Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Comp Neurol ; 527(3): 535-545, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29315552

RESUMO

The dorsal lateral geniculate nucleus receives projections from visuotopically organized subcortical nuclei, in addition to inputs from the retina, visual cortices, and the thalamic reticular nucleus. Here, we study subcortical projections to the geniculate from the superior colliculus (SC) and parabigeminal nucleus (PBG) in the midbrain, and the nucleus of the optic tract (NOT) in the pretectum of marmosets. Marmosets are New World diurnal foveate monkeys, and are an increasingly popular model for studying the primate visual system. Furthermore, the koniocellular geniculate layers in marmosets, unlike those in the geniculate of commonly studied diurnal Old World monkeys, are well differentiated from the parvocellular and magnocellular layers. Thus, in the present study, we have made small iontophoretic injections of the retrograde tracer microruby, targeted to the koniocellular layers in the geniculates of four marmosets. We found direct projections from the ipsilateral SC, PBG, and NOT to the koniocellular geniculate layers. The distribution of retrogradely labeled cells in the superficial, visual layers of SC is consistent with the idea that projections from the SC to the koniocellular layers are visuotopically organized. A little over 20 years ago, Vivien Casagrande () introduced the idea that koniocellular geniculate layers (rather than the parvocellular and magnocellular layers) are principal targets of visuotopically organized subcortical nuclei. Our results add to subsequent evidence assembled by Casagrande and others in favor of this hypothesis.


Assuntos
Corpos Geniculados/fisiologia , Colículos Superiores/fisiologia , Córtex Visual/fisiologia , Vias Visuais/fisiologia , Animais , Callithrix , Feminino , Corpos Geniculados/citologia , Masculino , Trato Óptico/citologia , Trato Óptico/fisiologia , Colículos Superiores/citologia , Núcleos Talâmicos/citologia , Núcleos Talâmicos/fisiologia , Córtex Visual/citologia , Vias Visuais/citologia
2.
J Comp Neurol ; 527(3): 508-521, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29744881

RESUMO

In the developing mouse optic tract, retinal ganglion cell (RGC) axon position is organized by topography and laterality (i.e., eye-specific or ipsi- and contralateral segregation). Our lab previously showed that ipsilaterally projecting RGCs are segregated to the lateral aspect of the developing optic tract and found that ipsilateral axons self-fasciculate to a greater extent than contralaterally projecting RGC axons in vitro. However, the full complement of axon-intrinsic and -extrinsic factors mediating eye-specific segregation in the tract remain poorly understood. Glia, which are known to express several guidance cues in the visual system and regulate the navigation of ipsilateral and contralateral RGC axons at the optic chiasm, are natural candidates for contributing to eye-specific pre-target axon organization. Here, we investigate the spatiotemporal expression patterns of both putative astrocytes (Aldh1l1+ cells) and microglia (Iba1+ cells) in the embryonic and neonatal optic tract. We quantified the localization of ipsilateral RGC axons to the lateral two-thirds of the optic tract and analyzed glia position and distribution relative to eye-specific axon organization. While our results indicate that glial segregation patterns do not strictly align with eye-specific RGC axon segregation in the tract, we identify distinct spatiotemporal organization of both Aldh1l1+ cells and microglia in and around the developing optic tract. These findings inform future research into molecular mechanisms of glial involvement in RGC axon growth and organization in the developing retinogeniculate pathway.


Assuntos
Família Aldeído Desidrogenase 1/metabolismo , Neuroglia/metabolismo , Trato Óptico/embriologia , Trato Óptico/metabolismo , Retinal Desidrogenase/metabolismo , Células Ganglionares da Retina/metabolismo , Fatores Etários , Família Aldeído Desidrogenase 1/análise , Animais , Axônios/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Trato Óptico/citologia , Retinal Desidrogenase/análise , Vias Visuais/citologia , Vias Visuais/embriologia , Vias Visuais/metabolismo
3.
J Neurosci ; 38(19): 4531-4542, 2018 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-29661964

RESUMO

Receptive field properties of individual visual neurons are dictated by the precise patterns of synaptic connections they receive, including the arrangement of inputs in visual space and features such as polarity (On vs Off). The inputs from the retina to the lateral geniculate nucleus (LGN) in the mouse undergo significant refinement during development. However, it is unknown how this refinement corresponds to the establishment of functional visual response properties. Here we conducted in vivo and in vitro recordings in the mouse LGN, beginning just after natural eye opening, to determine how receptive fields develop as excitatory and feedforward inhibitory retinal afferents refine. Experiments used both male and female subjects. For in vivo assessment of receptive fields, we performed multisite extracellular recordings in awake mice. Spatial receptive fields at eye-opening were >2 times larger than in adulthood, and decreased in size over the subsequent week. This topographic refinement was accompanied by other spatial changes, such as a decrease in spot size preference and an increase in surround suppression. Notably, the degree of specificity in terms of On/Off and sustained/transient responses appeared to be established already at eye opening and did not change. We performed in vitro recordings of the synaptic responses evoked by optic tract stimulation across the same time period. These recordings revealed a pairing of decreased excitatory and increased feedforward inhibitory convergence, providing a potential mechanism to explain the spatial receptive field refinement.SIGNIFICANCE STATEMENT The development of precise patterns of retinogeniculate connectivity has been a powerful model system for understanding the mechanisms underlying the activity-dependent refinement of sensory systems. Here we link the maturation of spatial receptive field properties in the lateral geniculate nucleus (LGN) to the remodeling of retinal and inhibitory feedforward convergence onto LGN neurons. These findings should thus provide a starting point for testing the cell type-specific plasticity mechanisms that lead to refinement of different excitatory and inhibitory inputs, and for determining the effect of these mechanisms on the establishment of mature receptive fields in the LGN.


Assuntos
Potenciais Pós-Sinápticos Excitadores/fisiologia , Corpos Geniculados/crescimento & desenvolvimento , Corpos Geniculados/fisiologia , Inibição Neural/fisiologia , Percepção Espacial/fisiologia , Campos Visuais/fisiologia , Envelhecimento/fisiologia , Animais , Espaço Extracelular/fisiologia , Feminino , Masculino , Camundongos , Vias Neurais/citologia , Vias Neurais/fisiologia , Neurônios Aferentes/fisiologia , Trato Óptico/citologia , Trato Óptico/fisiologia , Estimulação Luminosa , Células Ganglionares da Retina/citologia , Células Ganglionares da Retina/fisiologia , Sinapses/fisiologia , Tálamo/fisiologia
4.
Neuron ; 97(5): 1078-1093.e6, 2018 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-29518358

RESUMO

The axons of retinal ganglion cells (RGCs) are topographically sorted before they arrive at the optic tectum. This pre-target sorting, typical of axon tracts throughout the brain, is poorly understood. Here, we show that cytoplasmic FMR1-interacting proteins (CYFIPs) fulfill non-redundant functions in RGCs, with CYFIP1 mediating axon growth and CYFIP2 specifically involved in axon sorting. We find that CYFIP2 mediates homotypic and heterotypic contact-triggered fasciculation and repulsion responses between dorsal and ventral axons. CYFIP2 associates with transporting ribonucleoprotein particles in axons and regulates translation. Axon-axon contact stimulates CYFIP2 to move into growth cones where it joins the actin nucleating WAVE regulatory complex (WRC) in the periphery and regulates actin remodeling and filopodial dynamics. CYFIP2's function in axon sorting is mediated by its binding to the WRC but not its translational regulation. Together, these findings uncover CYFIP2 as a key regulatory link between axon-axon interactions, filopodial dynamics, and optic tract sorting.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Axônios/metabolismo , Comunicação Celular/fisiologia , Trato Óptico/metabolismo , Vias Visuais/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/análise , Animais , Animais Geneticamente Modificados , Axônios/química , Feminino , Masculino , Trato Óptico/química , Trato Óptico/citologia , Células Ganglionares da Retina/química , Células Ganglionares da Retina/metabolismo , Colículos Superiores/química , Colículos Superiores/metabolismo , Vias Visuais/química , Vias Visuais/citologia , Xenopus laevis , Peixe-Zebra
5.
Anat Rec (Hoboken) ; 299(8): 1027-36, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27273864

RESUMO

Nogo-A is highly expressed in oligodendrocytes in the adult central nervous system (CNS). Recently it was found that Nogo-A is also expressed in some neuronal types during development. Here, we examined the expression pattern of Nogo-A in both the retina and optic tract (OT) of mouse embryos from E12 to E15. After perturbation of its function in the OT for 5 hr in the brain slice culture system using a Nogo-A specific antibody or antagonist of its receptor (NEP1-40), the optic nerve fibers and growth cones were traced with DiI. We showed that most Tuj-1 positive new-born neurons at E12 were Nogo-A positive. At E15, retinal neurons reduced the Nogo-A expression. It was worth noting that some projecting axons expressed Nogo-A along the retinofugal pathway. On the basis of their specific locations within the superficial half of the OT and the colocalization with GAP-43 (a marker for the newly born growth cones and axons), we concluded that those Nogo-A positive axons were the newly arrived retinal fibers. Blocking the function of Nogo-A with Nogo-A antibody or NEP1-40 resulted in the shift of DiI labeled axons and growth cones from the superficial half to the whole depth of the OT. These results indicate that Nogo-A in the newly born retinal ganglion cells (RGCs) and their axons are involved in sorting out the newly arrived axons to the subpial region of the OT. Anat Rec, 299:1027-1036, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Embrião de Mamíferos/metabolismo , Fibras Nervosas/metabolismo , Proteínas Nogo/metabolismo , Nervo Óptico/metabolismo , Trato Óptico/metabolismo , Células Ganglionares da Retina/metabolismo , Vias Visuais/metabolismo , Animais , Axônios/metabolismo , Células Cultivadas , Embrião de Mamíferos/citologia , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Nervo Óptico/citologia , Trato Óptico/citologia , Células Ganglionares da Retina/citologia
6.
Brain Res ; 1575: 22-32, 2014 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-24863469

RESUMO

Protein kinase C (PKC) plays a key role in many receptor-mediated signaling pathways that regulate cell growth and development. However, its roles in guiding axon growth and guidance in developing neural pathways are largely unknown. To investigate possible functions of PKC in the growth and guidance of axons in the optic chiasm, we first determined the localization of major PKC isoforms in the retinofugal pathway of mouse embryos, at the stage when axons navigate through the midline. Results showed that PKC was expressed in isoform specific patterns in the pathway. PKC-α immunoreactivity was detected in the chiasm and the optic tract. PKC-ßΙΙ was strong in the optic stalk but was attenuated on axons in the diencephalon. Immunostaining for PKC-ε showed a colocalization in the chiasmatic neurons that express a surface antigen stage specific embryonic antigen-1 (SSEA-1). These chiasmatic neurons straddled the midline of the optic chiasm, and have been shown in earlier studies a role in regulation of axon growth and guidance. Expression levels of PKC-ßΙ, -δ and -γ were barely detectable in the pathway. Blocking of PKC signaling with Ro-32-0432, an inhibitor specific for PKC-α and -ß at nanomolar concentration, produced a dramatic reduction of ipsilateral axons from both nasal retina and temporal crescent. We conclude from these studies that PKC-α and -ßΙΙ are the predominant forms in the developing optic pathway, whereas PKC-ε is the major form in the chiasmatic neurons. Furthermore, PKC-α and -ßΙΙ are likely involved in signaling pathways triggered by inhibitory molecules at the midline that guide optic axons to the uncrossed pathway.


Assuntos
Axônios/fisiologia , Quiasma Óptico/enzimologia , Proteína Quinase C/metabolismo , Células Ganglionares da Retina/fisiologia , Vias Visuais/embriologia , Vias Visuais/enzimologia , Animais , Axônios/enzimologia , Isoenzimas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Quiasma Óptico/citologia , Quiasma Óptico/embriologia , Trato Óptico/citologia , Trato Óptico/embriologia , Trato Óptico/enzimologia , Proteína Quinase C beta/metabolismo , Proteína Quinase C-alfa/metabolismo , Proteína Quinase C-épsilon/metabolismo , Retina/citologia , Retina/embriologia , Retina/enzimologia , Células Ganglionares da Retina/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA