Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.888
Filtrar
1.
BMJ Open ; 14(5): e081317, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38692728

RESUMO

INTRODUCTION: Gait and mobility impairment are pivotal signs of parkinsonism, and they are particularly severe in atypical parkinsonian disorders including multiple system atrophy (MSA) and progressive supranuclear palsy (PSP). A pilot study demonstrated a significant improvement of gait in patients with MSA of parkinsonian type (MSA-P) after physiotherapy and matching home-based exercise, as reflected by sensor-based gait parameters. In this study, we aim to investigate whether a gait-focused physiotherapy (GPT) and matching home-based exercise lead to a greater improvement of gait performance compared with a standard physiotherapy/home-based exercise programme (standard physiotherapy, SPT). METHODS AND ANALYSIS: This protocol was deployed to evaluate the effects of a GPT versus an active control undergoing SPT and matching home-based exercise with regard to laboratory gait parameters, physical activity measures and clinical scales in patients with Parkinson's disease (PD), MSA-P and PSP. The primary outcomes of the trial are sensor-based laboratory gait parameters, while the secondary outcome measures comprise real-world derived parameters, clinical rating scales and patient questionnaires. We aim to enrol 48 patients per disease group into this double-blind, randomised-controlled trial. The study starts with a 1 week wearable sensor-based monitoring of physical activity. After randomisation, patients undergo a 2 week daily inpatient physiotherapy, followed by 5 week matching unsupervised home-based training. A 1 week physical activity monitoring is repeated during the last week of intervention. ETHICS AND DISSEMINATION: This study, registered as 'Mobility in Atypical Parkinsonism: a Trial of Physiotherapy (Mobility_APP)' at clinicaltrials.gov (NCT04608604), received ethics approval by local committees of the involved centres. The patient's recruitment takes place at the Movement Disorders Units of Innsbruck (Austria), Erlangen (Germany), Lausanne (Switzerland), Luxembourg (Luxembourg) and Bolzano (Italy). The data resulting from this project will be submitted to peer-reviewed journals, presented at international congresses and made publicly available at the end of the trial. TRIAL REGISTRATION NUMBER: NCT04608604.


Assuntos
Terapia por Exercício , Transtornos Parkinsonianos , Modalidades de Fisioterapia , Humanos , Terapia por Exercício/métodos , Transtornos Parkinsonianos/reabilitação , Transtornos Parkinsonianos/terapia , Método Duplo-Cego , Ensaios Clínicos Controlados Aleatórios como Assunto , Marcha , Doença de Parkinson/reabilitação , Doença de Parkinson/terapia , Atrofia de Múltiplos Sistemas/reabilitação , Atrofia de Múltiplos Sistemas/terapia , Paralisia Supranuclear Progressiva/terapia , Paralisia Supranuclear Progressiva/reabilitação , Serviços de Assistência Domiciliar , Idoso , Masculino , Feminino , Transtornos Neurológicos da Marcha/reabilitação , Transtornos Neurológicos da Marcha/etiologia
2.
J Neuroeng Rehabil ; 21(1): 76, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38745235

RESUMO

BACKGROUND: Gait disorder remains a major challenge for individuals with stroke, affecting their quality of life and increasing the risk of secondary complications. Robot-assisted gait training (RAGT) has emerged as a promising approach for improving gait independence in individuals with stroke. This study aimed to evaluate the effect of RAGT in individuals with subacute hemiparetic stroke using a one-leg assisted gait robot called Welwalk WW-1000. METHODS: An assessor-blinded, multicenter randomized controlled trial was conducted in the convalescent rehabilitation wards of eight hospitals in Japan. Participants with first-ever hemiparetic stroke who could not walk at pre-intervention assessment were randomized to either the Welwalk group, which underwent RAGT with conventional physical therapy, or the control group, which underwent conventional physical therapy alone. Both groups received 80 min of physical therapy per day, 7 days per week, while the Welwalk group received 40 min of RAGT per day, 6 days per week, as part of their physical therapy. The primary outcome was gait independence, as assessed using the Functional Independence Measure Walk Score. RESULTS: A total of 91 participants were enrolled, 85 of whom completed the intervention. As a result, 91 participants, as a full analysis set, and 85, as a per-protocol set, were analyzed. The primary outcome, the cumulative incidence of gait-independent events, was not significantly different between the groups. Subgroup analysis revealed that the interaction between the intervention group and stroke type did not yield significant differences in either the full analysis or per-protocol set. However, although not statistically significant, a discernible trend toward improvement with Welwalk was observed in cases of cerebral infarction for the full analysis and per-protocol sets (HR 4.167 [95%CI 0.914-18.995], p = 0.065, HR 4.443 [95%CI 0.973-20.279], p = 0.054, respectively). CONCLUSIONS: The combination of RAGT using Welwalk and conventional physical therapy was not significantly more effective than conventional physical therapy alone in promoting gait independence in individuals with subacute hemiparetic stroke, although a trend toward earlier gait independence was observed in individuals with cerebral infarction. TRIAL REGISTRATION: This study was registered with the Japan Registry of Clinical Trials ( https://jrct.niph.go.jp ; jRCT 042180078) on March 3, 2019.


Assuntos
Transtornos Neurológicos da Marcha , Paresia , Robótica , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Humanos , Masculino , Reabilitação do Acidente Vascular Cerebral/métodos , Reabilitação do Acidente Vascular Cerebral/instrumentação , Feminino , Idoso , Robótica/métodos , Robótica/instrumentação , Pessoa de Meia-Idade , Transtornos Neurológicos da Marcha/reabilitação , Transtornos Neurológicos da Marcha/etiologia , Paresia/reabilitação , Paresia/etiologia , Acidente Vascular Cerebral/complicações , Marcha/fisiologia , Terapia por Exercício/métodos , Terapia por Exercício/instrumentação , Método Simples-Cego , Modalidades de Fisioterapia/instrumentação , Resultado do Tratamento
3.
J Neuroeng Rehabil ; 21(1): 73, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38705999

RESUMO

BACKGROUND: Exoskeletons are increasingly applied during overground gait and balance rehabilitation following neurological impairment, although optimal parameters for specific indications are yet to be established. OBJECTIVE: This systematic review aimed to identify dose and dosage of exoskeleton-based therapy protocols for overground locomotor training in spinal cord injury/disease. METHODS: A systematic review was conducted in accordance with the Preferred Reporting Items Systematic Reviews and Meta-Analyses guidelines. A literature search was performed using the CINAHL Complete, Embase, Emcare Nursing, Medline ALL, and Web of Science databases. Studies in adults with subacute and/or chronic spinal cord injury/disease were included if they reported (1) dose (e.g., single session duration and total number of sessions) and dosage (e.g., frequency of sessions/week and total duration of intervention) parameters, and (2) at least one gait and/or balance outcome measure. RESULTS: Of 2,108 studies identified, after removing duplicates and filtering for inclusion, 19 were selected and dose, dosage and efficacy were abstracted. Data revealed a great heterogeneity in dose, dosage, and indications, with overall recommendation of 60-min sessions delivered 3 times a week, for 9 weeks in 27 sessions. Specific protocols were also identified for functional restoration (60-min, 3 times a week, for 8 weeks/24 sessions) and cardiorespiratory rehabilitation (60-min, 3 times a week, for 12 weeks/36 sessions). CONCLUSION: This review provides evidence-based best practice recommendations for overground exoskeleton training among individuals with spinal cord injury/disease based on individual therapeutic goals - functional restoration or cardiorespiratory rehabilitation. There is a need for structured exoskeleton clinical translation studies based on standardized methods and common therapeutic outcomes.


Assuntos
Terapia por Exercício , Exoesqueleto Energizado , Equilíbrio Postural , Traumatismos da Medula Espinal , Traumatismos da Medula Espinal/reabilitação , Humanos , Equilíbrio Postural/fisiologia , Terapia por Exercício/métodos , Terapia por Exercício/instrumentação , Marcha/fisiologia , Transtornos Neurológicos da Marcha/reabilitação , Transtornos Neurológicos da Marcha/etiologia
4.
Int J Rehabil Res ; 47(2): 75-80, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38595089

RESUMO

Practicing walking in a safety suspension device allows patients to move freely and without excessive reliance on a therapist, which requires correcting errors and may facilitate motor learning. This opens the possibility that patients with subacute stroke may improve their walking ability more rapidly. Therefore, we tested the hypothesis that overground gait training in a safety suspension device will result in achieving faster supervision-level walking than gait training without the suspension device. Twenty-seven patients with stroke admitted to the rehabilitation ward with functional ambulation categories (FAC) score of 2 at admission were randomly allocated to safety suspension-device group (SS group) or conventional assisted-gait training group (control group). In addition to regular physical therapy, each group underwent additional gait training for 60 min a day, 5 days a week for 4 weeks. We counted the days until reaching a FAC score of 3 and assessed the probability using Cox regression models. The median days required to reach a FAC score of 3 were 7 days for the SS group and 17.5 days for the control group, which was significantly different between the groups ( P  < 0.05). The SS group had a higher probability of reaching a FAC score of 3 after adjusting for age and admission motor impairment (hazard ratio = 3.61, 95% confidence interval = 1.40-9.33, P  < 0.01). The gait training with a safety suspension device accelerates reaching the supervision-level walking during inpatient rehabilitation. We speculate that a safety suspension device facilitated learning by allowing errors to be experienced and correct in a safe environment.


Assuntos
Reabilitação do Acidente Vascular Cerebral , Caminhada , Humanos , Masculino , Reabilitação do Acidente Vascular Cerebral/instrumentação , Reabilitação do Acidente Vascular Cerebral/métodos , Feminino , Pessoa de Meia-Idade , Idoso , Transtornos Neurológicos da Marcha/reabilitação , Marcha/fisiologia , Acidente Vascular Cerebral , Terapia por Exercício/instrumentação
5.
NeuroRehabilitation ; 54(3): 485-494, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38669489

RESUMO

BACKGROUND: Stroke often induces gait abnormality, such as buckling knee pattern, compromising walking ability. Previous studies indicated that an adequate trailing limb angle (TLA) is critical for recovering walking ability. OBJECTIVE: We hypothesized that correcting gait abnormality by immobilizing the knee joint using a knee orthosis (KO) would improve walking patterns and increase the TLA, and investigated whether walking training using a KO would increase the TLA in post-stroke patients. METHODS: In a randomized controlled trial, thirty-four participants were assigned to KO (walking training using a KO) and non-KO (without using a KO) groups. Twenty-nine completed the three-week gait training protocol. TLA was measured at baseline and after training. A two-way repeated ANOVA was performed to evaluate TLA increases with training type and time as test factors. A t-test compared TLA changes (ΔTLA) between the two groups. RESULTS: ANOVA showed a main effect for time (F = 64.5, p < 0.01) and interaction (F = 15.4, p < 0.01). ΔTLA was significantly higher in the KO group (14.6±5.8) than in the non-KO group (5.0±7.0, p < 0.001). CONCLUSION: Walking training using a KO may be practical and effective for increasing TLA in post-stroke patients.


Assuntos
Hemiplegia , Aparelhos Ortopédicos , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Hemiplegia/reabilitação , Hemiplegia/etiologia , Idoso , Reabilitação do Acidente Vascular Cerebral/métodos , Acidente Vascular Cerebral/complicações , Transtornos Neurológicos da Marcha/reabilitação , Transtornos Neurológicos da Marcha/etiologia , Caminhada/fisiologia , Articulação do Joelho/fisiopatologia , Adulto , Resultado do Tratamento , Fenômenos Biomecânicos
6.
Medicina (Kaunas) ; 60(4)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38674266

RESUMO

Robot-assisted gait training (RAGT) is at the cutting edge of stroke rehabilitation, offering a groundbreaking method to improve motor recovery and enhance the quality of life for stroke survivors. This review investigates the effectiveness and application of various RAGT systems, including both end-effector and exoskeleton robots, in facilitating gait enhancements. The selection process for this comprehensive analysis involved a meticulous review of the literature from databases such as PubMed, the Cochrane Library, and EMBASE, focusing on studies published between 2018 and 2023. Ultimately, 27 studies met the criteria and were included in the final analysis. The focus of these studies was on the various RAGT systems and their role in promoting gait and balance improvements. The results of these studies conclusively show that patients experience significant positive effects from RAGT, and when combined with other physiotherapy methods, the outcomes are notably superior in enhancing functional ambulation and motor skills. This review emphasizes RAGT's capability to deliver a more customized and effective rehabilitation experience, highlighting the importance of tailoring interventions to meet the specific needs of each patient.


Assuntos
Robótica , Reabilitação do Acidente Vascular Cerebral , Humanos , Reabilitação do Acidente Vascular Cerebral/métodos , Reabilitação do Acidente Vascular Cerebral/instrumentação , Robótica/métodos , Marcha/fisiologia , Terapia por Exercício/métodos , Transtornos Neurológicos da Marcha/reabilitação , Transtornos Neurológicos da Marcha/etiologia , Exoesqueleto Energizado , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/fisiopatologia
7.
J Neuroeng Rehabil ; 21(1): 62, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658969

RESUMO

BACKGROUND: Stroke remains a major cause of long-term adult disability in the United States, necessitating the need for effective rehabilitation strategies for post-stroke gait impairments. Despite advancements in post-stroke care, existing rehabilitation often falls short, prompting the development of devices like robots and exoskeletons. However, these technologies often lack crucial input from end-users, such as clinicians, patients, and caregivers, hindering their clinical utility. Employing a human-centered design approach can enhance the design process and address user-specific needs. OBJECTIVE: To establish a proof-of-concept of the human-centered design approach by refining the NewGait® exosuit device for post-stroke gait rehabilitation. METHODS: Using iterative design sprints, the research focused on understanding the perspectives of clinicians, stroke survivors, and caregivers. Two design sprints were conducted, including empathy interviews at the beginning of the design sprint to integrate end-users' insights. After each design sprint, the NewGait device underwent refinements based on emerging issues and recommendations. The final prototype underwent mechanical testing for durability, biomechanical simulation testing for clinical feasibility, and a system usability evaluation, where the new stroke-specific NewGait device was compared with the original NewGait device and a commercial product, Theratogs®. RESULTS: Affinity mapping from the design sprints identified crucial categories for stakeholder adoption, including fit for females, ease of donning and doffing, and usability during barefoot walking. To address these issues, a system redesign was implemented within weeks, incorporating features like a loop-backed neoprene, a novel closure mechanism for the shoulder harness, and a hook-and-loop design for the waist belt. Additional improvements included reconstructing anchors with rigid hook materials and replacing latex elastic bands with non-latex silicone-based bands for enhanced durability. Further, changes to the dorsiflexion anchor were made to allow for barefoot walking. Mechanical testing revealed a remarkable 10-fold increase in durability, enduring 500,000 cycles without notable degradation. Biomechanical simulation established the modularity of the NewGait device and indicated that it could be configured to assist or resist different muscles during walking. Usability testing indicated superior performance of the stroke-specific NewGait device, scoring 84.3 on the system usability scale compared to 62.7 for the original NewGait device and 46.9 for Theratogs. CONCLUSION: This study successfully establishes the proof-of-concept for a human-centered design approach using design sprints to rapidly develop a stroke-specific gait rehabilitation system. Future research should focus on evaluating the clinical efficacy and effectiveness of the NewGait device for post-stroke rehabilitation.


Assuntos
Desenho de Equipamento , Exoesqueleto Energizado , Transtornos Neurológicos da Marcha , Reabilitação do Acidente Vascular Cerebral , Humanos , Reabilitação do Acidente Vascular Cerebral/instrumentação , Reabilitação do Acidente Vascular Cerebral/métodos , Transtornos Neurológicos da Marcha/reabilitação , Transtornos Neurológicos da Marcha/etiologia , Design Centrado no Usuário , Feminino , Fenômenos Biomecânicos , Masculino , Pessoa de Meia-Idade , Robótica/instrumentação , Cuidadores
8.
Brain Inj ; 38(7): 559-568, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38469745

RESUMO

OBJECTIVE: To evaluate the effects of Lower Extremity - Constraint Induced Movement Therapy on gait function and balance in chronic hemiparetic patients. METHODS: Randomized, controlled, single-blinded study. We recruited chronic post stroke patients and allocated them to Lower Extremity - Constraint Induced Movement Tharapy (LE-CIMT) or Control Group. The LE-CIMT group received this protocol 2.5 hour/day for 15 followed days, including: 1) intensive supervised training, 2) use of shaping as a strategy for motor training, and 3) application of a transfer package. The control group received conventional physiotherapy for 2.5 hours/day for 15 followed days. Outcomes were assessed at baseline, after the interventions, and after 6 months, through 6-minute walk test and Mini-Balance Evaluation Systems Test; 10-meter walk test, Timed Up and Go, 3-D gait analysis, and Lower Extremity - Motor Activity Log. RESULTS: LE-CIMT was superior on the Assistance and confidence subscale of Lower Extremity - Motor Activity Log, Mini-BESTest and 6-minute walk test. The effect size for all outcomes was small when comparing both groups. LE-CIMT showed clinically significant differences in daily activities, balance, and gait capacity, with no clinically significant difference for spatiotemporal parameters. CONCLUSION: The LE-CIMT protocol had positive outcomes on balance, performance, and confidence perception.


Assuntos
Extremidade Inferior , Equilíbrio Postural , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Reabilitação do Acidente Vascular Cerebral/métodos , Equilíbrio Postural/fisiologia , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/fisiopatologia , Idoso , Método Simples-Cego , Extremidade Inferior/fisiopatologia , Resultado do Tratamento , Marcha/fisiologia , Terapia por Exercício/métodos , Recuperação de Função Fisiológica/fisiologia , Transtornos Neurológicos da Marcha/reabilitação , Transtornos Neurológicos da Marcha/etiologia , Transtornos Neurológicos da Marcha/fisiopatologia , Adulto , Doença Crônica
9.
J Parkinsons Dis ; 14(3): 601-607, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38517803

RESUMO

Gait disorders are a disabling feature of Parkinson's disease (PD). To avoid falls, people with PD should be able to adequately adapt their gait. This requires correct response inhibition and integration of visual information. In this small pilot study, we investigated PD-related impairments in gait adaptability and the influence of ocular disorders thereon. Compared with controls, persons with PD were less able to adapt their gait in unexpected situations (U = 21.5, p = 0.013), with only a small influence of ocular disorders on precision stepping (U = 6, p = 0.012 in the ML-direction and in the AP-direction, (U = 20, p = 0.456). This shows that people with PD have more difficulty with precision stepping than healthy controls and experience more problems with adapting their gait. We found only a small impact of ocular disorders on successfully execute precision stepping. The ability to adapt gait, particularly in challenging environmental conditions or with impaired vision, may provide a useful assessment and training option for fall prevention in PD.


Assuntos
Transtornos Neurológicos da Marcha , Doença de Parkinson , Caminhada , Humanos , Doença de Parkinson/complicações , Doença de Parkinson/fisiopatologia , Idoso , Masculino , Feminino , Projetos Piloto , Transtornos Neurológicos da Marcha/etiologia , Transtornos Neurológicos da Marcha/fisiopatologia , Transtornos Neurológicos da Marcha/reabilitação , Pessoa de Meia-Idade , Caminhada/fisiologia , Adaptação Fisiológica/fisiologia , Marcha/fisiologia , Acidentes por Quedas/prevenção & controle
10.
J Intellect Disabil Res ; 68(6): 598-609, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38481070

RESUMO

BACKGROUND: Altered gait patterns and reduced walking speed are commonly reported in adults with Down syndrome (DS). Research on the effects of DS-specific exercise programmes on adults with DS is lacking. The purpose of this quasi-experimental study was to evaluate the changes in gait deviations and walking speed in adults with DS after a DS-specific exercise programme. METHODS: Twenty participants underwent a 12-week, DS-specific exercise programme in a telehealth format. Before and after the intervention, gait deviations were assessed with the Ranchos Los Amigos Observational Gait Analysis form, and comfortable walking speed was evaluated with the 4-m walk test. RESULTS: We observed increased comfortable walking speed and reduced gait deviations in the whole gait cycle in adults with DS after the intervention. There were fewer gait deviations during single-leg stance and swing-limb advancement and at the hip, knee and ankle joints after the 12-week exercise programme. CONCLUSIONS: Gait speed and observable gait impairments in adults with DS significantly improved following a 12-week telehealth exercise programme.


Assuntos
Síndrome de Down , Terapia por Exercício , Velocidade de Caminhada , Humanos , Síndrome de Down/fisiopatologia , Síndrome de Down/reabilitação , Síndrome de Down/complicações , Masculino , Feminino , Adulto , Velocidade de Caminhada/fisiologia , Terapia por Exercício/métodos , Adulto Jovem , Telemedicina/métodos , Transtornos Neurológicos da Marcha/reabilitação , Transtornos Neurológicos da Marcha/fisiopatologia , Transtornos Neurológicos da Marcha/etiologia , Pessoa de Meia-Idade , Avaliação de Resultados em Cuidados de Saúde
11.
Pediatr Phys Ther ; 36(2): 285-293, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38349640

RESUMO

PURPOSE: To describe the implementation of an exoskeleton program in a rehabilitation setting using a Design Thinking framework. METHODS: This is a retrospective case series of 3 randomly selected children who participated in skilled physical therapy using a pediatric exoskeleton that occurred on our journey to walking 1 000 000 steps in the exoskeleton devices. Participants ranged in age from 3 to 5 years, and all had neurologic disorders. RESULTS: All participants improved toward achieving their therapy goals, tolerated the exoskeleton well, and had an increased number of steps taken over time. CONCLUSION: The implementation of new technology into pediatric care and an established outpatient therapy clinic is described. The Design Thinking process applies to health care professionals and improves clinical care. Exoskeletons are effective tools for use in pediatric physical therapy.


Assuntos
Exoesqueleto Energizado , Transtornos Neurológicos da Marcha , Procedimentos Cirúrgicos Robóticos , Humanos , Criança , Pré-Escolar , Estudos Retrospectivos , Pacientes Ambulatoriais , Terapia por Exercício , Caminhada , Transtornos Neurológicos da Marcha/reabilitação , Marcha
12.
J Neuroeng Rehabil ; 21(1): 27, 2024 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-38373966

RESUMO

BACKGROUND: Parkinson's disease (PD) is a neurogenerative disorder implicated in dysfunctions of motor functions, particularly gait and balance. Transcranial direct current stimulation (tDCS) is a noninvasive brain stimulation offered as a potential adjuvant therapy for PD. This systematic review and meta-analysis were conducted to identify whether tDCS alone and combined with additional rehabilitation therapies improve gait and balance among individuals with PD. METHODS: We searched PubMed, Embase, Web of Science, and relevant databases for eligible studies from inception to December 2022. Studies with a comparative design investigating the effects of tDCS on motor functions, including gait and balance among individuals with PD, were included. A meta-analysis was performed for each outcome using a random effects model for subgroup analysis and pooling of overall effect sizes. RESULTS: A total of 23 studies were included in the meta-analysis. The pooled results revealed that tDCS has moderate overall effects on gait, measured by gait speed (standardized mean deviation [SMD] = 0.238; 95% confidence interval [CI] - 0.026 to 0.502); stride length (SMD = 0.318; 95% CI - 0.015 to 0.652); cadence (SMD = - 0.632; 95% CI - 0.932 to - 0.333); freezing of gait questionnaire scores (SMD = - 0.360; 95% CI - 0.692 to - 0.027); step length (SMD = 0.459; 95% CI - 0.031 to 0.949); walking time (SMD = - 0.253; 95% CI - 0.758 to 0.252); stride time (SMD = - 0.785; 95% CI: - 1.680 to 0.111); double support time (SMD = 1.139; 95% CI - 0.244 to 0.523); and balance, measured by timed up and go (TUG) test (SMD = - 0.294; 95% CI - 0.516 to - 0.073), Berg balance scale (BBS) scores (SMD = 0.406; 95% CI - 0.059 to 0.87), and dynamic gait index (SMD = 0.275; 95% CI - 0.349 to 0.898). For the subgroup analysis, gait and balance demonstrated moderate effect sizes. However, only cadence, stride time, and TUG indicated a significant difference between real and sham tDCS (P = 0.027, P = 0.002, and P = 0.023, respectively), whereas cadence and BBS (P < 0.01 and P = 0.045, respectively) significantly differed after real tDCS plus other therapies rather than after sham tDCS plus other therapies. CONCLUSIONS: Our results indicated that tDCS is significantly associated with gait and balance improvements among individuals with PD. The findings of this study provide more proof supporting the effectiveness of tDCS, encouraging tDCS to be utilized alone or in combination with other therapies in clinical practice for PD rehabilitation.


Assuntos
Transtornos Neurológicos da Marcha , Doença de Parkinson , Estimulação Transcraniana por Corrente Contínua , Humanos , Estimulação Transcraniana por Corrente Contínua/métodos , Transtornos Neurológicos da Marcha/reabilitação , Marcha/fisiologia , Caminhada
13.
Am J Phys Med Rehabil ; 103(5): 444-447, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38261760

RESUMO

ABSTRACT: Welwalk is a one-leg robotic-assisted gait system for stroke hemiplegic patients. This study examined the feasibility and efficacy of gait training using Welwalk (Welwalk training) for hemiplegic patients in the early phase after stroke onset, via cooperation between acute care and rehabilitation hospitals. Seven acute stroke patients (mean number of days from onset = 7.9) with severe lower extremity paralysis participated. Patients underwent Welwalk training for 40 min/d, 5 d/wk in an acute care hospital, then 7 d/wk in a rehabilitation hospital with a seamless transition. Functional Independence Measure scores for walking were assessed weekly. The endpoint was reaching Functional Independence Measure walk score of 5 (supervision level). The primary outcome was improvement efficiency of Functional Independence Measure walk, which was the increase in Functional Independence Measure walk score divided by the number of weeks required. Functional Independence Measure walk score for all patients improved from 1.1 to 5 ( P = 0.01, r = 0.96). The mean number of weeks to achieve Functional Independence Measure walk score of 5 was 5 wks, and the improvement efficiency of Functional Independence Measure walk had a mean value of 0.9. No adverse events were reported during Welwalk training. Hemiparetic patients' gait independence may be safely and rapidly improved by starting Welwalk training in the early phase after stroke onset.


Assuntos
Transtornos Neurológicos da Marcha , Procedimentos Cirúrgicos Robóticos , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Humanos , Projetos Piloto , Estudos Prospectivos , Hemiplegia , Perna (Membro) , Acidente Vascular Cerebral/complicações , Marcha , Caminhada , Transtornos Neurológicos da Marcha/etiologia , Transtornos Neurológicos da Marcha/reabilitação
14.
J Clin Neurosci ; 120: 129-137, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38241771

RESUMO

BACKGROUND: Even though robotic therapy is becoming more commonly used in research protocols for lower limb stroke rehabilitation, there still is a significant gap between research evidence and its use in clinical practice. Therefore, the present study was designed assuming that the wearable mobile gait device training for chronic stroke patients might have different effects on functional independence when compared to training with a stationary gait device. The present study aims to examine the effects of gait training with ExoAthlet exoskeleton and Lokomat Free-D on functional independence, functional capacity, and quality of life in chronic stroke patients. METHODS: The present study included 32 chronic stroke patients. Participants were randomly divided into two groups. Functional independence of patients was evaluated by using Functional Independence Measure (FIM), physical function was assessed by using the 30-second chair stand test (30-CST), functional capacity was measured by using the 6-Minute Walk Test (6MWT), and quality of life was assessed by using Short Form 36 (SF36). All participants underwent a conventional physiotherapy program for eight weeks, three sessions per week, and each session lasted 60 min. After the physiotherapy program, one group received gait training by using ExoAthlet exoskeleton (ExoAtlet 1 model/2019, Russia), while the other group received training by using Lokomat Free-D (Hocoma, Lokomat Pro Free-D model/2015, Switzerland). Participants were assessed at baseline and post-intervention. RESULTS: Results achieved in this study revealed that there was a statistically significant difference between FIM, 30-CST, 6MWT, and SF36 scores before and after the treatment in both groups (p < 0.05).There was no difference in FIM, 30-CST, and 6MWT results between Exoskeleton ExoAthlet and Lokomat Free-D groups (p > 0.05). However, there was a statistically significant difference between Exoskeleton ExoAthlet and Lokomat Free-D groups in terms of SF-36 sub-parameters "vitality", "mental health", "bodily pain", and "general health perception" (p < 0.05). CONCLUSIONS: This study demonstrated that the use of ExoAthlet exoskeleton and Lokomat Free-D in addition to conventional physiotherapy, was effective in improving functional independence, physical function, functional capacity, and quality of life among chronic stroke patients. Incorporation of robotic gait aids into rehabilitation for chronic stroke patients might offer significant advantages.


Assuntos
Transtornos Neurológicos da Marcha , Procedimentos Cirúrgicos Robóticos , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Humanos , Qualidade de Vida , Resultado do Tratamento , Acidente Vascular Cerebral/terapia , Reabilitação do Acidente Vascular Cerebral/métodos , Marcha , Transtornos Neurológicos da Marcha/reabilitação , Caminhada
15.
Technol Health Care ; 32(1): 335-342, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37661897

RESUMO

BACKGROUND: After stroke, gait training is a key component of rehabilitation, and most individuals use a variety of walking aids depending on their physical condition and environment. OBJECTIVE: This study aimed to investigate the potential effect of a one-arm motorized gait device for gait assist of chronic hemiplegic stroke survivors through comparison with traditional gait devices (parallel bar and hemi-walker). METHODS: This study was conducted on 14 chronic hemiplegic stroke survivors. The participants were asked to walk under three conditions using different gait devices, and their gait parameters during walking were collected and analyzed. The first condition involved walking on parallel bars; second condition, walking using hemi-walkers; and third condition, walking using one-arm motorized gait devices. With the use of a gait analysis system, the spatio-temporal gait parameters in each condition were collected, such as gait velocity, cadence, step length, stride length, single support time, and double support time. RESULTS: In the results by repeated-measures ANOVA or the Friedman test, a significant difference was found in the gait parameters among all three conditions (p< 0.05). The post-hoc test showed a significant change in the spatio-temporal gait parameters (especially, velocity, cadence and affected side single and double support time) when one-arm motorized gait device were used compared with parallel bars and hemi-walkers (p< 0.05). CONCLUSION: The results of this study suggest that one-arm motorized gait devices developed for hemiplegic stroke survivors may be more effective potentially than parallel bars and hemi-walkers in gait assistance of chronic hemiplegic stroke survivors.


Assuntos
Transtornos Neurológicos da Marcha , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Humanos , Hemiplegia/reabilitação , Marcha , Acidente Vascular Cerebral/complicações , Caminhada , Sobreviventes , Transtornos Neurológicos da Marcha/reabilitação
16.
Ann Phys Rehabil Med ; 67(1): 101785, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38118342

RESUMO

BACKGROUND: Improving walking ability is one of the main goals of rehabilitation after stroke. When lower limb spasticity increases walking difficulty, botulinum toxin type A (BTx-A) injections can be combined with non-pharmacologic interventions such as intensive rehabilitation using a robotic approach. To the best of our knowledge, no comparisons have been made between the efficacy of robotic gait training and conventional physical therapy in combination with BTx-A injections. OBJECTIVE: To conduct a randomized controlled trial to compare the efficacy on gait of robotic gait training versus conventional physiotherapy after BTx-A injection into the spastic triceps surae in people after stroke. METHOD: Thirty-three participants in the chronic stroke phase with triceps surae spasticity inducing gait impairment were included. After BTx-A injection, participants were randomized into 2 groups. Group A underwent robotic gait training (Lokomat®) for 2 weeks, followed by conventional physiotherapy for 2 weeks (n = 15) and Group B underwent the same treatment in reverse order (n = 18). The efficacy of these methods was tested using the 6-minute walk test (6MWT), comparing post-test 1 and post-test 2 with the pre-test. RESULTS: After the first period, the 6MWT increased significantly more in Group A than in Group B: the mean difference between the interventions was 33 m (95%CI 9; 58 p = 0.007; g = 0.95), in favor of Group A; after the second period, the 6MWT increased in both groups, but the 30 m difference between the groups still remained (95%CI 5; 55 p = 0.019; g = 0.73). CONCLUSION: Two weeks of robotic gait training performed 2 weeks after BTx-A injections improved walking performance more than conventional physiotherapy. Large-scale studies are now required on the timing of robotic rehabilitation after BTx-A injection.


Assuntos
Toxinas Botulínicas Tipo A , Transtornos Neurológicos da Marcha , Procedimentos Cirúrgicos Robóticos , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Humanos , Reabilitação do Acidente Vascular Cerebral/métodos , Marcha , Acidente Vascular Cerebral/complicações , Toxinas Botulínicas Tipo A/uso terapêutico , Dano Encefálico Crônico , Espasticidade Muscular/tratamento farmacológico , Resultado do Tratamento , Transtornos Neurológicos da Marcha/reabilitação
17.
Gait Posture ; 107: 218-224, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37838588

RESUMO

BACKGROUND: Through providing on-demand visual and auditory cues while walking,augmented reality (AR) can theoretically cue spatiotemporal gait adaptations in, populations such as those with Parkinson's disease. However, given the novelty of the, technology, the type and extent of gait adaptations in response to such a cueing, system are unknown. Before such systems can be incorporated into rehabilitation, approaches, it is important to understand how people interact with the technology. RESEARCH QUESTIONS: What are the effects of visual and auditory cues delivered, through AR on spatiotemporal walking patterns and variability in a healthy, young, population? Is there a relationship between system usability and gait variability? , METHODS: Twenty healthy, young participants walked in four different cueing conditions using an AR headset: No Cues (NC) (i.e., natural gait), Auditory (A), Visual (V), and Auditory + Visual (AV). Inertial measurement units recorded spatiotemporal gait data at 200 Hz, a System Usability Survey was administered afterward, and linear regression models were developed to examine whether gait variability is predictive of system usability. RESULTS: All cueing conditions exhibited a significantly slower cadence compared to, NC trials. Cadence variability was significantly higher for A trials compared to V and, NC. V trials exhibited significantly decreased stride lengths compared to NC. Increased, reported system usability was significantly correlated with decreased stance phase, time variability across A trials. SIGNIFICANCE: Our findings support that holographic spatial-visual and auditory cues, are promising to evoke spatiotemporal gait adaptations. Results also support the, notion that the type of system and cue delivery design may impact gait outcomes.,Before an AR cueing system can be applied to a specific population in future, interventions, a more holistic approach towards finding the relationship between this, technology and its users is needed.


Assuntos
Realidade Aumentada , Transtornos Neurológicos da Marcha , Humanos , Sinais (Psicologia) , Estudos de Viabilidade , Marcha/fisiologia , Caminhada/fisiologia , Transtornos Neurológicos da Marcha/reabilitação
18.
Artigo em Inglês | MEDLINE | ID: mdl-38082776

RESUMO

Gait disorder is a core problem in individuals with Parkinson's disease (PD), including bradykinesia, shuffling steps, festinating gait, and freeze of gait (FOG). Laser-light visual cueing has been demonstrated to be efficient in the mediation of gaits and the reduction in number of FOG episodes. However, previous approaches commonly adopted independent controls of visual cueing on left and right sides which was prone to produce two cues while individual was not in normal walking. In this study, we developed laser-light visual shoes which produced interlaced visual cues for left and right feet in a manner of one-side cueing at a time, solving the aforementioned problem. With parallel measurement of foot inertial data and foot pressures in each shoe, our results showed that the proposed visual cueing made PD individuals in the on-medication condition walk with a longer stance and swing times, that is, they walked more carefully and stable. The proposed approach can also be used to study kinematic and kinetic characteristics of gaits in the off-medication condition to clarify the mediation of visual cueing on motor control of PD individuals.Clinical Relevance- This demonstrates the effect of laser-light visual cueing on gaits in individuals with Parkinson's disease.


Assuntos
Transtornos Neurológicos da Marcha , Lasers , Doença de Parkinson , Sapatos , Humanos , Sinais (Psicologia) , Doença de Parkinson/complicações , Doença de Parkinson/fisiopatologia , Doença de Parkinson/reabilitação , Caminhada/fisiologia , Transtornos Neurológicos da Marcha/etiologia , Transtornos Neurológicos da Marcha/fisiopatologia , Transtornos Neurológicos da Marcha/reabilitação
19.
IEEE Int Conf Rehabil Robot ; 2023: 1-6, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37941232

RESUMO

The idea of using mobile assistance robots for gait training in rehabilitation has been increasingly explored in recent years due to the associated benefits. This paper describes how the previous results of research and praxis on gait training with a mobile assistance robot in orthopedic rehabilitation can be transferred to ophthalmic-related orientation and mobility training for blind and visually impaired people. To this end, the specific requirements for such orientation and mobility training are presented from a therapeutic perspective. Using sensory data, it is investigated how the analysis of training errors can be automated and transferred back to the training person. These pre-examinations are the prerequisite for any form of robot-assisted mobile gait training in ophthamological rehabilitation, which does not exist so far and which is expected to be of great benefit to these patients.


Assuntos
Transtornos Neurológicos da Marcha , Robótica , Humanos , Marcha , Robótica/métodos , Estudos de Viabilidade , Terapia por Exercício/métodos , Transtornos Neurológicos da Marcha/reabilitação
20.
IEEE Int Conf Rehabil Robot ; 2023: 1-6, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37941266

RESUMO

In the field of gait rehabilitation lower limb exoskeletons have received a lot of interest. An increasing number of them are revised to be adapted for post-stroke rehabilitation. These exoskeletons mostly work in complement of conventional physiotherapy in the subacute phase to practice gait training. For this gait training the reference trajectory generation is one of the main issues. This is why it usually consists in reproducing some averaged healthy patient's gait pattern. This paper's purpose is to display the online trajectory generation (OTG) algorithm developed to provide reference trajectories applied to gait-oriented tasks designed based on conventional physiotherapy. This OTG algorithm is made to reproduce trajectories similar to the ones a therapist would follow during the same tasks. In addition, experiments are presented in this paper to compare the trajectories generated with the OTG algorithm for two rehabilitation tasks with the trajectories followed by a therapist in the same conditions. During these experiments the OTG is implemented in a runtime system with a 500µs cycle time on a bench able to emulate late and early patients' interaction. These experiments results assess that the OTG can work at a 500µs cycle time to reproduce a similar trajectory as the one followed by the therapist during the two rehabilitation tasks implemented.


Assuntos
Exoesqueleto Energizado , Transtornos Neurológicos da Marcha , Reabilitação do Acidente Vascular Cerebral , Humanos , Reabilitação do Acidente Vascular Cerebral/métodos , Transtornos Neurológicos da Marcha/reabilitação , Marcha , Extremidade Inferior
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...