Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genes (Basel) ; 12(11)2021 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-34828302

RESUMO

The Chinese soft-shelled (Pelodiscus sinensis) turtle exhibits obvious sex dimorphism, which leads to the higher economic and nutritional value of male individuals. Exogenous hormones can cause the transformation from male to female phenotype during gonadal differentiation. However, the molecular mechanism related to the sexual reversal process is unclear. In this study, we compared the difference between the small RNAs of male, female, and pseudo-female turtles by small RNA-seq to understand the sexual reversal process of Chinese soft-shelled turtles. A certain dose of estrogen can cause the transformation of Chinese soft-shelled turtles from male to female, which are called pseudo-female individuals. The result of small RNA-seq has revealed that the characteristics of pseudo-females are very similar to females, but are strikingly different from males. The number of the microRNAs (miRNAs) of male individuals was significantly less than the number of female individuals or pseudo-female individuals, while the expression level of miRNAs of male individuals were significantly higher than the other two types. Furthermore, we found 533 differentially expressed miRNAs, including 173 up-regulated miRNAs and 360 down-regulated miRNAs, in the process of transformation from male to female phenotype. Cluster analysis of the total 602 differential miRNAs among females, males, and pseudo-females showed that miRNAs played a crucial role during the sexual differentiation. Among these differential miRNAs, we found 12 miRNAs related to gonadal development and verified their expression by qPCR. The TR-qPCR results confirmed the differential expression of 6 of the 12 miRNAs: miR-26a-5p, miR-212-5p, miR-202-5p, miR-301a, miR-181b-3p and miR-96-5p were involved in sexual reversal process, which was consistent with the results of omics. Using these six miRNAs and some of their target genes, we constructed a network diagram related to gonadal development. We suggest that these miRNAs may play an important role in the process of effective sex reversal, which would contribute to the breeding of all male strains of Chinese soft-shelled turtles.


Assuntos
Transtornos Testiculares 46, XX do Desenvolvimento Sexual/genética , MicroRNAs/fisiologia , Tartarugas/genética , Transtornos Testiculares 46, XX do Desenvolvimento Sexual/veterinária , Animais , China , Feminino , Perfilação da Expressão Gênica , Gônadas/metabolismo , Gônadas/fisiologia , Masculino , Tartarugas/fisiologia
2.
J Steroid Biochem Mol Biol ; 210: 105875, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33746111

RESUMO

XX sex reversal, also called XX disorders of sex development (XX-DSD), is a condition affecting the development of the gonads or genitalia, and is relatively common in pigs. However, its genetic etiology and transcriptional regulation mechanism in the hypothalamic-pituitary-gonadal axis (HPGA) remain mostly unknown. XX-DSD (SRY-negative) pigs and normal sows were selected by external genitalia observation. The hypothalamus, which is the integrated center of the HPGA was sampled for whole-transcriptome RNA-seq. The role of DEmiRNA was validated by its overexpression and knockdown in vitro. A total of 1,258 lncRNAs, 1,086 mRNAs, and 61 microRNAs differentially expressed in XX-DSD pigs compared with normal female pigs. Genes in the hormone biosynthesis and secretion pathway significantly up-regulated, and the up-regulation of GNRH1, KISS1 and AVP may associate with the abnormal secretion of GnRH. We also predicted the lncRNA-miRNA-mRNA co-expression triplets and constructed three competing endogenous RNA (ceRNA) potentially associated with XX-DSD. Functional enrichment studies suggested that TCONS_00340886, TCONS_00000204 and miR-181a related to GnRH secretion. Further, miR-181a inhibitor up-regulated GNRH1, PAK6, and CAMK4 in the GT1-7 cells. Conversely, transfection of miR-181a mimics obtained the opposite trends. The expression levels of FSHR, LHR, ESR1 and ESR2 were significantly higher in XX-DSD gondas than those in normal sows. Taken together, we proposed that the balance of endocrine had broken in XX-DSD pigs. The current study is the first to examine the transcriptomic profile in the hypothalamus of XX-DSD pigs. It provides new insight into coding and non-coding RNAs that may be associated with DSD in pigs.


Assuntos
Transtornos do Desenvolvimento Sexual/genética , Hipotálamo/fisiologia , MicroRNAs/genética , Transtornos Testiculares 46, XX do Desenvolvimento Sexual/genética , Transtornos Testiculares 46, XX do Desenvolvimento Sexual/veterinária , Animais , Transtornos do Desenvolvimento Sexual/veterinária , Feminino , Perfilação da Expressão Gênica , Mapas de Interação de Proteínas/genética , RNA Longo não Codificante/genética , RNA Mensageiro/genética , Receptores de Estrogênio/genética , Receptores do FSH/genética , Proteína da Região Y Determinante do Sexo/genética , Suínos , Doenças dos Suínos/genética
3.
J Vet Intern Med ; 32(3): 1166-1171, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29572943

RESUMO

A 3-year-old dog weighing 8 kg was referred with a disorder of sexual development and persistent urinary incontinence before and after gonadohysterectomy performed at a local animal hospital. Histopathological examination disclosed hypoplasia of the testes, epididymis, pampiniform plexus, and uterus. On ultrasonography, an anomalous structure containing anechoic fluid was identified in the region dorsal to the urinary bladder. An anomalous communication between the proximal urethra and the remnant uterus and vagina was found on retrograde urethrography under fluoroscopy. Reflux of contrast medium into the anomalous structure, suspected to be the uterus and cranial vagina, from the urethra was detected. Computed tomography identified the anomalous structure between the rectum and urethra. The anomalous structure was removed via laparotomy and the urinary incontinence resolved. The diagnosis of XX sex reversal with a developmental anomaly of the genitourinary tract was made on the basis of laparotomy findings and cytogenetic and SRY gene analyses.


Assuntos
Transtornos Testiculares 46, XX do Desenvolvimento Sexual/veterinária , Doenças do Cão/patologia , Incontinência Urinária/veterinária , Anormalidades Urogenitais/veterinária , Transtornos Testiculares 46, XX do Desenvolvimento Sexual/patologia , Animais , Clitóris/patologia , Cães , Epididimo/patologia , Feminino , Masculino , Testículo/patologia , Incontinência Urinária/patologia , Anormalidades Urogenitais/patologia , Útero/patologia , Vulva/patologia
4.
Biol Reprod ; 91(6): 153, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25395674

RESUMO

FOXL2 loss of function in goats leads to the early transdifferentiation of ovaries into testes, then to the full sex reversal of XX homozygous mutants. By contrast, Foxl2 loss of function in mice induces an arrest of follicle formation after birth, followed by complete female sterility. In order to understand the molecular role of FOXL2 during ovarian differentiation in the goat species, putative FOXL2 target genes were determined at the earliest stage of gonadal sex-specific differentiation by comparing the mRNA profiles of XX gonads expressing the FOXL2 protein or not. Of these 163 deregulated genes, around two-thirds corresponded to testicular genes that were up-regulated when FOXL2 was absent, and only 19 represented female-associated genes, down-regulated in the absence of FOXL2. FOXL2 should therefore be viewed as an antitestis gene rather than as a female-promoting gene. In particular, the key testis-determining gene DMRT1 was found to be up-regulated ahead of SOX9, thus suggesting in goats that SOX9 primary up-regulation may require DMRT1. Overall, our results equated to FOXL2 being an antitestis gene, allowing us to propose an alternative model for the sex-determination process in goats that differs slightly from that demonstrated in mice.


Assuntos
Transtornos Testiculares 46, XX do Desenvolvimento Sexual/genética , Fatores de Transcrição Forkhead/genética , Genitália Feminina/metabolismo , Cabras/fisiologia , Fatores de Transcrição SOX9/genética , Fatores de Transcrição/genética , Transtornos Testiculares 46, XX do Desenvolvimento Sexual/veterinária , Animais , Animais Geneticamente Modificados , Transdiferenciação Celular , Embrião de Mamíferos , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Genitália Feminina/embriologia , Cabras/genética , Sequenciamento de Nucleotídeos em Larga Escala , Masculino , Ovário/metabolismo , Processos de Determinação Sexual/genética , Testículo/metabolismo , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA