. SCA type 34 (SCA34) is caused by mutations in ELOVL4 (ELOngation of Very Long-chain fatty acids 4), a fatty acid elongase essential for biosynthesis of Very Long Chain Saturated and Polyunsaturated Fatty Acids (VLC-SFA and VLC-PUFA, resp., ≥28 carbons), which have important functions in the brain, skin, retina, Meibomian glands, testes, and sperm. We generated a rat model of SCA34 by knock-in of the SCA34-causing 736T>G (p.W246G) ELOVL4 mutation. Rats carrying the mutation developed impaired motor deficits by 2 months of age. To understand the mechanism of these motor deficits, we performed electrophysiological studies using cerebellar slices from rats homozygous for W246G mutant ELOVL4 and found marked reduction of long-term potentiation at parallel fiber synapses and long-term depression at climbing fiber synapses onto Purkinje cells. Neuroanatomical analysis of the cerebellum showed normal cytoarchitectural organization with no evidence of degeneration out to 6 months of age. These results point to ELOVL4 as essential for motor function and cerebellar synaptic plasticity. The results further suggest that ataxia in SCA34 patients may arise from a primary impairment of synaptic plasticity and cerebellar network desynchronization before onset of neurodegeneration and progression of the disease at a later age.


Assuntos
Proteínas do Olho/genética , Proteínas de Membrana/genética , Mutação/genética , Fibras Nervosas Mielinizadas/patologia , Plasticidade Neuronal/fisiologia , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/patologia , Animais , Cerebelo/patologia , Feminino , Masculino , Transtornos Motores/genética , Transtornos Motores/patologia , Técnicas de Cultura de Órgãos , Ratos , Ratos Long-Evans , Ratos Transgênicos
7.
Genes (Basel) ; 12(5)2021 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-34069712

RESUMO

X-linked adrenoleukodystrophy (X-ALD, OMIM #300100) is the most common peroxisomal disorder clinically characterized by two main phenotypes: adrenomyeloneuropathy (AMN) and the cerebral demyelinating form of X-ALD (cerebral ALD). The disease is caused by defects in the gene for the adenosine triphosphate (ATP)-binding cassette protein, subfamily D (ABCD1) that encodes the peroxisomal transporter of very-long-chain fatty acids (VLCFAs). The defective function of ABCD1 protein prevents ß-oxidation of VLCFAs, which thus accumulate in tissues and plasma, to represent the hallmark of the disease. As in many X-linked diseases, it has been routinely expected that female carriers are asymptomatic. Nonetheless, recent findings indicate that most ABCD1 female carriers become symptomatic, with a motor disability that typically appears between the fourth and fifth decade. In this paper, we report a large family in which affected males died during the first decade, while affected females develop, during the fourth decade, progressive lower limb weakness with spastic or ataxic-spastic gait, tetra-hyperreflexia with sensory alterations. Clinical and genetic evaluations were performed in nine subjects, eight females (five affected and three healthy) and one healthy male. All affected females were carriers of the c.1661G>A (p.Arg554His, rs201568579) mutation. This study strengthens the relevance of clinical symptoms in female carriers of ABCD1 mutations, which leads to a better understanding of the role of the genetic background and the genotype-phenotype correlation. This indicates the relevance to include ABCD1 genes in genetic panels for gait disturbance in women.


Assuntos
Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP/genética , Mutação/genética , Adrenoleucodistrofia/genética , Adulto , Idoso , Encéfalo/patologia , Doenças Desmielinizantes/genética , Pessoas com Deficiência , Feminino , Estudos de Associação Genética/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Transtornos Motores/genética
8.
Brain ; 144(8): 2302-2309, 2021 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-34059893

RESUMO

Tauopathies are neurodegenerative diseases caused by the abnormal metabolism of the microtubule associated protein tau (MAPT), which is highly expressed in neurons and critically involved in microtubule dynamics. In the adult human brain, the alternative splicing of exon 10 in MAPT pre-mRNA produces equal amounts of protein isoforms with either three (3R) or four (4R) microtubule binding domains. Imbalance in the 3R:4R tau ratio is associated with primary tauopathies that develop atypical parkinsonism, such as progressive supranuclear palsy and corticobasal degeneration. Yet, the development of effective therapies for those pathologies is an unmet goal. Here we report motor coordination impairments in the htau mouse model of tauopathy which harbour abnormal 3R:4R tau isoforms content, and in contrast to TauKO mice, are unresponsive to l-DOPA. Preclinical-PET imaging, array tomography and electrophysiological analyses indicated the dorsal striatum as the candidate structure mediating such phenotypes. Indeed, local modulation of tau isoforms by RNA trans-splicing in the striata of adult htau mice, prevented motor coordination deficits and restored basal neuronal firing. Together, these results suggest that abnormal striatal tau isoform content might lead to parkinsonian-like phenotypes and demonstrate a proof of concept that modulation of tau mis-splicing is a plausible disease-modifying therapy for some primary tauopathies.


Assuntos
Corpo Estriado/metabolismo , Transtornos Motores/metabolismo , Destreza Motora/fisiologia , Tauopatias/metabolismo , Proteínas tau/metabolismo , Processamento Alternativo , Animais , Corpo Estriado/fisiopatologia , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Transgênicos , Transtornos Motores/genética , Transtornos Motores/fisiopatologia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Tauopatias/genética , Tauopatias/fisiopatologia , Proteínas tau/genética
9.
Biochem Biophys Res Commun ; 568: 48-54, 2021 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-34182213

RESUMO

The F115C mutation in the MATR3 gene has been linked to amyotrophic lateral sclerosis (ALS). To determine the pathogenicity of the F115C mutation and the mechanism by which this mutation causes ALS, we generated mice that harbor the F115C mutation in the endogenous murine Matr3 locus. Heterozygous or homozygous MATR3 F115C knock-in mice were viable and did not exhibit motor deficits up to 2 years of age. The mutant mice showed no significant differences in the number of Purkinje cells or motor neurons compared to wild-type littermates. Neuropathological examination revealed an absence of MATR3 and TDP-43 pathology in Purkinje cells and motor neurons in the mutant mice. Together, our results suggest that the F115C mutation in MATR3 may not confer pathogenicity.


Assuntos
Esclerose Lateral Amiotrófica/genética , Neurônios Motores/patologia , Proteínas Associadas à Matriz Nuclear/genética , Proteínas de Ligação a RNA/genética , Esclerose Lateral Amiotrófica/patologia , Animais , Técnicas de Introdução de Genes , Camundongos , Transtornos Motores/genética , Transtornos Motores/patologia , Neurônios Motores/metabolismo , Músculos/metabolismo , Músculos/patologia , Mutação Puntual
10.
J Hum Genet ; 66(11): 1061-1068, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33958710

RESUMO

Corpus callosum anomalies (CCA) is a common congenital brain anomaly with various etiologies. Although one of the most important etiologies is genetic factors, the genetic background of CCA is heterogenous and diverse types of variants are likely to be causative. In this study, we analyzed 16 Japanese patients with corpus callosum anomalies to delineate clinical features and the genetic background of CCAs. We observed the common phenotypes accompanied by CCAs: intellectual disability (100%), motor developmental delay (93.8%), seizures (60%), and facial dysmorphisms (50%). Brain magnetic resonance imaging showed colpocephaly (enlarged posterior horn of the lateral ventricles, 84.6%) and enlarged supracerebellar cistern (41.7%). Whole exome sequencing revealed genetic alterations in 9 of the 16 patients (56.3%), including 8 de novo alterations (2 copy number variants and variants in ARID1B, CDK8, HIVEP2, and TCF4) and a recessive variant of TBCK. De novo ARID1B variants were identified in three unrelated individuals, suggesting that ARID1B variants are major genetic causes of CCAs. A de novo TCF4 variant and somatic mosaic deletion at 18q21.31-qter encompassing TCF4 suggest an association of TCF4 abnormalities with CCAs. This study, which analyzes CCA patients usung whole exome sequencing, demonstrates that comprehensive genetic analysis would be useful for investigating various causal variants of CCAs.


Assuntos
Agenesia do Corpo Caloso/diagnóstico , Encéfalo/diagnóstico por imagem , Anormalidades Congênitas/diagnóstico , Malformações do Sistema Nervoso/diagnóstico , Adolescente , Adulto , Agenesia do Corpo Caloso/complicações , Agenesia do Corpo Caloso/genética , Agenesia do Corpo Caloso/patologia , Encéfalo/patologia , Encefalopatias/complicações , Encefalopatias/diagnóstico , Encefalopatias/genética , Encefalopatias/patologia , Criança , Pré-Escolar , Anormalidades Congênitas/genética , Anormalidades Congênitas/patologia , Corpo Caloso/diagnóstico por imagem , Corpo Caloso/patologia , Variações do Número de Cópias de DNA/genética , Feminino , Humanos , Deficiência Intelectual/complicações , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Japão , Ventrículos Laterais/anormalidades , Ventrículos Laterais/patologia , Masculino , Transtornos Motores/complicações , Transtornos Motores/diagnóstico , Transtornos Motores/genética , Transtornos Motores/patologia , Mutação/genética , Malformações do Sistema Nervoso/complicações , Malformações do Sistema Nervoso/genética , Malformações do Sistema Nervoso/patologia , Fenótipo , Sequenciamento do Exoma , Adulto Jovem
11.
Nat Neurosci ; 24(7): 930-940, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33795885

RESUMO

The neurodegenerative disease spinal muscular atrophy (SMA) is caused by deficiency in the survival motor neuron (SMN) protein. Currently approved SMA treatments aim to restore SMN, but the potential for SMN expression beyond physiological levels is a unique feature of adeno-associated virus serotype 9 (AAV9)-SMN gene therapy. Here, we show that long-term AAV9-mediated SMN overexpression in mouse models induces dose-dependent, late-onset motor dysfunction associated with loss of proprioceptive synapses and neurodegeneration. Mechanistically, aggregation of overexpressed SMN in the cytoplasm of motor circuit neurons sequesters components of small nuclear ribonucleoproteins, leading to splicing dysregulation and widespread transcriptome abnormalities with prominent signatures of neuroinflammation and the innate immune response. Thus, long-term SMN overexpression interferes with RNA regulation and triggers SMA-like pathogenic events through toxic gain-of-function mechanisms. These unanticipated, SMN-dependent and neuron-specific liabilities warrant caution on the long-term safety of treating individuals with SMA with AAV9-SMN and the risks of uncontrolled protein expression by gene therapy.


Assuntos
Neurônios Motores/metabolismo , Neurônios Motores/patologia , Degeneração Neural , Proteína 1 de Sobrevivência do Neurônio Motor/toxicidade , Animais , Dependovirus , Gânglios Espinais/metabolismo , Gânglios Espinais/patologia , Técnicas de Transferência de Genes , Terapia Genética/efeitos adversos , Vetores Genéticos , Injeções Intraventriculares , Camundongos , Transtornos Motores/genética , Transtornos Motores/metabolismo , Transtornos Motores/patologia , Degeneração Neural/genética , Degeneração Neural/metabolismo , Degeneração Neural/patologia , Proteína 1 de Sobrevivência do Neurônio Motor/genética
12.
Neurotherapeutics ; 18(2): 1095-1112, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33786804

RESUMO

Vascular dementia is one of the most common forms of dementia in aging population. However, the molecular mechanisms involved in development of disease and the link between the cerebrovascular pathology and the cognitive impairments remain elusive. Currently, one common and/or converging neuropathological pathway leading to dementia is the mislocalization and altered functionality of the TDP-43. We recently demonstrated that brain ischemia triggers an age-dependent deregulation of TDP-43 that was associated with exacerbated neurodegeneration. Here, we report that chronic cerebral hypoperfusion in mice (CCH) produced by unilateral common carotid artery occlusion induces cytoplasmic mislocalization of TDP-43 and formation of insoluble phosho-TDP-43 aggregates reminiscent of pathological changes detected in cortical neurons of human brain samples from patients suffering from vascular dementia. Moreover, the CCH in mice caused chronic activation of microglia and innate immune response, development of cognitive deficits, and motor impairments. Oral administration of a novel analog (IMS-088) of withaferin A, an antagonist of nuclear factor-κB essential modulator (NEMO), led to mitigation of TDP-43 pathology, enhancement of autophagy, and amelioration of cognitive/motor deficits in CCH mice. Taken together, our results suggest that targeting TDP-43 pathogenic inclusions may have a disease-modifying effect in dementia caused by chronic brain hypoperfusion.


Assuntos
Circulação Cerebrovascular/efeitos dos fármacos , Transtornos Cerebrovasculares/genética , Disfunção Cognitiva/genética , Proteínas de Ligação a DNA/genética , Transtornos Motores/genética , Proteinopatias TDP-43/genética , Animais , Circulação Cerebrovascular/fisiologia , Transtornos Cerebrovasculares/tratamento farmacológico , Transtornos Cerebrovasculares/patologia , Doença Crônica , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/patologia , Sistemas de Liberação de Medicamentos/métodos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Transtornos Motores/tratamento farmacológico , Transtornos Motores/patologia , Proteinopatias TDP-43/tratamento farmacológico , Proteinopatias TDP-43/patologia , Vitanolídeos/administração & dosagem , Vitanolídeos/química
13.
Neurobiol Dis ; 154: 105342, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33757902

RESUMO

Dystonia is a neurological movement disorder characterized by sustained or intermittent muscle contractions, repetitive movement, and sometimes abnormal postures. DYT1 dystonia is one of the most common genetic dystonias, and most patients carry heterozygous DYT1 ∆GAG mutations causing a loss of a glutamic acid of the protein torsinA. Patients can be treated with anticholinergics, such as trihexyphenidyl, suggesting an abnormal cholinergic state. Early work on the cell-autonomous effects of Dyt1 deletion with ChI-specific Dyt1 conditional knockout mice (Dyt1 Ch1KO) revealed abnormal electrophysiological responses of striatal ChIs to muscarine and quinpirole, motor deficits, and no changes in the number or size of the ChIs. However, the Chat-cre line that was used to derive Dyt1 Ch1KO mice contained a neomycin cassette and was reported to have ectopic cre-mediated recombination. In this study, we generated a Dyt1 Ch2KO mouse line by removing the neomycin cassette in Dyt1 Ch1KO mice. The Dyt1 Ch2KO mice showed abnormal paw clenching behavior, motor coordination and balance deficits, impaired motor learning, reduced striatal choline acetyltransferase protein level, and a reduced number of striatal ChIs. Furthermore, the mutant striatal ChIs had a normal muscarinic inhibitory function, impaired quinpirole-mediated inhibition, and altered current density. Our findings demonstrate a cell-autonomous effect of Dyt1 deletion on the striatal ChIs and a critical role for the striatal ChIs and corticostriatal pathway in the pathogenesis of DYT1 dystonia.


Assuntos
Neurônios Colinérgicos/metabolismo , Chaperonas Moleculares/antagonistas & inibidores , Chaperonas Moleculares/genética , Transtornos Motores/genética , Transtornos Motores/metabolismo , Animais , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Neurônios Colinérgicos/patologia , Corpo Estriado/metabolismo , Corpo Estriado/patologia , Feminino , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Chaperonas Moleculares/biossíntese , Transtornos Motores/patologia
14.
Am J Med Genet A ; 185(5): 1399-1413, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33559393

RESUMO

In CLN3 disease, impairments in motor function are frequently reported to have later onset compared to visual and cognitive decline, but upper limb motor function has yet to be explored in this population. In a cohort of 22 individuals with CLN3, we used a novel application of multiple measures to (1) characterize motor function, particularly of the upper limbs, in activities of daily living (ADLs), and (2) explore associations between motor function and age as well as visual ability, disease severity, and cognitive function, as evaluated by the Unified Batten Disease Rating Scale (UBDRS), a validated CLN3 disease measure. ADLs that required coordination, speed, and fine motor control were particularly challenging for children with CLN3 based on item-level performance across direct assessments (Jebsen-Taylor Hand Function Test [JTHFT] and MyoSet Tools) and caregiver reports (Pediatric Evaluation of Disability Inventory-Computer Adaptive Testing [PEDI-CAT] and Patient-Reported Outcomes Measurement Information System [PROMIS] Pediatric Upper Extremity). Poorer visual ability, disease severity, and cognitive function were associated with worse performance on these measures, whereas age had limited impact. These findings support the need for children with CLN3 to receive skilled clinical evaluation and treatment tailored to their individual needs, particularly in the context of ADLs, as their symptom profile progresses.


Assuntos
Atividades Cotidianas , Glicoproteínas de Membrana/genética , Chaperonas Moleculares/genética , Transtornos Motores/terapia , Extremidade Superior/fisiopatologia , Adolescente , Criança , Pré-Escolar , Disfunção Cognitiva/genética , Disfunção Cognitiva/patologia , Humanos , Transtornos Motores/genética , Transtornos Motores/fisiopatologia , Acuidade Visual/genética , Acuidade Visual/fisiologia
15.
Int J Mol Sci ; 21(21)2020 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-33114041

RESUMO

Diacylglycerol kinase γ (DGKγ) is a lipid kinase to convert diacylglycerol (DG) to phosphatidic acid (PA) and indirectly regulates protein kinase C γ (PKCγ) activity. We previously reported that the basal PKCγ upregulation impairs cerebellar long-term depression (LTD) in the conventional DGKγ knockout (KO) mice. However, the precise mechanism in impaired cerebellar LTD by upregulated PKCγ has not been clearly understood. Therefore, we first produced Purkinje cell-specific DGKγ KO (tm1d) mice to investigate the specific function of DGKγ in Purkinje cells and confirmed that tm1d mice showed cerebellar motor dysfunction in the rotarod and beam tests, and the basal PKCγ upregulation but not PKCα in the cerebellum of tm1d mice. Then, the LTD-induced chemical stimulation, K-glu (50 mM KCl + 100 µM, did not induce phosphorylation of PKCα and dissociation of GluR2 and glutamate receptor interacting protein (GRIP) in the acute cerebellar slices of tm1d mice. Furthermore, treatment with the PKCγ inhibitor, scutellarin, rescued cerebellar LTD, with the phosphorylation of PKCα and the dissociation of GluR2 and GRIP. In addition, nonselective transient receptor potential cation channel type 3 (TRPC3) was negatively regulated by upregulated PKCγ. These results demonstrated that DGKγ contributes to cerebellar LTD by regulation of the basal PKCγ activity.


Assuntos
Cerebelo/fisiopatologia , Diacilglicerol Quinase/genética , Transtornos Motores/genética , Proteína Quinase C/metabolismo , Regulação para Cima , Animais , Apigenina/farmacologia , Diacilglicerol Quinase/metabolismo , Técnicas de Inativação de Genes , Glucuronatos/farmacologia , Depressão Sináptica de Longo Prazo/efeitos dos fármacos , Camundongos , Transtornos Motores/metabolismo , Transtornos Motores/fisiopatologia , Fosforilação , Células de Purkinje , Receptores de AMPA/metabolismo , Teste de Desempenho do Rota-Rod
16.
Sci Rep ; 10(1): 14945, 2020 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-32913245

RESUMO

Cerebellar ataxia is a neurodegenerative disorder with no definitive treatment. Although several studies have demonstrated the neuroprotective effects of Hericium erinaceus (H.E.), its mechanisms in cerebellar ataxia remain largely unknown. Here, we investigated the neuroprotective effects of H.E. treatment in an animal model of 3-acetylpyridine (3-AP)-induced cerebellar ataxia. Animals administered 3-AP injection exhibited remarkable impairments in motor coordination and balance. There were no significant effects of 25 mg/kg H.E. on the 3-AP treatment group compared to the 3-AP saline group. Interestingly, there was also no significant difference in the 3-AP treatment group compared to the non-3-AP control, indicating a potential rescue of motor deficits. Our results revealed that 25 mg/kg H.E. normalised the neuroplasticity-related gene expression to the level of non-3-AP control. These findings were further supported by increased protein expressions of pERK1/2-pCREB-PSD95 as well as neuroprotective effects on cerebellar Purkinje cells in the 3-AP treatment group compared to the 3-AP saline group. In conclusion, our findings suggest that H.E. potentially rescued behavioural motor deficits through the neuroprotective mechanisms of ERK-CREB-PSD95 in an animal model of 3-AP-induced cerebellar ataxia.


Assuntos
Comportamento Animal/efeitos dos fármacos , Ataxia Cerebelar/tratamento farmacológico , Hericium/crescimento & desenvolvimento , Transtornos Motores/prevenção & controle , Fármacos Neuroprotetores/farmacologia , Neurotoxinas/toxicidade , Piridinas/toxicidade , Animais , Ataxia Cerebelar/induzido quimicamente , Ataxia Cerebelar/psicologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Modelos Animais de Doenças , Proteína 4 Homóloga a Disks-Large/genética , Proteína 4 Homóloga a Disks-Large/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Hericium/química , Masculino , Transtornos Motores/genética , Transtornos Motores/metabolismo , Transtornos Motores/patologia , Células de Purkinje/efeitos dos fármacos , Células de Purkinje/patologia , Ratos , Ratos Sprague-Dawley
17.
Sci Rep ; 10(1): 14475, 2020 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-32879382

RESUMO

Intracellular Ca2+ levels are changed by influx from extracellular medium and release from intracellular stores. In the central nervous systems, Ca2+ release is involved in various physiological events, such as neuronal excitability and transmitter release. Although stable Ca2+ release in response to stimulus is critical for proper functions of the nervous systems, regulatory mechanisms relating to Ca2+ release are not fully understood in central neurons. Here, we demonstrate that ShcB, an adaptor protein expressed in central neurons, has an essential role in functional maintenance of Ca2+ store in cerebellar Purkinje cells (PCs). ShcB-knockout (KO) mice showed defects in cerebellar-dependent motor function and long-term depression (LTD) at cerebellar synapse. The reduced LTD was accompanied with an impairment of intracellular Ca2+ release. Although the expression of Ca2+ release channels and morphology of Ca2+ store looked intact, content of intracellular Ca2+ store and activity of sarco/endoplasmic reticular Ca2+-ATPase (SERCA) were largely decreased in the ShcB-deficient cerebellum. Furthermore, when ShcB was ectopically expressed in the ShcB-KO PCs, the Ca2+ release and its SERCA-dependent component were restored. These data indicate that ShcB plays a key role in the functional maintenance of ER Ca2+ store in central neurons through regulation of SERCA activity.


Assuntos
Cerebelo/metabolismo , Depressão Sináptica de Longo Prazo/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , Proteína 2 de Transformação que Contém Domínio 2 de Homologia de Src/genética , Sinapses/genética , Animais , Cálcio/metabolismo , Sinalização do Cálcio/genética , Cerebelo/patologia , Retículo Endoplasmático/genética , Humanos , Camundongos , Camundongos Knockout , Transtornos Motores/genética , Transtornos Motores/fisiopatologia , Plasticidade Neuronal/genética , Células de Purkinje/metabolismo , Células de Purkinje/patologia
18.
Neurology ; 95(15): e2131-e2139, 2020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-32764098

RESUMO

OBJECTIVE: To test the hypothesis that we will be able to detect change in motor outcome measures over time in a cohort with mutations in FKRP. METHODS: Individuals with documented FKRP mutations were evaluated annually with a battery of established motor outcome measures including limited quantitative myometry and timed function measures. Results were analyzed using random coefficient regression to determine annual change in each measure. Due to the nonlinear progression through the lifespan of the study participants, pediatric (<19 years) and adult (≥19 years) cohorts were analyzed separately. Effect of genotype was evaluated in each cohort. RESULTS: Sixty-nine participants (30 pediatric, 44 adult) with at least 2 evaluations were included. There was a small but statistically significant decline in timed motor function measures in both pediatric and adult cohorts. Genotype significantly affected rate of decline in the pediatric but not the adult cohort. Some pediatric patients who are homozygous for the c.826C>A mutation showed improving motor performance in adolescence. Performance on the 10-meter walk/run was highly correlated with other timed function tests. CONCLUSIONS: There is a slow annual decline in motor function in adults with FKRP mutations that can be detected with standard motor outcome measures, while the results in the pediatric population were more variable and affected by genotype. Overall, these analyses provide a framework for development of future clinical trials. The dystroglycanopathies natural history study (Clinical Trial Readiness for the Dystroglycanopathies) may be found on clinicaltrials.gov (NCT00313677).


Assuntos
Progressão da Doença , Transtornos Motores/genética , Mutação , Pentosiltransferases/genética , Adolescente , Adulto , Criança , Avaliação da Deficiência , Feminino , Genótipo , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Adulto Jovem
19.
Neurotherapeutics ; 17(4): 1366-1377, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32749651

RESUMO

Early descriptions of subtypes of Parkinson's disease (PD) are dominated by the approach of predetermined groups. Experts defined, from clinical observation, groups based on clinical or demographic features that appeared to divide PD into clinically distinct subsets. Common bases on which to define subtypes have been motor phenotype (tremor dominant vs akinetic-rigid or postural instability gait disorder types), age, nonmotor dominant symptoms, and genetic forms. Recently, data-driven approaches have been used to define PD subtypes, taking an unbiased statistical approach to the identification of PD subgroups. The vast majority of data-driven subtyping has been done based on clinical features. Biomarker-based subtyping is an emerging but still quite undeveloped field. Not all of the subtyping methods have established therapeutic implications. This may not be surprising given that they were born largely from clinical observations of phenotype and not in observations regarding treatment response or biological hypotheses. The next frontier for subtypes research as it applies to personalized medicine in PD is the development of genotype-specific therapies. Therapies for GBA-PD and LRRK2-PD are already under development. This review discusses each of the major subtyping systems/methods in terms of its applicability to therapy in PD, and the opportunities and challenges designing clinical trials to develop the evidence base for personalized medicine based on subtypes.


Assuntos
Doença de Parkinson/genética , Doença de Parkinson/terapia , Biomarcadores , Transtornos Neurológicos da Marcha/classificação , Transtornos Neurológicos da Marcha/diagnóstico , Transtornos Neurológicos da Marcha/genética , Transtornos Neurológicos da Marcha/terapia , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Transtornos Motores/classificação , Transtornos Motores/diagnóstico , Transtornos Motores/genética , Transtornos Motores/terapia , Doença de Parkinson/classificação , Doença de Parkinson/diagnóstico
20.
Eur J Paediatr Neurol ; 28: 29-37, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32807681

RESUMO

Rett syndrome (RTT) is neurodevelopmental disorder affecting approximately 1:10000-15000 live female births, commonly associated with MECP2 gene mutations. Hand stereotypies and gait disturbance, as well as spasticity and dystonia, were noted in RTT since first descriptions. This review aimed to explore the prevalence of reported movement disorders in RTT. DATA SOURCES AND EXTRACTION: Pubmed and Embase databases for papers describing features of movement disorders in RTT. Papers were selected if included description of case report, cohort or case-series of patients with RTT including descriptions of clinical features of their movement disorder. Papers were divided into 3 epochs - i) Pre-1999,ii) 2000-2009, and iii) 2010 onwards. RESULTS: 32 studies (13 in the first, 10 in the second and 9 in the third epochs) reported on movement disorders in RTT. Hand stereotypies were almost universal, diminishing but not disappearing over time. Gait disturbance and ataxia/tremor were also very common (>50% cases). Hypertonia was also often reported, increasing with age. In earlier descriptions spasticity was commonly described, with greater reference to dystonia/rigidity in more recent reports. Myoclonus and choreoathetosis were uncommonly reported. CONCLUSIONS: Movement disorders beyond hand stereotypies are common in RTT, most notably tremor. Hypertonia is frequently seen in RTT, increasing in prevalence with age, with apparent changes in nomenclature over time, (i.e early epoch spasticity, late epoch dystonia). Dystonia was specifically reported in 229/417 cases. Further work is required to explore the relative contribution of dystonia and rigidity to hypertonia in RTT, as well as the impact of these impairments when present.


Assuntos
Transtornos Motores/genética , Transtornos dos Movimentos/genética , Síndrome de Rett/complicações , Adulto , Feminino , Humanos , Masculino , Transtornos Motores/epidemiologia , Transtornos dos Movimentos/complicações , Transtornos dos Movimentos/epidemiologia , Prevalência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...