Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Neuroreport ; 31(4): 319-324, 2020 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-32058434

RESUMO

Painful diabetic neuropathy may associate with nerve morphological plasticity in both peripheral and central nervous system. The aim of this study was to determine numerical changes of myelinated fibers in the spinothalamic tract region and oligodendrocytes in the spinal dorsal horn of rats with painful diabetic neuropathy and the effects of metformin on the above changes. Male Sprague-Dawley rats were randomly allocated into the control group (n = 7), the painful diabetic neuropathy group (n = 6) and the painful diabetic neuropathy treated with metformin group (the PDN + M group, n = 7), respectively. Twenty-eight days after medication, numbers of myelinated fibers in the spinothalamic tract and oligodendrocytes in the spinal dorsal horn were estimated by the optical disector (a stereological technique). Compared to the control group, number of myelinated fibers in the spinothalamic tract increased significantly in the painful diabetic neuropathy and PDN + M group, compared to the painful diabetic neuropathy group, number of myelinated fibers decreased in the PDN + M group (P < 0.05). As the oligodendrocyte in the spinal dorsal horn was considered, its number increased significantly in the painful diabetic neuropathy group compared to the control and the PDN + M group (P < 0.05), there was no significant difference between the control and the PDN + M group (P > 0.05). Our results indicate that painful diabetic neuropathy is associated with a serial of morphometric plasticity in the rat spinal cord including the numerical increase of the myelinated fibers in the spinothalamic tract and the oligodendrocytes in the spinal dorsal horn. The analgesic effect of metformin against painful diabetic neuropathy might be related to its adverse effects on the above morphometric plasticity.


Assuntos
Diabetes Mellitus Experimental/patologia , Neuropatias Diabéticas/patologia , Fibras Nervosas Mielinizadas/patologia , Oligodendroglia/patologia , Animais , Diabetes Mellitus Tipo 2/patologia , Hipoglicemiantes/farmacologia , Masculino , Metformina/farmacologia , Fibras Nervosas Mielinizadas/efeitos dos fármacos , Oligodendroglia/efeitos dos fármacos , Células do Corno Posterior/efeitos dos fármacos , Células do Corno Posterior/patologia , Ratos , Ratos Sprague-Dawley , Tratos Espinotalâmicos/efeitos dos fármacos , Tratos Espinotalâmicos/patologia
2.
Int J Dermatol ; 58(8): 880-891, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30362504

RESUMO

Chloroquine (CQ) is an antimalarial drug that elicits severe pruritus in black Africans with malaria fever. This acute itching (2-7 days duration) exhibits age dependency and a racial and genetic predilection. CQ itch is non-histaminergic, which makes it both a good model and a tool to probe the mechanisms of chronic itch. This review focuses on recently discovered mechanisms, neuroscience, mediators, and receptors that are implicated in molecular studies of CQ pruritus. CQ pruritus mechanisms are also compared to that of itching following other systemic diseases, such as chronic kidney disease, chronic liver disease, skin disorders, and burns. There are striking similarities between CQ itching pathways and other chronic itch secondary to systemic disease with or without skin lesions, which have not been previously highlighted. Prominent among these are the shared roles of skin, neural and spinal µ opiate receptors, kappa opiate receptor, nitric oxide, serotonin via 5HT1B/D receptors, cytokines, especially interleukins, and tumor necrosis factor. There is elaborate "cross talk" among the diverse mediators and receptors involved in CQ-induced pruritus. CQ also binds to the mas-related G protein coupled receptors MrgprA3/MrgprX1 present in a small proportion (4-5%) of dorsal root ganglion neurons and skin. The mrgprA3 CQ receptors are coupled to PLC-ß3 and a chloride channel to initiate skin itch action potentials in C nerve fibers. Mrgpra3/X1 couples to TRPA1 for calcium influx into neuronal cells at noncutaneous sites. Central CQ itch occurs via gastrin-related peptide (GRP) and its receptor (GRPR) in the dorsal spinothalamic tracts, as well as glutamic mediated GRP projection to parabrachial nucleus. The possibility of chronic itch therapy based on personalized medicine, genetics, and transcriptomics or the use of itch "polypill/polycream" are discussed.


Assuntos
Antimaláricos/efeitos adversos , Antipruriginosos/uso terapêutico , Cloroquina/efeitos adversos , Malária/tratamento farmacológico , Prurido/etiologia , Potenciais de Ação/efeitos dos fármacos , Antipruriginosos/farmacologia , População Negra , Cálcio/metabolismo , Doença Crônica/tratamento farmacológico , Combinação de Medicamentos , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/metabolismo , Perfilação da Expressão Gênica , Humanos , Medicina de Precisão/métodos , Prurido/tratamento farmacológico , Receptores Acoplados a Proteínas G/metabolismo , Células Receptoras Sensoriais/efeitos dos fármacos , Células Receptoras Sensoriais/metabolismo , Pele/efeitos dos fármacos , Pele/inervação , Pele/metabolismo , Tratos Espinotalâmicos/efeitos dos fármacos , Tratos Espinotalâmicos/metabolismo , Canal de Cátion TRPA1/metabolismo , Transcriptoma/efeitos dos fármacos
3.
Drug Des Devel Ther ; 9: 3853-62, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26229445

RESUMO

BACKGROUND: Paracetamol's (APAP) mechanism of action suggests the implication of supraspinal structures but no neuroimaging study has been performed in humans. METHODS AND RESULTS: This randomized, double-blind, crossover, placebo-controlled trial in 17 healthy volunteers (NCT01562704) aimed to evaluate how APAP modulates pain-evoked functional magnetic resonance imaging signals. We used behavioral measures and functional magnetic resonance imaging to investigate the response to experimental thermal stimuli with APAP or placebo administration. Region-of-interest analysis revealed that activity in response to noxious stimulation diminished with APAP compared to placebo in prefrontal cortices, insula, thalami, anterior cingulate cortex, and periaqueductal gray matter. CONCLUSION: These findings suggest an inhibitory effect of APAP on spinothalamic tracts leading to a decreased activation of higher structures, and a top-down influence on descending inhibition. Further binding and connectivity studies are needed to evaluate how APAP modulates pain, especially in the context of repeated administration to patients with pain.


Assuntos
Acetaminofen/farmacologia , Analgésicos não Narcóticos/farmacologia , Encéfalo/efeitos dos fármacos , Dor/tratamento farmacológico , Adulto , Encéfalo/metabolismo , Estudos Cross-Over , Método Duplo-Cego , Potenciais Evocados/efeitos dos fármacos , Humanos , Imageamento por Ressonância Magnética , Masculino , Tratos Espinotalâmicos/efeitos dos fármacos , Tratos Espinotalâmicos/metabolismo , Adulto Jovem
4.
Eur J Pain ; 19(10): 1496-505, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25716421

RESUMO

BACKGROUND: Allodynia and hyperalgesia present after surgical interventions are often a major complain of surgical patients. It is thought that both peripheral and central mechanisms contribute to these symptoms. In this study, the role of peripheral nerve fibres that express transient receptor potential vanilloid 1 (TRPV1) receptors in the activation of spinothalamic tract (STT) and postsynaptic dorsal column (PSDC) neurons was assessed in a model of surgical pain. METHODS: Spinothalamic tract and PSDC neurons retrogradely labelled from the thalamus and nucleus gracilis were used. Activation of these projection neurons was evaluated after plantar incision as expression of the early gene product, c-Fos protein, in the nuclei of these neurons. RESULTS: There was a robust increase in c-Fos immunopositivity in the STT and PSDC neurons, in the control animals after a plantar incision. This increase in c-Fos expression was significantly attenuated in animals in which a single high-concentration capsaicin injection was made intradermally at the incision site 24 h before the surgery. CONCLUSIONS: Our results suggest that activation of both STT and PSDC neurons is involved in development of pain states present after surgical incision and that TRPV1-containing peripheral nerve fibres are needed for c-Fos expression in these dorsal horn neurons after plantar incision.


Assuntos
Capsaicina/farmacologia , Bulbo/metabolismo , Fibras Nervosas , Dor Pós-Operatória , Células do Corno Posterior/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Fármacos do Sistema Sensorial/farmacologia , Tratos Espinotalâmicos/metabolismo , Canais de Cátion TRPV/metabolismo , Animais , Capsaicina/administração & dosagem , Modelos Animais de Doenças , Masculino , Fibras Nervosas/efeitos dos fármacos , Fibras Nervosas/metabolismo , Dor Pós-Operatória/tratamento farmacológico , Dor Pós-Operatória/etiologia , Dor Pós-Operatória/metabolismo , Proteínas Proto-Oncogênicas c-fos/efeitos dos fármacos , Ratos , Ratos Wistar , Fármacos do Sistema Sensorial/administração & dosagem , Tratos Espinotalâmicos/efeitos dos fármacos
5.
Endocrinology ; 155(11): 4341-55, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25105782

RESUMO

Central pain syndrome is characterized by severe and excruciating pain resulting from a lesion in the central nervous system. Previous studies have shown that estradiol decreases pain and that inhibitors of the enzyme aromatase, which synthesizes estradiol from aromatizable androgens, increases pain sensitivity. In this study we have assessed whether aromatase expression in the dorsal horns of the spinal cord is altered in a rat model of central pain syndrome, induced by the unilateral electrolytic lesion of the spinothalamic tract. Protein and mRNA levels of aromatase, as well as the protein and mRNA levels of estrogen receptors α and ß, were increased in the dorsal horn of female rats after spinothalamic tract injury, suggesting that the injury increased estradiol synthesis and signaling in the dorsal horn. To determine whether the increased aromatase expression in this pain model may participate in the control of pain, mechanical allodynia thresholds were determined in both hind paws after the intrathecal administration of letrozole, an aromatase inhibitor. Aromatase inhibition enhanced mechanical allodynia in both hind paws. Because estradiol is known to regulate gliosis we assessed whether the spinothalamic tract injury and aromatase inhibition regulated gliosis in the dorsal horn. The proportion of microglia with a reactive phenotype and the number of glial fibrillary acidic protein-immunoreactive astrocytes were increased by the injury in the dorsal horn. Aromatase inhibition enhanced the effect of the injury on gliosis. Furthermore, a significant a positive correlation of mechanical allodynia and gliosis in the dorsal horn was detected. These findings suggest that aromatase is up-regulated in the dorsal horn in a model of central pain syndrome and that aromatase activity in the spinal cord reduces mechanical allodynia by controlling reactive gliosis in the dorsal horn.


Assuntos
Inibidores da Aromatase/efeitos adversos , Aromatase/metabolismo , Gliose/induzido quimicamente , Dor/induzido quimicamente , Corno Dorsal da Medula Espinal/efeitos dos fármacos , Tratos Espinotalâmicos/efeitos dos fármacos , Tratos Espinotalâmicos/lesões , Animais , Aromatase/genética , Progressão da Doença , Feminino , Gliose/genética , Gliose/metabolismo , Hiperalgesia/genética , Hiperalgesia/metabolismo , Hiperalgesia/patologia , Dor/genética , Dor/metabolismo , Limiar da Dor , Ratos , Ratos Sprague-Dawley , Corno Dorsal da Medula Espinal/metabolismo , Corno Dorsal da Medula Espinal/patologia , Traumatismos da Medula Espinal/complicações , Traumatismos da Medula Espinal/genética , Traumatismos da Medula Espinal/patologia , Tratos Espinotalâmicos/metabolismo , Tratos Espinotalâmicos/patologia
6.
Brain ; 137(Pt 2): 313-22, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23794605

RESUMO

Research over the past 15 years has helped to clarify the anatomy and physiology of itch, the clinical features of neuropathic itch syndromes and the scientific underpinning of effective treatments. Two itch-sensitive pathways exist: a histamine-stimulated pathway that uses mechanically insensitive C-fibres, and a cowhage-stimulated pathway primarily involving polymodal C-fibres. Interactions with pain continue to be central to explaining various aspects of itch. Certain spinal interneurons (Bhlhb5) inhibit itch pathways within the dorsal horn; they may represent mediators between noxious and pruritic pathways, and allow scratch to inhibit itch. In the brain, functional imaging studies reveal diffuse activation maps for itch that overlap, but not identically, with pain maps. Neuropathic itch syndromes are chronic itch states due to dysfunction of peripheral or central nervous system structures. The most recognized are postherpetic itch, brachioradial pruritus, trigeminal trophic syndrome, and ischaemic stroke-related itch. These disorders affect a patient's quality of life to a similar extent as neuropathic pain. Treatment of neuropathic itch focuses on behavioural interventions (e.g., skin protection) followed by stepwise trials of topical agents (e.g., capsaicin), antiepileptic drugs (e.g., gabapentin), injection of other agents (e.g., botulinum A toxin), and neurostimulation techniques (e.g., cutaneous field stimulation). The involved mechanisms of action include desensitization of nerve fibres (in the case of capsaicin) and postsynaptic blockade of calcium channels (for gabapentin). In the future, particular histamine receptors, protease pathway molecules, and vanilloids may serve as targets for novel antipruritic agents.


Assuntos
Doenças do Sistema Nervoso/fisiopatologia , Prurido/fisiopatologia , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/uso terapêutico , Benzamidinas , Guanidinas/farmacologia , Guanidinas/uso terapêutico , Histamina/fisiologia , Antagonistas dos Receptores Histamínicos/farmacologia , Antagonistas dos Receptores Histamínicos/uso terapêutico , Humanos , Fibras Nervosas Amielínicas/efeitos dos fármacos , Fibras Nervosas Amielínicas/fisiologia , Doenças do Sistema Nervoso/diagnóstico , Doenças do Sistema Nervoso/terapia , Prurido/diagnóstico , Prurido/terapia , Tratos Espinotalâmicos/efeitos dos fármacos , Tratos Espinotalâmicos/fisiologia
7.
J Neurophysiol ; 108(6): 1711-23, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22723676

RESUMO

Itch of peripheral origin requires information transfer from the spinal cord to the brain for perception. Here, primate spinothalamic tract (STT) neurons from lumbar spinal cord were functionally characterized by in vivo electrophysiology to determine the role of these cells in the transmission of pruriceptive information. One hundred eleven STT neurons were identified by antidromic stimulation and then recorded while histamine and cowhage (a nonhistaminergic pruritogen) were sequentially applied to the cutaneous receptive field of each cell. Twenty percent of STT neurons responded to histamine, 13% responded to cowhage, and 2% responded to both. All pruriceptive STT neurons were mechanically sensitive and additionally responded to heat, intradermal capsaicin, or both. STT neurons located in the superficial dorsal horn responded with greater discharge and longer duration to pruritogens than STT neurons located in the deep dorsal horn. Pruriceptive STT neurons discharged in a bursting pattern in response to the activating pruritogen and to capsaicin. Microantidromic mapping was used to determine the zone of termination for pruriceptive STT axons within the thalamus. Axons from histamine-responsive and cowhage-responsive STT neurons terminated in several thalamic nuclei including the ventral posterior lateral, ventral posterior inferior, and posterior nuclei. Axons from cowhage-responsive neurons were additionally found to terminate in the suprageniculate and medial geniculate nuclei. Histamine-responsive STT neurons were sensitized to gentle stroking of the receptive field after the response to histamine, suggesting a spinal mechanism for alloknesis. The results show that pruriceptive information is encoded by polymodal STT neurons in histaminergic or nonhistaminergic pathways and transmitted to the ventrobasal complex and posterior thalamus in primates.


Assuntos
Axônios/fisiologia , Células do Corno Posterior/fisiopatologia , Prurido/fisiopatologia , Tratos Espinotalâmicos/fisiopatologia , Percepção do Tato/fisiologia , Animais , Mapeamento Encefálico , Capsaicina/farmacologia , Eletroencefalografia , Histamina/farmacologia , Macaca fascicularis , Mucuna/toxicidade , Nociceptividade , Extratos Vegetais/farmacologia , Células do Corno Posterior/citologia , Células do Corno Posterior/efeitos dos fármacos , Prurido/induzido quimicamente , Tratos Espinotalâmicos/citologia , Tratos Espinotalâmicos/efeitos dos fármacos , Núcleos Talâmicos/citologia , Núcleos Talâmicos/fisiopatologia , Tato
8.
J Sex Med ; 8(4): 1015-26, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21235717

RESUMO

INTRODUCTION: The sexual reflex ejaculation is controlled by a spinal ejaculation generator located in the lumbosacral spinal cord. A population of spinothalamic (LSt) neurons forms a key component of this generator, as manipulations of LSt cells either block or trigger ejaculation. However, it is currently unknown which afferent signals contribute to the activation of LSt cells and ejaculation. AIM: The current study tested the hypothesis that glutamate, via activation of N-Methyl-D-aspartic acid (NMDA) receptors in LSt cells, is a key regulator of ejaculation. METHODS: Expression of phosphorylated NMDA receptor subunit 1 (NR1) was investigated following mating, or following ejaculation induced by electrical stimulation of the dorsal penile nerve (DPN) in anesthetized, spinalized male rats. Next, the effects of intraspinal delivery of NMDA receptor antagonist AP-5 on DPN stimulation-induced ejaculation were examined. Moreover, the ability of intraspinal delivery of NMDA to trigger ejaculation was examined. Finally, the site of action of NMDA was determined by studying effects of NMDA in male rats with LSt cell-specific lesions. MAIN OUTCOME MEASURES: Expression of NR1 and phosphorylated NR1 in LSt cells was analyzed. Electromyographic recordings of the bulbocavernosus muscle (BCM) were recorded in anesthetized, spinalized rats following stimulation of the DPN and delivery of AP-5 or NMDA. RESULTS: Results indicate that the NR1 receptors are activated in LSt cells following ejaculation in mating animals or induced by DPN stimulation in anesthetized, spinalized animals. Moreover, NR1 activation in LSt cells is an essential trigger for rhythmic BCM bursting, as DPN stimulation-induced reflexes were absent following administration of NMDA receptor antagonist in the L3-L4 spinal area, and were triggered by NMDA. NMDA effects were dependent on intact LSt cells and were absent in LSt-lesioned males. CONCLUSION: These results demonstrate that glutamate, via activation of NMDA receptors in LSt cells, is a key afferent signal for ejaculation.


Assuntos
Ejaculação/efeitos dos fármacos , Ácido Glutâmico/efeitos dos fármacos , Região Lombossacral , Receptores de N-Metil-D-Aspartato/metabolismo , Tratos Espinotalâmicos/efeitos dos fármacos , Animais , Estimulação Elétrica , Masculino , Pênis , Ratos , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/biossíntese , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos , Reflexo/efeitos dos fármacos , Comportamento Sexual Animal
9.
Pain ; 144(3): 320-328, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19493620

RESUMO

Spinal long-term potentiation (LTP) elicited by noxious stimulation enhances the responsiveness of dorsal horn nociceptive neurons to their normal input, and may represent a key mechanism of central sensitization by which acute pain could turn into a chronic pain state. This study investigated the electrophysiological and behavioral consequences of the interactions between LTP and descending oxytocinergic antinociceptive mechanisms mediated by the hypothalamic paraventricular nucleus (PVN). PVN stimulation or intrathecal oxytocin (OT) reduced or prevented the ability of spinal LTP to facilitate selectively nociceptive-evoked responses of spinal wide dynamic range (WDR) neurons recorded in anesthetized rats. In a behavioral model developed to study the effects of spinal LTP on mechanical withdrawal thresholds in freely moving rats, the long-lasting LTP-mediated mechanical hyperalgesia was transiently interrupted or prevented by either PVN stimulation or intrathecal OT. LTP mediates long-lasting pain hypersensitivity that is strongly modulated by endogenous hypothalamic oxytocinergic descending controls.


Assuntos
Hiperalgesia/fisiopatologia , Potenciação de Longa Duração/fisiologia , Nociceptores/metabolismo , Ocitocina/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Células do Corno Posterior/metabolismo , Analgesia/métodos , Analgésicos/metabolismo , Analgésicos/farmacologia , Animais , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Modelos Animais de Doenças , Vias Eferentes/metabolismo , Vias Eferentes/fisiologia , Terapia por Estimulação Elétrica/métodos , Hiperalgesia/tratamento farmacológico , Injeções Espinhais , Potenciação de Longa Duração/efeitos dos fármacos , Masculino , Nociceptores/efeitos dos fármacos , Ocitocina/farmacologia , Medição da Dor/efeitos dos fármacos , Limiar da Dor/efeitos dos fármacos , Limiar da Dor/fisiologia , Células do Corno Posterior/efeitos dos fármacos , Ratos , Ratos Wistar , Tratos Espinotalâmicos/efeitos dos fármacos , Tratos Espinotalâmicos/fisiologia
10.
J Neurophysiol ; 102(2): 700-13, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19458144

RESUMO

The recent discovery of a barbiturate-sensitive "general anesthesia switch" mechanism localized in the rat brain stem mesopontine tegmental anesthesia area (MPTA) has challenged the current view of the nonspecific actions of general anesthetic agents in the CNS. In this study we provide electrophysiological evidence that the antinociception, which accompanies the behavioral state resembling general anesthesia following pentobarbital (PB) microinjections into the MPTA of awake rats, could be accompanied by the attenuation of sensory transmission through the spinothalamic tract (STT). Following bilateral microinjections of PB into the MPTA spontaneous firing rate (SFR), antidromic firing index (FI), and sciatic (Sc) as well as sural (Su) nerve-evoked responses (ER) of identified lumbar STT neurons in the isoflurane-anesthetized rat were quantified using extracellular recording techniques. Microinjections of PB into the MPTA significantly suppressed the SFR (47%), magnitudes of Sc- (26%) and Su-ER (36%), and FI (41%) of STT neurons. Microinjections of PB-free vehicle control did not alter any of the above-cited electrophysiological parameters. The results from this study suggest that antinociception, which occurs during the anesthesia-like state following PB microinjections into the MPTA, may be due, in part, to (in)direct inhibition of STT neurons via switching mechanism(s) located in the MPTA. This study provides a provenance for investigating electrophysiologically the actions on STT neurons of other current agents used clinically to maintain the state of general anesthesia.


Assuntos
Tronco Encefálico/efeitos dos fármacos , Moduladores GABAérgicos/farmacologia , Pentobarbital/farmacologia , Tratos Espinotalâmicos/fisiologia , Transmissão Sináptica/efeitos dos fármacos , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Análise de Variância , Animais , Cateterismo , Potenciais Somatossensoriais Evocados/efeitos dos fármacos , Potenciais Somatossensoriais Evocados/fisiologia , Glicoproteínas de Membrana , Microeletrodos , Microinjeções , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Ratos , Ratos Sprague-Dawley , Receptores de Interleucina-1 , Nervo Isquiático/fisiologia , Tratos Espinotalâmicos/efeitos dos fármacos , Nervo Sural/fisiologia
11.
J Neurosci ; 27(37): 10007-14, 2007 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-17855615

RESUMO

Itch is an everyday sensation, but when associated with disease or infection it can be chronic and debilitating. Several forms of itch can be blocked using antihistamines, but others cannot and these constitute an important clinical problem. Little information is available on the mechanisms underlying itch that is produced by nonhistaminergic mechanisms. We examined the responses of spinothalamic tract neurons to histaminergic and, for the first time, nonhistaminergic forms of itch stimuli. Fifty-seven primate spinothalamic tract (STT) neurons were identified using antidromic activation techniques and examined for their responses to histamine and cowhage, the nonhistaminergic itch-producing spicules covering the pod of the legume Mucuna pruriens. Each examined neuron had a receptive field on the hairy skin of the hindlimb and responded to noxious mechanical stimulation. STT neurons were tested with both pruritogens applied in a random order and we found 12 that responded to histamine and seven to cowhage. Each pruritogen-responsive STT neuron was activated by the chemical algogen capsaicin and two-thirds responded to noxious heat stimuli, demonstrating that these neurons convey chemical, thermal, and mechanical nociceptive information as well. Histamine or cowhage responsive STT neurons were found in both the marginal zone and the deep dorsal horn and were classified as high threshold and wide dynamic range. Unexpectedly, histamine and cowhage never activated the same cell. Our results demonstrate that the spinothalamic tract contains mutually exclusive populations of neurons responsive to histamine or the nonhistaminergic itch-producing agent cowhage.


Assuntos
Histamina/farmacologia , Neurônios/fisiologia , Prurido/fisiopatologia , Tratos Espinotalâmicos/fisiologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Feminino , Histamina/fisiologia , Macaca fascicularis , Macaca mulatta , Masculino , Neurônios/citologia , Neurônios/efeitos dos fármacos , Prurido/induzido quimicamente , Prurido/patologia , Tratos Espinotalâmicos/efeitos dos fármacos
12.
Ideggyogy Sz ; 59(3-4): 87-97, 2006 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-16634453

RESUMO

Traditional concept holds that the pain unit consists of three neurons. The first of these, the primary nociceptive neuron, starts with the nociceptors and terminates in the dorsal spinal cord. The second one, called spinothalamic neuron, crosses over in front of the central canal and connects the dorsal horn with the thalamus. The third one, called thalamo-cortical neuron, terminates in the "pain centres" of the cerebral cortex. While this simplistic scheme is useful for didactic purposes, the actual situation is more complex. First, in the periphery it is only nociception that occurs, while pain is restricted to the levels of thalamus and the cortex. Second, pain results from interactions of excitation and inhibition, from divergence and convergence and from attention and distraction, in a diffuse and plastic system, characteristic for all levels of organization. This study describes the major cytochemical markers of primary nociceptive neurons followed by the presentation of recent data on the functional anatomy of nociception and pain, with special focus on the intrinsic antinociceptive system and the role of nitrogen oxide, opiate receptors, nociceptin and nocistatin. In addition to the classic intrinsic antinociceptive centres such as the periaqueductal gray matter and the raphe nuclei, roles of several recently discovered members of the antinociceptive system are discussed, such as the pretectal nucleus, the reticular formation, the nucleus accumbens, the nucleus tractus solitarii, the amygdala and the reticular thalamic nucleus, this latter being a coincidence detector and a centre for attention and distraction. The localisation of cortical centres involved in the generation of pain are presented based on the results of studies using imaging techniques, and the structural basis of corticospinal modulation is also outlined. Seven levels of nociception and pain are highlighted where pharmacological intervention may be successful, 1. the peripheral nociceptor, 2. the spinal ganglion, 3. the multisynaptic system of the dorsal horn, 4. the modulatory system of the brain stem, 5. the antinociceptive system, 6. the multisynaptic system of the thalamus, and 7. the cortical evaluating and localisation system that is also responsible for descending (inhibiting) control. The many levels of nociception and pain opens new ways both for pharmacological research and the general practitioner aiming to alleviate pain.


Assuntos
Analgésicos/farmacologia , Plasticidade Neuronal , Dor/fisiopatologia , Tronco Encefálico/efeitos dos fármacos , Tronco Encefálico/fisiopatologia , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/fisiopatologia , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/fisiopatologia , Humanos , Óxidos de Nitrogênio/metabolismo , Nociceptores/efeitos dos fármacos , Nociceptores/fisiopatologia , Peptídeos Opioides/metabolismo , Dor/metabolismo , Medição da Dor , Células do Corno Posterior/efeitos dos fármacos , Células do Corno Posterior/fisiopatologia , Receptores Opioides/metabolismo , Tratos Espinotalâmicos/efeitos dos fármacos , Tratos Espinotalâmicos/fisiopatologia , Tálamo/efeitos dos fármacos , Tálamo/fisiopatologia , Nociceptina
13.
J Comp Neurol ; 489(1): 59-68, 2005 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-15977164

RESUMO

Brain-derived neurotrophic factor (BDNF) is a neurotrophin implicated in the phenomena of synaptic plasticity in the adult. It is found in terminals of nociceptive primary afferents. Following a pain-related stimulus, it is released in the spinal cord, where it activates its high-affinity receptor TrkB, leading to the phosphorylation of the mitogen-activated protein kinase (MAPK) extracellular signal-regulated kinase (ERK). A large body of evidence suggests that BDNF has a positive neuromodulatory effect on glutamate transmission in the spinal cord. However, none of these studies examined anatomically whether projection neurons known to be involved in transmission of nociceptive inputs express BDNF's receptor. Because the spinothalamic tract (STT) is a well-characterized pathway for its role in the transfer and integration of sensory and nociceptive informations, this study in rats aimed to 1) determine whether neurons of the STT pathway express the TrkB receptor, 2) establish the rostrocaudal and laminar distribution of STT-TrkB neurons in the whole spinal cord, and 3) test the potential functionality of TrkB expression in these cells by investigating the ability of BDNF to activate the MAP kinase ERK. Using tract tracing coupled to immunofluorescent labeling for TrkB, we observed that in all levels of the spinal cord most STT neurons were immunoreactive for TrkB. Furthermore, microinjections of BDNF into the spinal cord or release of endogenous BDNF by intraplantar injection of capsaicin activated ERK phosphorylation in TrkB-containing STT neurons. These data suggest an important role for BDNF in nociception as an activator of spinothalamic projection neurons.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Receptor trkB/biossíntese , Tratos Espinotalâmicos/citologia , Tratos Espinotalâmicos/metabolismo , Animais , Capsaicina/farmacologia , Ativação Enzimática/efeitos dos fármacos , Corantes Fluorescentes , Imuno-Histoquímica , Ratos , Ratos Wistar , Receptor trkB/genética , Tratos Espinotalâmicos/efeitos dos fármacos , Técnicas Estereotáxicas , Estilbamidinas
14.
Brain Res ; 1020(1-2): 95-105, 2004 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-15312791

RESUMO

We have previously reported that protein kinase A (PKA) is involved in the phosphorylation of NR1 subunits of N-methyl-d-aspartate (NMDA) receptors in dorsal horn neurons after intradermal injection of capsaicin (CAP). To see if protein kinase C (PKC) also participates in the phosphorylation of NR1, we used electron microscopic techniques to determine further where the phosphorylated NR1 subunits (pNR1) are expressed in the spinothalamic tract (STT) cells and immunohistochemistry to examine whether a PKC inhibitor, chelerythrine chloride, blocks the enhanced phosphorylation of NR1 on serine 896. The pNR1 subunits were in the soma and dendrites of STT cells and in presynaptic endings. Western blots showed that pretreatment with the PKC inhibitor caused a decrease in CAP-induced phosphorylation of NR1 protein. In immunofluorescence staining, the number of pNR1-like immunoreactive neurons was significantly decreased on the side ipsilateral to the injection when chelerythrine chloride was administered intrathecally before CAP injection. In addition, when STT cells were labeled by microinjection of the retrograde tracer, fluorogold (FG), into the thalamus, we found that the proportion of p-NR1-LI STT cells was markedly reduced after PKC inhibition. Combined with our previous findings, these results strongly suggest that NR1 subunits in spinal dorsal horn neurons are phosphorylated following CAP injection, and this phosphorylation is catalyzed by PKC, as well as by PKA.


Assuntos
Nociceptores/metabolismo , Dor/enzimologia , Células do Corno Posterior/enzimologia , Proteína Quinase C/antagonistas & inibidores , Proteína Quinase C/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Tratos Espinotalâmicos/enzimologia , Alcaloides , Animais , Benzofenantridinas , Capsaicina , Inibidores Enzimáticos/administração & dosagem , Imunofluorescência , Lateralidade Funcional/fisiologia , Injeções Intradérmicas , Injeções Espinhais , Masculino , Nociceptores/efeitos dos fármacos , Dor/induzido quimicamente , Fenantridinas/administração & dosagem , Fosforilação , Células do Corno Posterior/efeitos dos fármacos , Células do Corno Posterior/ultraestrutura , Proteína Quinase C/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos , Tratos Espinotalâmicos/efeitos dos fármacos , Tratos Espinotalâmicos/ultraestrutura
15.
J Neurophysiol ; 91(1): 213-22, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-14715718

RESUMO

We investigated the role of mechanosensitive spinothalamic tract (STT) neurons in mediating 1) the itch evoked by intradermal injection of histamine, 2) the enhanced sense of itch evoked by innocuous stroking (alloknesis), and 3) the enhanced pain evoked by punctate stimulation (hyperalgesia) of the skin surrounding the injection site. Responses to intradermal injections of histamine and capsaicin were compared in STT neurons recorded in either the superficial or the deep dorsal horn of the anesthetized monkey. Each neuron was identified by antidromic activation from the ventral posterior lateral nucleus of thalamus and classified by its initial responses to mechanical stimuli as wide dynamic range (WDR) or high-threshold (HT). Approximately half of the WDRs and one of the HTs responded weakly to histamine, some with a duration > 5 min, the maximal time allotted. WDRs but not HTs exhibited a significant increase in response to punctate stimulation after histamine consistent with their possible role in mediating histamine-induced hyperalgesia. Neither type of neuron exhibited significant changes in response to stroking, consistent with their unlikely role in mediating alloknesis. Furthermore, nearly all STT neurons exhibited vigorous and persistent responses to capsaicin, after which they became sensitized to stroking and to punctate stimulation. We conclude that the STT neurons in our sample are more likely to contribute to pain, allodynia, and hyperalgesia than to itch and alloknesis.


Assuntos
Hiperalgesia/fisiopatologia , Células do Corno Posterior/fisiologia , Prurido/fisiopatologia , Tratos Espinotalâmicos/fisiologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Análise de Variância , Animais , Capsaicina , Eletrofisiologia , Potenciais Evocados , Histamina , Temperatura Alta , Hiperalgesia/induzido quimicamente , Hiperalgesia/etiologia , Injeções Intradérmicas/métodos , Laminectomia/métodos , Macaca fascicularis , Estimulação Física/métodos , Células do Corno Posterior/efeitos dos fármacos , Prurido/induzido quimicamente , Tempo de Reação , Pele/efeitos dos fármacos , Pele/inervação , Tratos Espinotalâmicos/citologia , Tratos Espinotalâmicos/efeitos dos fármacos , Estimulação Química , Tálamo/anatomia & histologia , Tálamo/fisiologia , Fatores de Tempo
16.
J Mol Neurosci ; 20(1): 43-52, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12663934

RESUMO

Neurostimulation for refractory angina pectoris is often advocated for its clinical efficacy. However, the recruited pathways to induce electroanalgesia are partially unknown. Therefore, we sought to study the effect of neurostimulation on experimentally induced cardiac nociception, using capsaicin as nociception-induced substance. Four different groups of male Wistar rats were pericardially infused with either saline or capsaicin with or without neurostimulation. Group StimCap was infused with capsaicin, and group StimVeh was infused with saline. Both groups were treated with neurostimulation. Group ShamCap was only infused with capsaicin without stimulation, whereas group ShamVeh was only infused with saline. Neuronal activation differences were assessed with cytochemical staining, revealing the cellular expression of c-fos. Pain behavior was registered on video and was quantitatively analyzed. In the StimCap and ShamCap groups, all animals exerted typical pain behavior, whereas in the StimVeh group only moderate changes in behavior were observed. Group ShamVeh animals were unaffected by the procedure. The upper thoracic spinal cord showed high numbers of c-fos-positive cells, predominantly in laminae III and IV in both StimCap and StimVeh groups. Almost no c-fos expression was noticed in groups ShamCap and ShamVeh in these sections of the spinal cord. In groups StimCap and ShamCap a significantly higher number of c-fos-positive cells in comparison with groups StimVeh and ShamVeh were noticed in the periambigus region, the nucleus tractus solitarius, and the paraventricular hypothalamus. In the paraventricular thalamus, periaqueductal gray, and central amygdala, no significant differences were noticed among the first three groups, and the c-fos concentration in these three groups was significantly higher than in group ShamVeh. It is concluded that neurostimulation does not influence capsaicin-induced cardiac nociceptive pain pulses to the central nervous system. Furthermore, capsaicin-induced cardiac pain and neurostimulation may utilize two different pathways.


Assuntos
Vias Aferentes/fisiologia , Analgesia , Angina Pectoris/fisiopatologia , Sistema Nervoso Central/fisiologia , Coração/inervação , Nociceptores/fisiologia , Estimulação Elétrica Nervosa Transcutânea , Vias Aferentes/efeitos dos fármacos , Angina Pectoris/terapia , Animais , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Encéfalo/efeitos dos fármacos , Encéfalo/fisiologia , Capsaicina/farmacologia , Sistema Nervoso Central/efeitos dos fármacos , Imuno-Histoquímica , Masculino , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Nociceptores/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Wistar , Tratos Espinotalâmicos/efeitos dos fármacos , Tratos Espinotalâmicos/fisiologia , Fibras Simpáticas Pós-Ganglionares/efeitos dos fármacos , Fibras Simpáticas Pós-Ganglionares/fisiologia , Nervo Vago/efeitos dos fármacos , Nervo Vago/fisiologia
17.
J Neurophysiol ; 88(1): 214-21, 2002 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12091547

RESUMO

Behavioral and anatomical studies by our group have suggested that the protein kinase A (PKA) signal transduction cascade contributes to long-term changes in nociceptive processing at the spinal cord level. In this study, we have examined the effects of activation of the PKA cascade on the responses of spinothalamic tract (STT) neurons to peripheral mechanical stimuli in anesthetized and paralyzed monkeys. PKA in the spinal cord was activated by intra-spinal infusion of forskolin, an activator of adenylate cyclase, by microdialysis. There was a consistent increase in responses to mechanical pressure and pinch stimuli in all STT cells tested when forskolin was administered. Enhanced responses remained at relatively high levels when forskolin had been washed out for 30 min. However, in most STT cells tested (65%), the responses to brushing stimuli were not obviously changed when forskolin was given. Background activity was slightly increased when forskolin was administered. An inactive isomer of forskolin, D-forskolin, did not produce significant effects on cellular activity. The sensitization of STT cells to noxious mechanical stimuli produced by forskolin could be blocked by pretreatment of the spinal cord with the PKA inhibitor, N-[2-((p-bromocinnamyl)amino)ethyl]-5-isoquinolinesulfonamine (H89). The same dose of H89 did not affect the enhanced responses to mechanical stimuli produced by activation of protein kinase G by intra-spinal infusion of 8-bromo-cGMP, indicating that the effect of forskolin was selective. The present data suggest that activation of PKA can preferentially enhance the responses of STT cells to noxious mechanical stimuli without producing an increase in responses to innocuous brushing stimuli. We speculate that the PKA signal transduction cascade may contribute more to secondary mechanical hyperalgesia than to secondary mechanical allodynia.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Neurônios/fisiologia , Tratos Espinotalâmicos/fisiologia , Sulfonamidas , Animais , Colforsina/administração & dosagem , Colforsina/antagonistas & inibidores , Colforsina/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Ativação Enzimática/fisiologia , Inibidores Enzimáticos/farmacologia , Injeções Espinhais , Isoquinolinas/farmacologia , Macaca fascicularis , Masculino , Neurônios/efeitos dos fármacos , Estimulação Física , Tratos Espinotalâmicos/citologia , Tratos Espinotalâmicos/efeitos dos fármacos
18.
Neurosci Lett ; 320(3): 125-8, 2002 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-11852178

RESUMO

To assess the role of brain-derived neurotrophic factor (BDNF) in nociceptive processing after chronic lateral spinal cord hemisection injury (SCI) at T13, we studied the effects of BDNF on evoked activity of dorsal horn wide dynamic range (WDR) neurons. Evoked responses of WDR cells (n=34 total) at L3-L5 were characterized electrophysiologically after spinal administration of vehicle, or BDNF (10 microg). In hemisected animals, application of BDNF to the surface of the cord resulted in reductions in evoked activity in 24 of 32 cells (75%), and enhancement of evoked activity in eight of 32 (25%) cells. Phosphate-buffered saline-receiving animals demonstrated evoked response rates of between 75 and 93 Hz, while BDNF(-) cells had evoked rates from between 20 and 41 Hz, and BDNF(+) activities were between 80 and 119 Hz, significant changes of 76 and 124%, respectively. Effects were bilateral and differences in sidedness were not observed. These results further implicate BDNF in nociceptive processing, but suggest a complex role after chronic SCI.


Assuntos
Potenciais de Ação/fisiologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Nociceptores/metabolismo , Dor/metabolismo , Células do Corno Posterior/metabolismo , Traumatismos da Medula Espinal/metabolismo , Tratos Espinotalâmicos/metabolismo , Potenciais de Ação/efeitos dos fármacos , Animais , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Lateralidade Funcional/efeitos dos fármacos , Lateralidade Funcional/fisiologia , Hiperalgesia/metabolismo , Hiperalgesia/patologia , Hiperalgesia/fisiopatologia , Masculino , Nociceptores/efeitos dos fármacos , Dor/patologia , Dor/fisiopatologia , Estimulação Física , Células do Corno Posterior/efeitos dos fármacos , Células do Corno Posterior/fisiopatologia , Ratos , Ratos Sprague-Dawley , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/fisiopatologia , Tratos Espinotalâmicos/efeitos dos fármacos , Tratos Espinotalâmicos/fisiopatologia , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia
19.
J Neurophysiol ; 84(6): 2998-3009, 2000 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-11110827

RESUMO

The heterogeneous family of G-protein-coupled metabotropic glutamate receptors (mGluRs) provides excitatory and inhibitory controls of synaptic transmission and neuronal excitability in the nervous system. Eight mGluR subtypes have been cloned and are classified in three subgroups. Group I mGluRs can stimulate phosphoinositide hydrolysis and activate protein kinase C whereas group II (mGluR2 and 3) and group III (mGluR4, 6, 7, and 8) mGluRs share the ability to inhibit cAMP formation. The present study examined the roles of groups II and III mGluRs in the processing of brief nociceptive information and capsaicin-induced central sensitization of primate spinothalamic tract (STT) cells in vivo. In 11 anesthetized male monkeys (Macaca fascicularis), extracellular recordings were made from 21 STT cells in the lumbar dorsal horn. Responses to brief (15 s) cutaneous stimuli of innocuous (brush), marginally and distinctly noxious (press and pinch, respectively) intensity were recorded before, during, and after the infusion of group II and group III mGluR agonists into the dorsal horn by microdialysis. Different concentrations were applied for at least 20 min each (at 5 microliter/min) to obtain cumulative concentration-response relationships. Values in this paper refer to the drug concentrations in the microdialysis fibers; actual concentrations in the tissue are about three orders of magnitude lower. The agonists were also applied at 10-25 min after intradermal capsaicin injection. The group II agonists (2S,1'S,2'S)-2-(carboxycyclopropyl)glycine (LCCG1, 1 microM-10 mM, n = 6) and (-)-2-oxa-4-aminobicyclo[3.1.0]hexane-4, 6-dicarboxylate (LY379268; 1 microM-10 mM, n = 6) had no significant effects on the responses to brief cutaneous mechanical stimuli (brush, press, pinch) or on ongoing background activity. In contrast, the group III agonist L(+)-2-amino-4-phosphonobutyric acid (LAP4, 0. 1 microM-10 mM, n = 6) inhibited the responses to cutaneous mechanical stimuli in a concentration-dependent manner, having a stronger effect on brush responses than on responses to press and pinch. LAP4 did not change background discharges significantly. Intradermal injections of capsaicin increased ongoing background activity and sensitized the STT cells to cutaneous mechanical stimuli (ongoing activity > brush > press > pinch). When given as posttreatment, the group II agonists LCCG1 (100 microM, n = 5) and LY379268 (100 microM, n = 6) and the group III agonist LAP4 (100 microM, n = 6) reversed the capsaicin-induced sensitization. After washout of the agonists, the central sensitization resumed. Our data suggest that, while activation of both group II and group III mGluRs can reverse capsaicin-induced central sensitization, it is the actions of group II mGluRs in particular that undergo significant functional changes during central sensitization because they modulate responses of sensitized STT cells but have no effect under control conditions.


Assuntos
Medição da Dor , Dor/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Tratos Espinotalâmicos/metabolismo , Potenciais de Ação/efeitos dos fármacos , Análise de Variância , Animais , Capsaicina/farmacologia , Relação Dose-Resposta a Droga , Estimulação Elétrica , Eletrodos Implantados , Potenciais Evocados/efeitos dos fármacos , Região Lombossacral , Macaca fascicularis , Masculino , Microdiálise , Dor/fisiopatologia , Medição da Dor/efeitos dos fármacos , Estimulação Física , Células do Corno Posterior/efeitos dos fármacos , Células do Corno Posterior/fisiologia , Receptores de Glutamato Metabotrópico/agonistas , Receptores de Glutamato Metabotrópico/classificação , Pele/inervação , Tratos Espinotalâmicos/efeitos dos fármacos , Tratos Espinotalâmicos/fisiopatologia , Núcleos Talâmicos/fisiologia
20.
J Neurosci ; 20(18): 6989-97, 2000 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-10995844

RESUMO

The functional enhancement of NMDA receptors after peripheral tissue injury is proposed to contribute to the sensitization of spinothalamic tract (STT) cells and hyperalgesia. Protein phosphorylation is a major mechanism for the regulation of NMDA receptor function. In this study, Western blots, immunofluorescence double labeling, and the retrograde tracing method were used to examine whether phosphorylation of NMDA receptor 1 (NR1) subunits increases in spinal cord tissue and spinal dorsal horn neurons, especially in STT cells, after injection of capsaicin (CAP) into the glabrous skin of one hindpaw of anesthetized rats. Western blots showed that phosphorylated NR1 protein in spinal cord tissue was increased 30 min after CAP injection. Immunofluorescence double-labeling staining showed no significant difference in the number of the NR1-like immunoreactive neurons in laminae I-VII in the lumbosacral segments (L(4)-S(1)) on the ipsilateral and the contralateral sides 30 min after CAP or vehicle injection. However, the numbers of phospho-NR1-like immunoreactive neurons were significantly increased on the ipsilateral side compared with the vehicle injection group. STT cells were labeled by bilateral microinjections of the retrograde tracer fluorogold into the lateral thalamus, including the ventral-posterior lateral nucleus. Immunofluorescence staining was performed at 30, 60, and 120 min after CAP injection or at 30 min after vehicle injection. There was a significant increase in the proportion of STT cells with phosphorylated NR1 subunits compared either with the contralateral side 30 and 60 min after CAP injection or either side of animals after intradermal injection of vehicle. These results provide direct evidence that NMDA receptors in STT cells are phosphorylated after CAP injection.


Assuntos
Capsaicina/administração & dosagem , Células do Corno Posterior/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Tratos Espinotalâmicos/metabolismo , Estilbamidinas , Animais , Western Blotting , Contagem de Células/efeitos dos fármacos , Imunofluorescência , Corantes Fluorescentes/administração & dosagem , Membro Posterior , Injeções Intradérmicas , Região Lombossacral , Masculino , Microinjeções , Fosforilação/efeitos dos fármacos , Células do Corno Posterior/citologia , Células do Corno Posterior/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Tratos Espinotalâmicos/citologia , Tratos Espinotalâmicos/efeitos dos fármacos , Tálamo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA