Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 247
Filtrar
1.
Neurotoxicology ; 101: 117-127, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38423185

RESUMO

The study investigated the protective effects of Hesperetin (HSP) and Hesperidin (HSD) on 1 methyl, 4 phenyl, 1,2,3,6 tetrahydropyridine hydrochloride (MPTP)-induced Parkinsonism in Drosophila melanogaster (D. melanogaster). After a lifespan study to select exposure time and concentrations, flies were co-exposed to MPTP (0.4 mg/g diet), Hesperetin (0.2 and 0.4 mg/g diet), and Hesperidin (0.1 and 0.4 mg/g) for 7 days. In addition to in vivo parameters, we assayed some markers of oxidative stress and antioxidant status (lipid peroxidation, protein carbonylation, thiol content, hydrogen peroxide, and nitrate/nitrite levels, mRNA expression of Keap-1 (Kelch-like ECH associated protein 1), /Nrf2 (Nuclear factor erythroid 2 related factor 2), catalase, and glutathione-S-transferase (GST) activities), and cholinergic (acetyl cholinesterase activity (AChE) and dopaminergic signaling content and the mRNA expression of tyrosine hydroxylase (TH), monoamine oxidase (MAO-like) activity). In addition to increasing the lifespan of flies, we found that both flavonoids counteracted the adverse effects of MPTP on survival, offspring emergence, and climbing ability of flies. Both flavonoids also reduced the oxidative damage on lipids and proteins and reestablished the basal levels of pro-oxidant species and activities of antioxidant enzymes in MPTP-exposed flies. These responses were accompanied by the normalization of the mRNA expression of Keap1/Nrf2 disrupted in flies exposed to MPTP. MPTP exposure also elicited changes in mRNA expression and content of TH as well as in MAO and AChE activity, which were reversed by HST and HSD. By efficiently hindering the oxidative stress in MPTP-exposed flies, our findings support the promising role of Hesperetin and Hesperidin as adjuvant therapy to manage Parkinsonism induced by chemicals such as MPTP.


Assuntos
Hesperidina , Doença de Parkinson , Transtornos Parkinsonianos , Animais , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Drosophila melanogaster , Hesperidina/farmacologia , Hesperidina/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Flavonoides/farmacologia , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/tratamento farmacológico , Transtornos Parkinsonianos/prevenção & controle , Fenótipo , Monoaminoxidase/metabolismo , RNA Mensageiro/metabolismo
2.
Can J Physiol Pharmacol ; 100(7): 594-611, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35413210

RESUMO

1,2,3,4-tetrahydroisoquinoline (TIQ) is endogenously present in the human brain, and some of its derivatives are thought to contribute to the induction of Parkinson's disease (PD)-like signs in rodents and primates. In contrast, the endogenous TIQ derivative 1-methyl-TIQ (1-MeTIQ) is reported to be neuroprotective. In the present study, we compared the effects of artificially modified 1-MeTIQ derivatives (loading an N-propyl, N-propenyl, N-propargyl, or N-butynyl group) on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD-like signs in mice. In a behavioral study, MPTP-induced bradykinesia was significantly decreased by all compounds. However, only 1-Me-N-propargyl-TIQ showed an inhibitory effect by blocking the MPTP-induced reduction in striatal dopamine content and the number of nigral tyrosine hydroxylase-positive cells. Western blot analysis showed that 1-Me-N-propargyl-TIQ and 1-Me-N-butynyl-TIQ potently prevented the MPTP-induced decrease in dopamine transporter expression, whereas 1-MeTIQ and 1-Me-N-propyl-TIQ did not. These results suggest that although loading an N-propargyl group on 1-MeTIQ clearly enhanced neuroprotective effects, other N-functional groups showed distinct pharmacological properties characteristic of their functional groups. Thus, the number of bonds and length of the N-functional group may contribute to the observed differences in effect.


Assuntos
Intoxicação por MPTP , Fármacos Neuroprotetores , Transtornos Parkinsonianos , Tetra-Hidroisoquinolinas , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , Animais , Humanos , Intoxicação por MPTP/tratamento farmacológico , Intoxicação por MPTP/prevenção & controle , Camundongos , Camundongos Endogâmicos C57BL , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/tratamento farmacológico , Transtornos Parkinsonianos/prevenção & controle
3.
Exp Neurol ; 347: 113920, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34762921

RESUMO

Parkinson's disease (PD) is a complex multisystem, chronic and so far incurable disease with significant unmet medical needs. The incidence of PD increases with aging and the expected burden will continue to escalate with our aging population. Since its discovery in the 1961 levodopa has remained the gold standard pharmacotherapy for PD. However, the progressive nature of the neurodegenerative process in and beyond the nigrostriatal system causes a multitude of side effects, including levodopa-induced dyskinesia within 5 years of therapy. Attenuating dyskinesia has been a significant challenge in the clinical management of PD. We report on a small molecule that eliminates the expression of levodopa-induced dyskinesia and significantly improves PD-like symptoms. The lead compound PD13R we discovered is a dopamine D3 receptor partial agonist with high affinity and selectivity, orally active and with desirable drug-like properties. Future studies are aimed at developing this lead compound for treating PD patients with dyskinesia.


Assuntos
Antiparkinsonianos/toxicidade , Dopaminérgicos/toxicidade , Discinesia Induzida por Medicamentos/metabolismo , Levodopa/toxicidade , Transtornos Parkinsonianos/metabolismo , Receptores de Dopamina D3/metabolismo , Animais , Callithrix , Agonistas de Dopamina/farmacologia , Agonistas de Dopamina/uso terapêutico , Discinesia Induzida por Medicamentos/prevenção & controle , Células HEK293 , Humanos , Ligantes , Transtornos Parkinsonianos/prevenção & controle , Primatas , Estrutura Secundária de Proteína , Quimpirol/farmacologia , Quimpirol/uso terapêutico , Receptores de Dopamina D3/agonistas , Receptores de Dopamina D3/química
4.
Neurochem Res ; 46(11): 3050-3058, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34347266

RESUMO

Gut microbiota is closely related to the Parkinson's disease (PD) pathogenesis. Additionally, aggregation of α-synuclein (α-syn) is central to PD pathogenesis. Here we identified the further mechanisms of gut microbiota in PD. A mouse model with PD was established via injection of MPTP. Normal or MPTP-induced PD like animals were treated with FMT from healthy normal mice. Pole test and traction test were performed to examine the effects of FMT on motor function of PD mice. Fecal SCFAs were assessed by gas chromatography-mass spectrometry. The α-syn level in the substantia nigra pars compacta (SN) of mice was measured using western blot. Dopaminergic neurons and microglial activation in the SN were analyzed by immunohistochemistry (IHC) and immunofluorescence (IF) staining. FMT alleviated physical impairment, decreased fecal SCFAs in a mouse model of PD. Additionally, FMT decreased the expression of α-syn, as well as inhibited the activation of microglia in the SN, and blocked the TLR4/PI3K/AKT/NF-κB signaling in the SN and striatum. FMT could protect mice against PD via suppressing α-syn expression and inactivating the TLR4/PI3K/AKT/NF-κB signaling.


Assuntos
Transplante de Microbiota Fecal/métodos , NF-kappa B/antagonistas & inibidores , Transtornos Parkinsonianos/prevenção & controle , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Receptor 4 Toll-Like/antagonistas & inibidores , alfa-Sinucleína/antagonistas & inibidores , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Neuroproteção/fisiologia , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor 4 Toll-Like/metabolismo , alfa-Sinucleína/metabolismo
5.
Neurotox Res ; 39(5): 1393-1404, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34251648

RESUMO

SIRT1 is a deacetylase with multiple physiological functions by targeting histones and non-histone proteins. It has been shown that SIRT1 activation is involved in neuroprotection in Parkinson's disease (PD) models. In the present study, we provided direct evidences showing the neuroprotective roles of SIRT1 in dopaminergic neurons. Our data showed that increased expression of SIRT1 plays beneficial roles against MPP+ insults in SH-SY5Y cells and primary dopaminergic neurons, including increased cell viability, reduced LDH release, improved the mitochondrial membrane potential (MMP), and attenuated cell apoptosis. On the contrary, knockdown of SIRT1 further aggravated cell injuries induced by MPP+. Moreover, mutated SIRT1 without deacetylase activity (SIRT1 H363Y) failed to protect dopaminergic neurons from MPP+ injuries. Mechanistically, SIRT1 improved PGC-1α expression and mitochondrial biogenesis. Knockdown of PGC-1α almost completely abolished the neuroprotective roles of SIRT1 in SH-SY5Y cells. Collectively, our data indicate that SIRT1 has neuroprotective roles in dopaminergic neurons, which is dependent upon PGC-1α-mediated mitochondrial biogenesis. These findings suggest that SIRT1 may hold great therapeutic potentials for treating dopaminergic neuron loss associated disorders such as PD.


Assuntos
Neurônios Dopaminérgicos/metabolismo , Mitocôndrias/metabolismo , Biogênese de Organelas , Transtornos Parkinsonianos/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/biossíntese , Sirtuína 1/biossíntese , 1-Metil-4-fenilpiridínio/toxicidade , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/patologia , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Potencial da Membrana Mitocondrial/fisiologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , Neuroproteção/efeitos dos fármacos , Neuroproteção/fisiologia , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/genética , Transtornos Parkinsonianos/prevenção & controle , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Sirtuína 1/genética
6.
Neurochem Res ; 46(11): 2923-2935, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34260002

RESUMO

3,4-Dihydroxyphenyl ethanol, known as hydroxytyrosol (HTy), is a phenylpropanoid found in diverse vegetable species. Several studies have demonstrated that HTy is a potent antioxidant. Thus, our study is aimed to evaluate the antioxidant effect of HTy and its derivatives, hydroxytyrosol acetate (HTyA) and nitrohydroxytyrosol (HTyN), in a model of oxidative stress induced by 1-methyl-4-phenylpyridinium (MPP+) in rats. Rats were administered intravenously (i.v.) in the tail with 1 mL saline solution or polyphenol compound (1.5 mg/kg) 5 min before intrastriatal infusion of 10 µg MPP+/8 µL. We found that rats injured with MPP+, pretreatment with HTy, HTyA or HTyN significantly decreased ipsilateral turns. This result was consistent with a significant preservation of striatal dopamine levels and decreased lipid fluorescence products (LFP), a marker of oxidative stress. Brain GSH/GSSG ratio, from rats pretreated with HTy or HTyN showed a significant preservation of that marker, decreased as a consequence of MPP+-induced oxidative damage. These results show an antioxidant effect of HTy, HTyA and HTyN in the MPP+ model of Parkinson's disease in the rat.


Assuntos
1-Metil-4-fenilpiridínio/toxicidade , Acetatos/administração & dosagem , Antioxidantes/administração & dosagem , Catecóis/administração & dosagem , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/metabolismo , Álcool Feniletílico/análogos & derivados , Administração Intravenosa , Animais , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Dopamina/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Peroxidação de Lipídeos/fisiologia , Masculino , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Transtornos Parkinsonianos/prevenção & controle , Álcool Feniletílico/administração & dosagem , Ratos , Ratos Wistar , Resultado do Tratamento
7.
Cell Death Dis ; 12(7): 674, 2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-34226513

RESUMO

Parkinson's disease is a common neurodegenerative disease. Cell transplantation is a promising therapeutic option for improving the survival and function of dopaminergic neurons, but the mechanisms underlying the interaction between the transplanted cells and the recipient neurons remain to be studied. In this study, we investigated the effects of skin precursor cell-derived Schwann cells (SKP-SCs) directly cocultured with 6-OHDA-injured dopaminergic neurons in vitro and of SKP-SCs transplanted into the brains of 6-OHDA-induced PD mice in vivo. In vitro and in vivo studies revealed that SKP-SCs could reduce the damage to dopaminergic neurons by enhancing self-autophagy and modulating neuronal autophagy. Thus, the present study provides the first evidence that cell transplantation mitigates 6-OHDA-induced damage to dopaminergic neurons by enhancing self-autophagy, suggesting that earlier transplantation of Schwann cells might help alleviate the loss of dopaminergic neurons.


Assuntos
Autofagia , Encéfalo/patologia , Neurônios Dopaminérgicos/patologia , Transtornos Parkinsonianos/prevenção & controle , Células de Schwann/transplante , Transplante de Células-Tronco , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Encéfalo/metabolismo , Linhagem Celular Tumoral , Técnicas de Cocultura , Modelos Animais de Doenças , Neurônios Dopaminérgicos/metabolismo , Humanos , Camundongos Endogâmicos C57BL , Oxidopamina , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/metabolismo , Transtornos Parkinsonianos/patologia , Fenótipo , Ratos Sprague-Dawley , Células de Schwann/metabolismo , Pele/citologia , Serina-Treonina Quinases TOR/metabolismo
8.
Toxicol Lett ; 349: 1-11, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34052309

RESUMO

Pesticides exposure can lead to damage of dopaminergic neurons, which are associated with increased risk of Parkinson's disease (PD). However, the etiology of PD remains poorly understood and no therapeutic strategy is available. Previous studies suggested the involvement of NLRP3 inflammasome in the onset of PD. This study was designed to investigate whether glibenclamide, an inhibitor of NLRP3 inflammasome, could offer a reliable protective strategy for PD in a mouse PD model induced by paraquat and maneb. We found that glibenclamide exerted potent neuroprotection against paraquat and maneb-induced upregulation of α-synuclein, dopaminergic neurodegeneration and motor impairment in brain of mice. Mechanistically, glibenclamide treatment blocked NLRP3 inflammasome activation evidenced by reduced expressions of NLRP3, activated caspase-1 and mature interleukin-1ß in glibenclamide co-treated mice compared with those in paraquat and maneb group mice. Furthermore, glibenclamide treatment mitigated paraquat and maneb-induced microglial M1 proinflammatory response and nuclear factor-κB activation in mice. Finally, the increased superoxide production, lipid peroxidation, protein levels of NADPH oxidase 2 (NOX2) and inducible nitric oxide synthase (iNOS) induced by paraquat and maneb were all attenuated by glibenclamide. Overall, our findings demonstrated that glibenclamide protected dopaminergic neurons in a mouse PD model induced by combined exposures of paraquat and maneb through suppression of NLRP3 inflammasome activation, microglial M1 polarization and oxidative stress.


Assuntos
Antiparkinsonianos/farmacologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Glibureto/farmacologia , Inflamassomos/antagonistas & inibidores , Atividade Motora/efeitos dos fármacos , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Degeneração Neural , Fármacos Neuroprotetores/farmacologia , Transtornos Parkinsonianos/prevenção & controle , Animais , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Modelos Animais de Doenças , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Inflamassomos/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Maneb , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Microglia/metabolismo , Microglia/patologia , NADPH Oxidase 2/metabolismo , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Paraquat , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/metabolismo , Transtornos Parkinsonianos/patologia
9.
Neurotox Res ; 39(3): 787-799, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33860897

RESUMO

Parkinson's disease (PD) is a neurodegenerative disorder characterized by motor dysfunction. Recent studies have shown that curcumin (CUR) has neuroprotective effects in PD experimental models. However, its efficacy is limited due to low water solubility, bioavailability, and access to the central nervous system. In this study, we compared the effects of new curcumin-loaded nanoemulsions (NC) and free CUR in an experimental model of PD. Adult Swiss mice received NC or CUR (25 and 50 mg/kg) or vehicle orally for 30 days. Starting on the eighth day, they were administered rotenone (1 mg/kg) intraperitoneally until the 30th day. At the end of the treatment, motor assessment was evaluated by open field, pole test, and beam walking tests. Oxidative stress markers and mitochondrial complex I activity were measured in the brain tissue. Both NC and CUR treatment significantly improved motor impairment, reduced lipoperoxidation, modified antioxidant defenses, and prevented inhibition of complex I. However, NC was more effective in preventing motor impairment and inhibition of complex I when compared to CUR in the free form. In conclusion, our results suggest that NC effectively enhances the neuroprotective potential of CUR and is a promising nanomedical application for PD.


Assuntos
Curcumina/administração & dosagem , Emulsões/administração & dosagem , Nanopartículas/administração & dosagem , Fármacos Neuroprotetores/administração & dosagem , Transtornos Parkinsonianos/prevenção & controle , Rotenona/toxicidade , Animais , Anti-Inflamatórios não Esteroides/administração & dosagem , Anti-Inflamatórios não Esteroides/química , Curcumina/química , Emulsões/química , Masculino , Camundongos , Nanopartículas/química , Fármacos Neuroprotetores/química , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/metabolismo
10.
Neurotherapeutics ; 18(2): 962-978, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33723752

RESUMO

Glucagon-like peptide-1 (GLP-1) receptor stimulation ameliorates parkinsonian motor and non-motor deficits in both experimental animals and patients; however, the disease-modifying mechanisms of GLP-1 receptor activation have remained unknown. The present study investigated whether exendin-4 (a GLP-1 analogue) can rescue motor deficits and exert disease-modifying effects in a parkinsonian rat model of α-synucleinopathy. This model was established by unilaterally injecting AAV-9-A53T-α-synuclein into the right substantia nigra pars compacta, followed by 4 or 8 weeks of twice-daily intraperitoneal injections of exendin-4 (5 µg/kg/day) starting at 2 weeks after AAV-9-A53T-α-synuclein injections. Positron emission tomography/computed tomography (PET/CT) scanning and immunostaining established that treatment with exendin-4 attenuated tyrosine-hydroxylase-positive neuronal loss and terminal denervation and mitigated the decrease in expression of vesicular monoamine transporter 2 within the nigrostriatal dopaminergic systems of rats injected with AAV-9-A53T-α-synuclein. It also mitigated the parkinsonian motor deficits assessed in behavioral tests. Furthermore, through both in vivo and in vitro models of Parkinson's disease, we showed that exendin-4 promoted autophagy and mediated degradation of pathological α-synuclein, the effects of which were counteracted by 3-methyladenine or chloroquine, the autophagic inhibitors. Additionally, exendin-4 attenuated dysregulation of the PI3K/Akt/mTOR pathway in rats injected with AAV-9-A53T-α-synuclein. Taken together, our results demonstrate that exendin-4 treatment relieved behavioral deficits, dopaminergic degeneration, and pathological α-synuclein aggregation in a parkinsonian rat model of α-synucleinopathy and that these effects were mediated by enhanced autophagy via inhibiting the PI3K/Akt/mTOR pathway. In light of the safety and tolerance of exendin-4 administration, our results suggest that exendin-4 may represent a promising disease-modifying treatment for Parkinson's disease.


Assuntos
Autofagia/efeitos dos fármacos , Exenatida/uso terapêutico , Neuroproteção/efeitos dos fármacos , Transtornos Parkinsonianos/prevenção & controle , Sinucleinopatias/prevenção & controle , alfa-Sinucleína/toxicidade , Animais , Autofagia/fisiologia , Linhagem Celular Tumoral , Exenatida/farmacologia , Feminino , Humanos , Neuroproteção/fisiologia , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/patologia , Ratos , Ratos Sprague-Dawley , Sinucleinopatias/induzido quimicamente , Sinucleinopatias/patologia
11.
Neurotoxicology ; 84: 184-197, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33774066

RESUMO

Parkinson's disease (PD), a common neurodegenerative motor disorder characterized by striatal dopaminergic neuronal loss and localized neuroinflammation in the midbrain region. Activation of microglia is associated with various inflammatory mediators and Kynurenine pathway (KP) being one of the major regulator of immune response, is involved in the neuroinflammatory and neurotoxic cascade in PD. In the current study, 1-Methyltryptophan (1-MT), an Indolamine-2,3-dioxygenase-1 (IDO-1) inhibitor was tested at different doses (2.5 mg/kg, 5 mg/kg and 10 mg/kg) for its effect on behavioral parameters, oxidative stress, neuroinflammation, apoptosis, mitochondrial dysfunction, neurotransmitter levels, biochemical and behavioral alterations in unilateral 6-OHDA (3 µg/µL) murine model of PD. The results showed improved locomotion in open field test and motor coordination in rota-rod, reduced oxidative stress, neuroinflammatory markers (TNF-α, IFN-γ, IL-6), mitochondrial dysfunction and neuronal apoptosis (caspase-3). Also, restoration of neurotransmitter levels (dopamine and homovanillic acid) in the striatum and increased striatal BDNF levels were observed. Overall findings suggest that 1-MT could be a potential candidate for further studies to explore its possibility as an alternative in the pharmacotherapy of PD.


Assuntos
Indolamina-Pirrol 2,3,-Dioxigenase/antagonistas & inibidores , Mitocôndrias/efeitos dos fármacos , Fármacos Neuroprotetores/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos , Transtornos Parkinsonianos/prevenção & controle , Triptofano/análogos & derivados , Animais , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Mitocôndrias/metabolismo , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/fisiologia , Oxidopamina/toxicidade , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/metabolismo , Triptofano/farmacologia , Triptofano/uso terapêutico
12.
Oxid Med Cell Longev ; 2021: 8843899, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33520086

RESUMO

Polygonatum sibiricum, a well-known life-prolonging tonic in Chinese medicine, has been widely used for nourishing nerves in the orient, but the underlying molecular mechanisms remain unclear. In this study, we found that P. sibiricum polysaccharides (PSP) ameliorated 1-methyl-4-phenyl-1,2.3,6-tetrahydropyridine- (MPTP-) induced locomotor activity deficiency and dopaminergic neuronal loss in an in vivo Parkinson's disease (PD) mouse model. Additionally, PSP pretreatment inhibited N-methyl-4-phenylpyridine (MPP+) induced the production of reactive oxygen species, increasing the ratio of reduced glutathione/oxidized glutathione. In vitro experiments showed that PSP promoted the proliferation of N2a cells in a dose-dependent manner, while exhibiting effects against oxidative stress and neuronal apoptosis elicited by MPP+. These effects were found to be associated with the activation of Akt/mTOR-mediated p70S6K and 4E-BP1 signaling pathways, as well as nuclear factor erythroid 2-related factor 2- (Nrf2-) mediated NAD(P)H quinone oxidoreductase 1 (NQO1), heme oxygenase-1 (HO-1), glutamate-cysteine ligase catalytic subunit (Gclc), and glutamate-cysteine ligase modulatory subunit (Gclm), resulting in antiapoptotic and antioxidative effects. Meanwhile, PSP exhibited no chronic toxicity in C57BJ/6 mice. Together, our results suggest that PSP can serve as a promising therapeutic candidate with neuroprotective properties in preventing PD.


Assuntos
1-Metil-4-fenilpiridínio/toxicidade , Intoxicação por MPTP/prevenção & controle , Fator 2 Relacionado a NF-E2/metabolismo , Polygonatum/química , Polissacarídeos/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Linhagem Celular , Intoxicação por MPTP/induzido quimicamente , Intoxicação por MPTP/metabolismo , Masculino , Camundongos , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/metabolismo , Transtornos Parkinsonianos/prevenção & controle , Polissacarídeos/química
13.
Neurotoxicology ; 84: 14-29, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33571554

RESUMO

Due to limitations in early diagnosis and treatments of Parkinson's disease (PD), it is necessary to explore the neuropathological changes that occur early in PD progression and to design neuroprotective therapies to prevent or delay the ongoing degeneration process. Metabotropic glutamate receptor 5 (mGlu5) has shown both diagnostic and therapeutic potential in preclinical studies on PD. Clinical trials using mGlu5 negative allosteric modulators to treat PD have, however, raised limitations about the neuroprotective role of mGlu5. It is likely that mGlu5 has different regulatory roles in different stages of PD. Here, we investigated a protective role of cystic fibrosis transmembrane conductance regulator-associated ligand (CAL) in the progression of PD by differential regulation of mGlu5 expression and activity to protect against 6-hydroxydopamine (6-OHDA)-induced neurotoxicity. Following treatment with 6-OHDA, mGlu5 and CAL expressions were elevated in the early stage and reduced in the late stage, both in vitro and in vivo. Activation of mGlu5 in the early stage by (RS)-2-chloro-5-hydroxyphenylglycine, or blocking mGlu5 in the late stage by 2-methyl-6-(phenylethynyl) pyridine, increased cell survival and inhibited apoptosis, but these effects were significantly weakened by knockdown of CAL. CAL alleviated 6-OHDA-induced neurotoxicity by regulating mGlu5-mediated signaling pathways, thereby maintaining the physiological function of mGlu5 in different disease stages. In PD rat model, CAL deficiency aggravated 6-OHDA toxicity on dopaminergic neurons and increased motor dysfunction because of lack of regulation of mGlu5 activity. These data reveal a potential mechanism by which CAL specifically regulates the opposite activity of mGlu5 in progression of PD to protect against neurotoxicity, suggesting that CAL is a favorable endogenous target for the treatment of PD.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/biossíntese , Progressão da Doença , Neurônios Dopaminérgicos/metabolismo , Oxidopamina/toxicidade , Transtornos Parkinsonianos/metabolismo , Receptor de Glutamato Metabotrópico 5/biossíntese , Animais , Linhagem Celular , Regulador de Condutância Transmembrana em Fibrose Cística/antagonistas & inibidores , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/patologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Ligantes , Masculino , Camundongos , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/patologia , Transtornos Parkinsonianos/prevenção & controle , Ratos , Ratos Sprague-Dawley , Receptor de Glutamato Metabotrópico 5/antagonistas & inibidores
14.
Neurotox Res ; 39(3): 566-574, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33443645

RESUMO

Parkinson's disease (PD) is a severe neurodegenerative disease lacking effective clinical therapies. It is reported that astrocyte-associated neuroinflammation and oxidative stress are involved in the pathological mechanism of PD. In the present study, we aimed to investigate the protective effect of febuxostat against 1 methyl 4 phenyl pyridine (MPP+)-induced injury on primary astrocytes to highlight the potential therapeutic property of febuxostat in PD.MPP+ was used to induce an in vitro PD model in primary rat astrocytes. The levels of ROS and intracellularly reduced GSH were determined using DCFH-DA assay and a commercial GSH kit, respectively. MTT and LDH release assays were utilized to evaluate the cell viability of astrocytes. The expressions of IL-8, IL-1ß, TNF-α, MMP-2, and MMP-9 in the astrocytes were detected using qRT-PCR and ELISA assays. QRT-PCR and Western blot analysis were used to determine the expression levels of GFAP in astrocytes. The expression of p-JNK and nuclear levels of NF-κB p65 were evaluated using Western blot analysis. The transcriptional activity of NF-κB was measured using the luciferase activity assay.Firstly, the elevated levels of ROS and decreased levels of intracellularly reduced GSH in primary astrocytes induced by MPP+ were significantly ameliorated by febuxostat. Secondly, treatment with febuxostat rescued MPP+-induced reduction in cell viability and increased LDH release. Thirdly, febuxostat alleviated MPP+-induced inflammatory responses in astrocytes by reducing the expressions of IL-8, IL-1ß, TNF-α, GFAP, MMP-2, and MMP-9. Importantly, we found that febuxostat mitigated activation of the JNK/NF-κB signaling pathway by inhibiting the phosphorylation of JNK and nuclear translocation of NF-κB p65.Febuxostat attenuated MPP+-induced inflammatory response by suppressing the JNK/NF-κB signaling pathway in astrocytes.


Assuntos
Astrócitos/efeitos dos fármacos , Febuxostat/uso terapêutico , Mediadores da Inflamação/antagonistas & inibidores , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , NF-kappa B/antagonistas & inibidores , Transtornos Parkinsonianos/prevenção & controle , 1-Metil-4-fenilpiridínio/toxicidade , Animais , Astrócitos/metabolismo , Células Cultivadas , Relação Dose-Resposta a Droga , Febuxostat/farmacologia , Supressores da Gota/farmacologia , Supressores da Gota/uso terapêutico , Mediadores da Inflamação/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , NF-kappa B/metabolismo , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/metabolismo , Ratos , Ratos Wistar
15.
Metab Brain Dis ; 36(4): 609-625, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33507465

RESUMO

Recent studies implicate the defects or altered expression of the orphan nuclear receptor Nurr1 gene in the substantia nigra in Parkinson's disease pathogenesis. In an attempt to corroborate the treatment-modifying disease that would replicate the effect of Nurr1, it has been found that amodiaquine and Nurr1 had the same chemical scaffolding, indicating a crucial structure-activity relationship. Interestingly, amodiaquine stimulate the transcriptional function of Nurr1 by physical interaction with its ligand-binding domain (LBD). However, the signaling route by which Nurr1 is activated by amodiaquine to cause the protective effect remains to be elucidated. We first demonstrated that amodiaquine treatment ameliorated behavioural deficits in 6-OHDA Parkinson's disease mouse model, and it promoted dopaminergic neurons protection signified by Tyrosine hydroxylase (TH) and dopamine transporter (DAT) mRNA; Tyrosine hydroxylase (TH) protein expression level and the immunoreactivity in the substantia nigra compacta. Subsequently, we used inhibitors to ascertain the effect of amodiaquine on Akt and P38 Mapk as crucial signaling pathways for neuroprotection. Wortmannin (Akt Inhibitor) induced a significant reduction of Akt mRNA; however, there was no statistical difference between the amodiaquine-treated group and the control group suggesting that amodiaquine may not be the active stimulant of Akt. Western blot analysis confirmed that the phosphorylated Akt decreased significantly in the amodiaquine group compared to the control group. In the same vein, we found that amodiaquine substantially increased the level of phosphorylated P38 Mapk. When P38 Mapk inhibited by SB203580 (P38-Mapk Inhibitor), the total P38 Mapk but not the phosphorylated P38 Mapk decreased significantly, while tyrosine hydroxylase significantly increased. These results collectively suggest that amodiaquine can augment tyrosine hydroxylase expression via phosphorylated P38 Mapk while negatively regulating the phosphorylated Akt in protein expression.


Assuntos
Amodiaquina/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/agonistas , Transtornos Parkinsonianos/metabolismo , Transtornos Parkinsonianos/prevenção & controle , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Amodiaquina/farmacologia , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Inibidores Enzimáticos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fármacos Neuroprotetores/farmacologia , Oxidopamina/toxicidade , Transtornos Parkinsonianos/induzido quimicamente , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação/efeitos dos fármacos , Fosforilação/fisiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores
16.
Can J Neurol Sci ; 48(5): 666-675, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33183363

RESUMO

BACKGROUND: Older persons with parkinsonism (PWP) are at high risk for hospitalization and adverse outcomes. Few effective strategies exist to prevent Emergency Department (ED) visits and hospitalization. The interdisciplinary Geriatrics Clinic for Parkinson's ("our clinic") was founded to address the complexity of parkinsonism in older patients, supported by a pharmacist-led telephone intervention (TI) service. Our primary objective was to study whether TI could avert ED visits in older PWP. METHODS: Using a prospective, observational cohort, we collected data from all calls in 2016, including who initiated and reasons for the calls, patient demographics, number of comorbidities and medications, diagnoses, duration of disease, and intervention provided. Calls with intention to visit ED were classified as "crisis calls". Outcome of whether patients visited ED was collected within 1 week, and user satisfaction by anonymous survey within 3 weeks. RESULTS: We received 337 calls concerning 114 patients, of which 82 (24%) were "crisis calls". Eighty-one percent of calls were initiated by caregivers. Ninety-three percent of "crisis calls" resolved without ED visit after TI. The main reasons for "crisis calls" were non-motor symptoms (NMS) (39%), adverse drug effects (ADE) (29%), and motor symptoms (18%). Ninety-seven percent of callers were satisfied with the TI. CONCLUSION: Pharmacist-led TI in a Geriatrics Clinic for Parkinson's was effective in preventing ED visits in a population of older PWP, with high user satisfaction. Most calls were initiated by caregivers. Main reasons for crisis calls were NMS and ADE. These factors should be considered in care planning for older PWP.


Assuntos
Serviço Hospitalar de Emergência , Transtornos Parkinsonianos , Idoso , Idoso de 80 Anos ou mais , Hospitalização , Humanos , Transtornos Parkinsonianos/prevenção & controle , Estudos Prospectivos , Telefone
17.
J Neuroimmunol ; 349: 577426, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33096292

RESUMO

Previously, we have demonstrated that ß-estradiol-3-benzoate (EB) has a protective effect on the neurodegenerative experimental model of Parkinson's disease. The protective effect is through the induction of the expression of paraoxonase-2 (PON2) in the striatum. PON2 has proven to have antioxidant and anti-inflammatory activity, this protein has a beneficial effect in MPP+ model in rats decreasing the lipid peroxidation and the oxidative stress. Furthermore, the molecular effect and the pathway by which EB induces protection were not further pursued. This study shows the regulation by EB of the anti-inflammatory effect through the modulation of cytokines, antioxidant enzymes and PON2 in the rat striatum. Rats were gonadectomized and 30 days after were randomly assigned into four experimental groups; only vehicles (Control group); EB treatment (EB group); MPP+ injury (M group); EB plus MPP+ injured (EB/M group). EB treatment consisted of 100 µg of the drug administered every 48 h for 11 days. Results showed that EB (group EB/M) treatment decrease significantly (40%) the number of ipsilateral turns respect to the M group and prevents significantly the dopamine (DA) decreased induced by MPP+ (~75%). This results are correlate with a significant decrease in the level of lipid peroxidation (60%) of the EB/M group respect to the M group. The EB treatment showed protection against neurotoxicity induced with MPP+, this could be due to EB capacity to prevent the increase in the expression level of proinflammatory cytokines TNF-α, IL-1 and IL-6 induced by MPP+. While, TGF-ß1 and TGF-ß3 expression was reduced in the rats treated only with MPP+, in the rats of EB/M group the expression of both cytokines was increased. EB protective effect against MPP+ neurotoxicity is related to antioxidant effect of PON2, pro-inflammatory cytokines and GSHR but not to SOD2, catalase, GPX1 or GPX4.


Assuntos
Corpo Estriado/metabolismo , Citocinas/metabolismo , Estradiol/análogos & derivados , Fármacos Neuroprotetores/uso terapêutico , Transtornos Parkinsonianos/metabolismo , Substância Negra/metabolismo , 1-Metil-4-fenilpiridínio/toxicidade , Animais , Corpo Estriado/efeitos dos fármacos , Citocinas/antagonistas & inibidores , Estradiol/farmacologia , Estradiol/uso terapêutico , Masculino , Fármacos Neuroprotetores/farmacologia , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/prevenção & controle , Distribuição Aleatória , Ratos , Ratos Wistar , Substância Negra/efeitos dos fármacos
18.
Neurotoxicology ; 81: 209-215, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32937168

RESUMO

Parkinson's disease (PD) is a movement disorder associated with the progressive loss of dopaminergic neurons (DA). PD treatment remains unsatisfactory as the current synthetic drugs in clinical use relies on managing only motor symptoms. This study investigated antioxidant potentials of selected compounds namely, 5,6,7,4'-tetramethoxyflavone (1), 6-hydroxy-2,3,4,4'-tetramethoxychalcone (2), 6-methoxyhamiltone A (3), diosquinone (4) and toussantine D (5) against rotenone (6) induced PD in Drosophila melanogaster. Toxicity of these compounds was conducted by monitoring flies' survival for seven days and determining the lethal concentrations (LC50). Whereas compound 1 had LC50 value of 91.3 µM within three days, compounds 2, 3, 4, and 5 had LC50 values of 87.2, 58.0, 64.0 and > 1000 µM, respectively on the seventh day of the experiment. We exposed flies (1-4 days old) to 500 µM rotenone and co-treated with different doses of the test compounds in the diet for seven days at final concentrations of 11.0, 43.6 and 87.2 µM for compounds 2 and 3. The concentrations used for compound 4 were 8.0, 32.0 and 64.0 µM, while 250, 500 and 1000 µM were used for compound 5. Rotenone fed flies showed impaired climbing ability compared to control flies, the phenotype that was rescued by the treatment of tested phytochemicals. Rotenone toxicity also increased malondialdehyde levels assayed by lipid peroxidation in the brain tissues relative to control flies. This effect was reduced in flies exposed to rotenone and co-treated with the phytochemicals. Moreover, expression levels of mRNA of antioxidant enzymes; superoxide dismutase and catalase were elevated in flies exposed to rotenone and normalized in flies that were co-treated with tested compounds. Besides compound 1, this study provides overall evidence that the tested flavonoids and polyketides ameliorated the rotenone provoked neurotoxicity in D. melanogaster by battling the induced oxidative stress in brain cells including DA neurons and hence rescue the locomotor behaviour deficits.


Assuntos
Antioxidantes/farmacologia , Antiparkinsonianos/farmacologia , Encéfalo/efeitos dos fármacos , Flavonoides/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Transtornos Parkinsonianos/prevenção & controle , Policetídeos/farmacologia , Animais , Comportamento Animal/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Catalase/genética , Catalase/metabolismo , Modelos Animais de Doenças , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Regulação Enzimológica da Expressão Gênica , Peroxidação de Lipídeos/efeitos dos fármacos , Locomoção/efeitos dos fármacos , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/metabolismo , Transtornos Parkinsonianos/patologia , Rotenona , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo
19.
Mar Drugs ; 18(9)2020 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-32842556

RESUMO

Parkinson's disease (PD), characterized by dopaminergic neuron degeneration in the substantia nigra and dopamine depletion in the striatum, affects up to 1% of the global population over 50 years of age. Our previous study found that a heteropolysaccharide from Saccharina japonica exhibits neuroprotective effects through antioxidative stress. In view of its high molecular weight and complex structure, we degraded the polysaccharide and subsequently obtained four oligosaccharides. In this study, we aimed to further detect the neuroprotective mechanism of the oligosaccharides. We applied MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) to induce PD, and glucuronomannan oligosaccharides (GMn) was subsequently administered. Results showed that GMn ameliorated behavioral deficits in Parkinsonism mice. Furthermore, we observed that glucuronomannan oligosaccharides contributed to down-regulating the apoptotic signaling pathway through enhancing the expression of tyrosine hydroxylase (TH) in dopaminergic neurons. These results suggest that glucuronomannan oligosaccharides protect dopaminergic neurons from apoptosis in PD mice.


Assuntos
Antiparkinsonianos/farmacologia , Apoptose/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Neurônios Dopaminérgicos/efeitos dos fármacos , Glucuronatos/farmacologia , Manose/análogos & derivados , Oligossacarídeos/farmacologia , Transtornos Parkinsonianos/prevenção & controle , Alga Marinha , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , Animais , Antiparkinsonianos/isolamento & purificação , Proteínas Reguladoras de Apoptose/metabolismo , Comportamento Animal/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Encéfalo/fisiopatologia , Modelos Animais de Doenças , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Glucuronatos/isolamento & purificação , Masculino , Manose/isolamento & purificação , Manose/farmacologia , Camundongos Endogâmicos C57BL , Atividade Motora/efeitos dos fármacos , Oligossacarídeos/isolamento & purificação , Teste de Campo Aberto/efeitos dos fármacos , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/metabolismo , Transtornos Parkinsonianos/patologia , Alga Marinha/química , Tirosina 3-Mono-Oxigenase/metabolismo
20.
Neurotox Res ; 38(4): 850-858, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32803628

RESUMO

Exercise exerts helpful effects in Parkinson's disease. In this study, the 6-hydroxydopamine (6-OHDA) injection was used to investigate the effect of exercise on apomorphine-induced rotation and neurorestoration. Rats (n = 32) were divided into four groups: (1) Saline+Noexercise (Sham); (2) 6-OHDA+Noexercise (6-OHDA); (3) Saline+Exercise (S+EXE), and (4) 6-OHDA+Exercise (6-OHDA+EXE). The rats were administered 8 µg 6-OHDA by injection into the right medial forebrain bundle. After 2 weeks, the exercise group was run (14 consecutive days, 30 min per day). One month after the surgery, following the injection of apomorphine, the 6-OHDA group displayed a significant increase in rotation and the 6-OHDA+EXE group showed a significant reduction of rotational asymmetry (P < 0.001). 6-OHDA injection reduced the mRNA and protein expression of the AMP-activated protein kinase, brain-derived neurotropic factor, and tyrosine hydroxylase in relation to the Sham group and exercise increased these levels. Expression of the silent information regulator 2 homolog 1 and peroxisome proliferator-activated receptor gamma coactivator 1-alpha was unexpectedly enhanced in the 6-OHDA groups in relation to the Sham group. These findings suggest that the 6-OHDA injection increased the neurodegeneration and mitochondrial and behavioral dysfunctions and the treadmill running attenuated these disorders in the ipsilateral striatum of the 6-OHDA+EXE group.


Assuntos
Neuroproteção/fisiologia , Oxidopamina/toxicidade , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/prevenção & controle , Condicionamento Físico Animal/fisiologia , Animais , Teste de Esforço/métodos , Masculino , Neuroproteção/efeitos dos fármacos , Transtornos Parkinsonianos/metabolismo , Condicionamento Físico Animal/métodos , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...