Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
PLoS One ; 19(7): e0307696, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39038022

RESUMO

It has been reported that Ywhah (14-3-3η) reduces glycolysis. However, it remains unclear about the downstream mechanism by which glycolysis is regulated by 14-3-3η in cardiac hypertrophy. As an important regulator, Yes-associated protein (YAP) interacts with 14-3-3η to participate in the initiation and progression of various diseases in vivo. In this study, the model of H9C2 cardiomyocyte hypertrophy was established by triiodothyronine (T3) or rotenone stimulation to probe into the action mechanism of 14-3-3η. Interestingly, the overexpression of 14-3-3η attenuated T3 or rotenone induced cardiomyocyte hypertrophy and decreased glycolysis in H9C2 cardiomyocytes, whereas the knockdown of 14-3-3η had an opposite effect. Mechanistically, 14-3-3η can reduce the expression level of YAP and bind to it to reduce its nuclear translocation. In addition, changing YAP may affect the expression of lactate dehydrogenase A (LDHA), a glycolysis-related protein. Meanwhile, LDHA is also a possible target for 14-3-3η to mediate glycolysis based on changes in pyruvate, a substrate of LDHA. Collectively, 14-3-3η can suppress cardiomyocyte hypertrophy via decreasing the nucleus translocation of YAP and glycolysis, which indicates that 14-3-3η could be a promising target for inhibiting cardiac hypertrophy.


Assuntos
Proteínas 14-3-3 , Cardiomegalia , Glicólise , L-Lactato Desidrogenase , Miócitos Cardíacos , Tri-Iodotironina , Proteínas de Sinalização YAP , Proteínas 14-3-3/metabolismo , Proteínas 14-3-3/genética , Animais , Ratos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Tri-Iodotironina/metabolismo , Tri-Iodotironina/farmacologia , L-Lactato Desidrogenase/metabolismo , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Proteínas de Sinalização YAP/metabolismo , Linhagem Celular , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Isoenzimas/metabolismo , Isoenzimas/genética , Fosfoproteínas/metabolismo , Fosfoproteínas/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética
2.
Cells ; 13(12)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38920666

RESUMO

Thyroid hormones, thyroxin (T4) and the biologically active triiodothyronine (T3), play important roles in liver metabolic regulation, including fatty acid biosynthesis, beta-oxidation, and cholesterol homeostasis. These functions position TH signaling as a potential target for the treatment of metabolic dysfunction-associated steatotic liver disease (MASLD). Elevated T3 levels in the circulation are associated with increased hepatic lipid turnover, which is also under the control of the circadian clock system. In this study, we developed a cell system to study the impact of hepatocyte circadian rhythms on the metabolic response to T3 treatment under control and steatotic conditions. Synchronized AML-12 circadian reporter hepatocytes were treated with T3 at different circadian phases and metabolic conditions. T3 treatment increased metabolic activity in a dose-independent fashion and had no significant effect on circadian rhythms in AML-12 cells. T3 had marked time-of-treatment-dependent effects on metabolic transcript expression. Steatosis induction altered metabolic transcript expression in AML-12 cells. In this condition, the circadian rhythm period was lengthened, and this effect was independent of T3. Under steatotic conditions, T3 had marked time-of-treatment dependent effects on metabolic transcript expression, which differed from those observed under control conditions. These findings reveal a time-of-day-dependent response of hepatocytes to T3, which is further modulated by the metabolic state. Our data suggest that time has a strong influence on liver TH action, which might be considered when treating MASLD.


Assuntos
Ritmo Circadiano , Hepatócitos , Tri-Iodotironina , Hepatócitos/metabolismo , Animais , Tri-Iodotironina/farmacologia , Tri-Iodotironina/metabolismo , Camundongos , Hormônios Tireóideos/metabolismo , Linhagem Celular , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Relógios Circadianos/genética
3.
Pestic Biochem Physiol ; 202: 105961, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38879309

RESUMO

Exposure to specific pesticides has been demonstrated to alter normal thyroid function of aquatic vertebrates. This study aimed to investigate the impact of penthiopyrad (PO) on the thyroid function of zebrafish, further elucidating its toxic mechanisms on the early developmental stages of zebrafish. Exposure to sublethal doses of PO (0.3-1.2 mg/L) for 8 days from 2 h after fertilization resulted in a significant reduction in larval swim bladder size and body weight, accompanied by developmental abnormalities such as pigment deposition and abnormal abdominal development. Perturbations in the hypothalamic-pituitary-thyroid (HPT) axis in larvae manifested as a marked upregulation of crh, tg, ttr, and ugt1ab expression, alongside downregulation of trß expression, culminating in elevated thyroxine (T4) and triiodothyronine (T3) levels. Additionally, molecular docking results suggest that PO and its metabolites may disrupt the binding of thyroid hormones to thyroid hormone receptor beta (TRß), compromising the normal physiological function of TRß. These findings highlight the PO-induced adverse effects on the HPT axis of larvae under sublethal doses, eventually leading to abnormal development and growth inhibition.


Assuntos
Glândula Tireoide , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Glândula Tireoide/efeitos dos fármacos , Glândula Tireoide/metabolismo , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Sistema Hipotálamo-Hipofisário/metabolismo , Larva/efeitos dos fármacos , Larva/metabolismo , Tiroxina/metabolismo , Tri-Iodotironina/metabolismo , Simulação de Acoplamento Molecular , Hormônios Tireóideos/metabolismo , Hipófise/metabolismo , Hipófise/efeitos dos fármacos , Receptores beta dos Hormônios Tireóideos/metabolismo , Receptores beta dos Hormônios Tireóideos/genética
4.
Brain Res Bull ; 213: 110983, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38795852

RESUMO

Despite plenty of human studies on changes in thyroid hormones after stroke and some animal studies that assessed the effects of thyroid hormone administration on stroke, conclusive evidence for clinical application is lacking. This review aimed to determine the consistency of the results between clinical and preclinical studies. This article reviewed the PubMed, Embase, web of Knowledge, and Google Scholar databases up to June 2023 using the MeSH terms "stroke, cerebral ischemia, cerebral infarction, brain ischemia, brain infarction, triiodothyronine (T3), tetraiodothyronine (T4), thyroxine (T4), and thyroid hormone". The results of clinical and preclinical studies related to T3 substantially confirm each other. That is, in most human studies lower T3 was associated with poor outcomes, and in experimental studies, T3 administration also had therapeutic effects. However, the results of experimental studies related to T4 could not support those of clinical studies. There seem to be some conflicts between experimental and human studies, especially regarding changes and effects of T4 after stroke. The gap between experimental and clinical studies may lead to non-applicable results, wasting time and money, and unnecessary killing of animals.


Assuntos
Acidente Vascular Cerebral , Hormônios Tireóideos , Humanos , Animais , Acidente Vascular Cerebral/metabolismo , Hormônios Tireóideos/metabolismo , Tiroxina , Tri-Iodotironina/sangue , Tri-Iodotironina/metabolismo
5.
Cell Signal ; 120: 111214, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38729322

RESUMO

Age-related diseases are intricately linked to the molecular processes underlying aging, with the decline of the antiaging protein Klotho being a key factor. Investigating these processes is crucial for developing therapeutic strategies. The age-associated reduction in Klotho expression, coupled with a decline in the endocrine hormone triiodothyronine (T3), prompted a detailed exploration of their potential interplay. Our research, conducted through both in-vitro and in-vivo studies on BALB/c mice, unveiled a significant capacity of T3 to upregulate various forms of Klotho via ATF-3/p-c-Jun transcription factor. This effect was particularly noteworthy in aged individuals, where Klotho expression had waned compared to their younger counterparts. Importantly, T3 demonstrated a promising therapeutic impact in rejuvenating Klotho expression in this context. Further investigations elucidated the molecular mechanisms underlying T3's impact on aging-related pathways. In-vitro and in-vivo experiments established T3's ability to downregulate the Wnt/ß-Catenin pathway by enhancing Klotho expression. In-silico analyses provided insights into Klotho's intricate role, showing its capacity to inhibit Wnt ligands such as Wnt3 and Wnt8a, consequently disrupting their interaction with the Wnt receptor. Additionally, T3 was found to downregulate kidney-specific GSK-3ß expression through the augmentation of Klotho expression. The study also highlighted T3's role in maintaining calcium and phosphate homeostasis via Klotho. This comprehensive investigation not only sheds light on the intricate mechanisms governing aging processes but also presents promising avenues for therapeutic interventions targeting the Wnt/ß-Catenin pathway implicated in various age-associated diseases.


Assuntos
Glucuronidase , Rim , Proteínas Klotho , Camundongos Endogâmicos BALB C , Tri-Iodotironina , Via de Sinalização Wnt , Proteínas Klotho/metabolismo , Animais , Tri-Iodotironina/metabolismo , Tri-Iodotironina/farmacologia , Glucuronidase/metabolismo , Via de Sinalização Wnt/efeitos dos fármacos , Camundongos , Rim/metabolismo , Humanos , Masculino , beta Catenina/metabolismo , Envelhecimento/metabolismo , Simulação por Computador
6.
Thyroid ; 34(7): 920-930, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38801167

RESUMO

Background: 3,5,3'-Triiodothyroacetic acid (TRIAC) is a T3-receptor agonist pharmacologically used in patients to mitigate T3 resistance. It is additionally explored to treat some symptoms of patients with inactivating mutations in the thyroid hormone (TH) transporter monocarboxylate transporter 8 (MCT8, SLC16A2). MCT8 is expressed along the blood-brain barrier, on neurons, astrocytes, and oligodendrocytes. Hence, pathogenic variants in MCT8 limit the access of TH into and their functions within the brain. TRIAC was shown to enter the brain independently of MCT8 and to modulate expression of TH-dependent genes. The aim of the study was to identify transporters that facilitate TRIAC uptake into cells. Methods: We performed a whole-genome RNAi screen in HepG2 cells stably expressing a T3-receptor-dependent luciferase reporter gene. Validation of hits from the primary and confirmatory secondary screen involved a counter screen with siRNAs and compared the cellular response to TRIAC to the effect of T3, in order to exclude siRNAs targeting the gene expression machinery. MDCK1 cells were stably transfected with cDNA encoding C-terminally myc-tagged versions of the identified TRIAC-preferring transporters. Several individual clones were selected after immunocytochemical characterization for biochemical characterization of their 125I-TRIAC transport activities. Results: We identified SLC22A9 and SLC29A2 as transporters mediating cellular uptake of TRIAC. SLC22A9 encodes the organic anion transporter 7 (OAT7), a sodium-independent organic anion transporter expressed in the plasma membrane in brain, pituitary, liver, and other organs. Competition with the SLC22A9/OAT7 substrate estrone-3-sulfate reduced 125I-TRIAC uptake. SLC29A2 encodes the equilibrative nucleoside transporter 2 (ENT2), which is ubiquitously expressed, including pituitary and brain. Coincubation with the SLC29A2/ENT2 inhibitor nitrobenzyl-6-thioinosine reduced 125I-TRIAC uptake. Moreover, ABCD1, an ATP-dependent peroxisomal pump, was identified as a 125I-TRIAC exporter in transfected MDCK1 cells. Conclusions: Knowledge of TRIAC transporter expression patterns, also during brain development, may thus in the future help to interpret observations on TRIAC effects, as well as understand why TRIAC may not show a desirable effect on cells or organs not expressing appropriate transporters. The identification of ABCD1 highlights the sensitivity of our established screening assay, but it may not hold significant relevance for patients undergoing TRIAC treatment.


Assuntos
Transportadores de Ácidos Monocarboxílicos , Simportadores , Tri-Iodotironina , Humanos , Tri-Iodotironina/metabolismo , Tri-Iodotironina/farmacologia , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Animais , Simportadores/genética , Simportadores/metabolismo , Cães , Células Madin Darby de Rim Canino , Células Hep G2 , Interferência de RNA , Transporte Biológico , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Membrana Transportadoras/genética
7.
Thyroid ; 34(7): 931-941, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38661522

RESUMO

Background: Monocarboxylate transporter 8 (MCT8) is the most specific thyroid hormone transporter identified to date, deficiency of which has been associated with severe intellectual and motor disability and abnormal serum thyroid function tests. However, it is presently unknown if MCT8, similar to other thyroid hormone transporters, also accepts additional substrates, and if disruption of their transport may contribute to the observed phenotype. Methods: In this study, we aimed to identify such substrates by applying liquid chromatography-mass spectrometry-based metabolome analysis in lysates of control and MCT8-overexpressing Xenopus oocytes. A subset of identified candidate substrates were validated by direct transport studies in transiently transfected COS-1 cells and human fibroblasts, which endogenously express MCT8. Moreover, transport characteristics were determined, including transport saturation and cis-inhibition potency of thyroid hormone transport. Results: Metabolome analysis identified 21 m/z ratios, corresponding to 87 candidate metabolites, with a 2.0-times differential abundance in MCT8-injected oocytes compared with controls. These metabolites included 3,5-diiodotyrosine (DIT) and several amino acids, including glutamate and glutamine. In accordance, MCT8-expressing COS-1 cells had 2.2-times lower intracellular accumulation of [125I]-DIT compared with control cells. This effect was largely blocked in the presence of 3,3',5-triiodothyronine (T3) (IC50: 2.5 ± 1.5 µM) or thyroxine (T4) (IC50: 5.8 ± 1.3 µM). Conversely, increasing concentrations of DIT enhanced the accumulation of T3 and T4. The MCT8-specific inhibitor silychristin increased the intracellular accumulation of DIT in human fibroblasts. COS-1 cells expressing MCT8 also exhibited a 50% reduction in intracellular accumulation of [125I]-3-monoiodotyrosine (MIT). In contrast, COS-1 cells expressing MCT8 did not alter the intracellular accumulation of [3H]-glutamate or [3H]-glutamine. However, studies in human fibroblasts showed a 1.5-1.9 times higher glutamate uptake in control fibroblasts compared with fibroblasts derived from patients with MCT8 deficiency, which was not affected in the presence of silychristin. Conclusions: Taken together, our results suggest that the iodotyrosines DIT and MIT can be exported by MCT8. MIT and DIT interfere with MCT8-mediated transport of thyroid hormone in vitro and vice versa. Future studies should elucidate if MCT8, being highly expressed in thyroidal follicular cells, also transports iodotyrosines in vivo.


Assuntos
Transportadores de Ácidos Monocarboxílicos , Simportadores , Transportadores de Ácidos Monocarboxílicos/metabolismo , Humanos , Animais , Simportadores/metabolismo , Células COS , Chlorocebus aethiops , Fibroblastos/metabolismo , Oócitos/metabolismo , Xenopus laevis , Hormônios Tireóideos/metabolismo , Transporte Biológico , Hipotonia Muscular/metabolismo , Tri-Iodotironina/metabolismo , Metaboloma
8.
Exp Neurol ; 375: 114730, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38401853

RESUMO

Demyelination is a proper syndrome in plenty of central nervous system (CNS) diseases, which is the main obstacle to recovery and still lacks an effective treatment. To overcome the limitations of the brain-blood barrier on drug permeability, we modified an exosome secreted by neural stem cells (NSCs), which had transfected with lentivirus armed with platelet-derived growth factors A (PDGFA)-ligand. Through the in vivo and in vitro exosomes targeting test, the migration ability to the lesion areas and OPCs significantly improved after ligand modification. Furthermore, the targeted exosomes loaded with 3,5, 30-L-triiodothyronine (T3) have a critical myelination ability in CNS development, administrated to the cuprizone animal model treatment. The data shows that the novel drug vector loaded with T3 significantly promotes remyelination compared with T3 alone. At the same time, it improved the CNS microenvironment by reducing astrogliosis, inhibiting pro-inflammatory microglia, and alleviating axon damage. This investigation provides a straightforward strategy to produce a targeting exosome and indicates a possible therapeutic manner for demyelinating disease.


Assuntos
Doenças Desmielinizantes , Exossomos , Animais , Camundongos , Doenças Desmielinizantes/terapia , Doenças Desmielinizantes/tratamento farmacológico , Oligodendroglia , Ligantes , Exossomos/metabolismo , Tri-Iodotironina/metabolismo , Tri-Iodotironina/farmacologia , Tri-Iodotironina/uso terapêutico , Cuprizona/toxicidade , Camundongos Endogâmicos C57BL , Bainha de Mielina/patologia , Modelos Animais de Doenças
9.
Mol Cell Endocrinol ; 586: 112193, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38401883

RESUMO

Intestinal development takes places in two phases, the initial formation of neonatal (mammals)/larval (anurans) intestine and its subsequent maturation into the adult form. This maturation occurs during postembryonic development when plasma thyroid hormone (T3) level peaks. In anurans such as the highly related Xenopus laevis and Xenopus tropicalis, the larval/tadpole intestine is drastically remodeled from a simple tubular structure to a complex, multi-folded adult organ during T3-dependent metamorphosis. This involved complete degeneration of larval epithelium via programmed cell death and de novo formation of adult epithelium, with concurrent maturation of the muscles and connective tissue. Here, we will summarize our current understanding of the underlying molecular mechanisms, with a focus on more recent genetic and genome-wide studies.


Assuntos
Células-Tronco Adultas , Tri-Iodotironina , Animais , Xenopus laevis , Xenopus/genética , Xenopus/metabolismo , Tri-Iodotironina/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Intestinos , Hormônios Tireóideos/metabolismo , Metamorfose Biológica/genética , Organogênese/genética , Mamíferos/metabolismo
10.
Horm Behav ; 161: 105505, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38364455

RESUMO

How female mammals adapt metabolically in response to environmental variation remains understudied in the wild, because direct measures of metabolic activity are difficult to obtain in wild populations. However, recent advances in the non-invasive measurement of fecal thyroid hormones, triiodothyronine (T3), an important regulator of metabolism, provide an opportunity to understand how female baboons living in the harsh Amboseli ecosystem in southern Kenya adapt to environmental variability and escape strict reproductive seasonality. Specifically, we assessed how a female's activity budget, diet, and concentrations of fecal T3 metabolites (mT3) changed over the course of the year and between years. We then tested which of several environmental variables (season, rainfall, and temperature) and behavioral variables (female activity budget and diet) best predicted mT3 concentrations. Finally, we determined if two important reproductive events - onset of ovarian cycling and conception of an offspring - were preceded by changes in female mT3 concentrations. We found female baboons' mT3 concentrations varied markedly across the year and between years as a function of environmental conditions. Further, changes in a female's behavior and diet only partially mediated the metabolic response to the environment. Finally, mT3 concentrations increased in the weeks prior to menarche and cycling resumption, regardless of the month or season in which cycling started. This pattern indicates that metabolic activation may be an indicator of reproductive readiness in female baboons as their energy balance is restored.


Assuntos
Fezes , Papio , Estações do Ano , Tri-Iodotironina , Animais , Feminino , Papio/fisiologia , Fezes/química , Tri-Iodotironina/sangue , Tri-Iodotironina/metabolismo , Hormônios Tireóideos/metabolismo , Hormônios Tireóideos/sangue , Dieta/veterinária , Reprodução/fisiologia , Meio Ambiente , Quênia
11.
Nat Commun ; 15(1): 888, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38291025

RESUMO

To date only a fraction of the genetic footprint of thyroid function has been clarified. We report a genome-wide association study meta-analysis of thyroid function in up to 271,040 individuals of European ancestry, including reference range thyrotropin (TSH), free thyroxine (FT4), free and total triiodothyronine (T3), proxies for metabolism (T3/FT4 ratio) as well as dichotomized high and low TSH levels. We revealed 259 independent significant associations for TSH (61% novel), 85 for FT4 (67% novel), and 62 novel signals for the T3 related traits. The loci explained 14.1%, 6.0%, 9.5% and 1.1% of the total variation in TSH, FT4, total T3 and free T3 concentrations, respectively. Genetic correlations indicate that TSH associated loci reflect the thyroid function determined by free T3, whereas the FT4 associations represent the thyroid hormone metabolism. Polygenic risk score and Mendelian randomization analyses showed the effects of genetically determined variation in thyroid function on various clinical outcomes, including cardiovascular risk factors and diseases, autoimmune diseases, and cancer. In conclusion, our results improve the understanding of thyroid hormone physiology and highlight the pleiotropic effects of thyroid function on various diseases.


Assuntos
Glândula Tireoide , Tiroxina , Humanos , Glândula Tireoide/metabolismo , Tiroxina/metabolismo , Estudo de Associação Genômica Ampla , Tri-Iodotironina/metabolismo , Tireotropina/metabolismo
12.
Environ Sci Technol ; 58(1): 99-109, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38117130

RESUMO

Identifying endocrine disrupting chemicals in order to limit their usage is a priority and required according to the European Regulation. There are no Organization for Economic Co-operation and Development (OECD) test guidelines based on fish available for the detection of Thyroid axis Active Chemicals (TACs). This study aimed to fill this gap by developing an assay at eleuthero-embryonic life stages in a novel medaka (Oryzias latipes) transgenic line. This transgenic line expresses green fluorescent protein (GFP) in thyrocytes, under the control of the medaka thyroglobulin gene promoter. The fluorescence expressed in the thyrocytes is inversely proportional to the thyroid axis activity. When exposed for 72 h to activators (triiodothyronine (T3) and thyroxine (T4)) or inhibitors (6-N-propylthiouracil (PTU), Tetrabromobisphenol A (TBBPA)) of the thyroid axis, the thyrocytes can change their size and express lower or higher levels of fluorescence, respectively. This reflects the regulation of thyroglobulin by the negative feedback loop of the Hypothalamic-Pituitary-Thyroid axis. T3, T4, PTU, and TBBPA induced fluorescence changes with the lowest observable effect concentrations (LOECs) of 5 µg/L, 1 µg/L, 8 mg/L, and 5 mg/L, respectively. This promising tool could be used as a rapid screening assay and also to help decipher the mechanisms by which TACs can disrupt the thyroid axis in medaka.


Assuntos
Oryzias , Glândula Tireoide , Animais , Glândula Tireoide/fisiologia , Oryzias/fisiologia , Tireoglobulina/metabolismo , Tireoglobulina/farmacologia , Tri-Iodotironina/metabolismo , Tri-Iodotironina/farmacologia
13.
Gen Comp Endocrinol ; 347: 114440, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38159870

RESUMO

Thyroid hormones (THs) are essential signalling molecules for the postembryonic development of all vertebrates. THs are necessary for the metamorphosis from tadpole to froglet and exogenous TH administration precociously induces metamorphosis. In American bullfrog (Rana [Lithobates] catesbeiana) tadpoles, the TH-induced metamorphosis observed at a warm temperature (24 °C) is arrested at a cold temperature (4 °C) even in the presence of exogenous THs. However, when TH-exposed tadpoles are shifted from cold to warm temperatures (4 â†’ 24 °C), they undergo TH-dependent metamorphosis at an accelerated rate even when the initial TH signal is no longer present. Thus, they possess a "molecular memory" of TH exposure that establishes the TH-induced response program at the cold temperature and prompts accelerated metamorphosis after a shift to a warmer temperature. The components of the molecular memory that allow the uncoupling of initiation from the execution of the metamorphic program are not understood. To investigate this, we used cultured tadpole back skin (C-Skin) in a repeated measures experiment under 24 °C only, 4 °C only, and 4 â†’ 24 °C temperature shifted regimes and reverse transcription quantitative polymerase chain reaction (RT-qPCR) and RNA-sequencing (RNA-seq) analyses. RNA-seq identified 570, 44, and 890 transcripts, respectively, that were significantly changed by TH treatment. These included transcripts encoding transcription factors and proteins involved in mRNA structure and stability. Notably, transcripts associated with molecular memory do not overlap with those identified previously in cultured tail fin (C-fin) except for TH-induced basic leucine zipper-containing protein (thibz) suggesting that thibz may have a central role in molecular memory that works with tissue-specific factors to establish TH-induced gene expression programs.


Assuntos
Ranidae , Hormônios Tireóideos , Animais , Temperatura , Larva/metabolismo , Hormônios Tireóideos/metabolismo , Ranidae/metabolismo , Rana catesbeiana/metabolismo , Metamorfose Biológica/genética , Tri-Iodotironina/metabolismo
14.
Thyroid ; 34(2): 243-251, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38149585

RESUMO

Background: The importance of thyroid hormones (THs) for peripheral body temperature regulation has been long recognized, as medical conditions such as hyper- and hypothyroidism lead to alterations in body temperature and energy metabolism. In the past decade, the brain actions of THs and their respective nuclear receptors, thyroid hormone receptor α1 (TRα1) and thyroid hormone receptor beta (TRß), coordinating body temperature regulation have moved into focus. However, the exact roles of the individual TR isoforms and their precise neuroanatomical substrates remain poorly understood. Methods: Here we used mice expressing a mutant TRα1 (TRα1+m) as well as TRß knockouts to study body temperature regulation using radiotelemetry in conscious and freely moving animals at different ambient temperatures, including their response to oral 3,3',5-triiodothyronine (T3) treatment. Subsequently, we tested the effects of a dominant-negative TRα1 on body temperature after adeno-associated virus (AAV)-mediated expression in the hypothalamus, a region known to be involved in thermoregulation. Results: While TRß seems to play a negligible role in body temperature regulation, TRα1+m mice had lower body temperature, which was surprisingly not entirely normalized at 30°C, where defects in facultative thermogenesis or tail heat loss are eliminated as confounding factors. Only oral T3 treatment fully normalized the body temperature profile of TRα1+m mice, suggesting that the mutant TRα1 confers an altered central temperature set point in these mice. When we tested this hypothesis more directly by expressing the dominant-negative TRα1 selectively in the hypothalamus via AAV transfection, we observed a similarly reduced body temperature at room temperature and 30°C. Conclusion: Our data suggest that TRα1 signaling in the hypothalamus is important for maintaining body temperature. However, further studies are needed to dissect the precise neuroanatomical substrates and the downstream pathways mediating this effect.


Assuntos
Hipotálamo , Receptores dos Hormônios Tireóideos , Animais , Camundongos , Temperatura Corporal , Hipotálamo/metabolismo , Hipotireoidismo/metabolismo , Receptores dos Hormônios Tireóideos/metabolismo , Receptores alfa dos Hormônios Tireóideos/metabolismo , Hormônios Tireóideos , Tri-Iodotironina/farmacologia , Tri-Iodotironina/metabolismo
15.
J Physiol Pharmacol ; 74(6)2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38345449

RESUMO

Indoxyl sulfates are uremic indolic toxins known to participate in the pathogenesis of cardiovascular diseases during chronic kidney disease in humans and some animal species. However, nothing is known about the indoxyl sulfate effect on the thyroid gland which is especially responsible for the general organism metabolism. This study determines the morpho-functional status of the thyroid gland after exposure to indoxyl sulfate (10, 25, and 50 mM) with the use of an ex vivo system and rabbit (n=10) as an experimental model thyroid gland histology, immunoexpression of thyrotropin receptor (TSHR), and concentrations of thyroxine (T4) and triiodothyronine (T3) were evaluated. Statistical analyses were performed using one-way analysis of the variance (ANOVA) followed by Tukey's post hoc comparison test. Minor alterations in thyroid tissue structure e.g. very rare exfoliated epithelial cells, condensed colloid fluid, or slight loosening of the epithelium were found. In addition, modulated dose dependent-expression of TSHR (p<0.01, p<0.001) together with a decreased level of T4 and T3 (p<0.001, p<0.01) exception of an increased level of T4 after the middle dose of indoxyl sulfate were revealed. We report here, for the first time, that indoxyl sulfate affects the thyroid gland mainly at the molecular level. The rabbit thyroid gland ex vivo system seems to be suitable for further studies on the thyroid gland in health and disease. However, the effect of TSH-TSHR signaling at ultrastructural, and epigenetic levels needs supplementary appraisal.


Assuntos
Insuficiência Renal Crônica , Glândula Tireoide , Humanos , Animais , Coelhos , Indicã/farmacologia , Indicã/metabolismo , Tiroxina/metabolismo , Tiroxina/farmacologia , Tri-Iodotironina/metabolismo , Tri-Iodotironina/farmacologia , Insuficiência Renal Crônica/metabolismo , Tireotropina/metabolismo , Tireotropina/farmacologia
17.
Arch. endocrinol. metab. (Online) ; 63(2): 142-147, Mar.-Apr. 2019. graf
Artigo em Inglês | LILACS | ID: biblio-1001213

RESUMO

ABSTRACT Objective: To verify the physiological action of triiodothyronine T3 on the expression of transforming growth factor α (TGFA) mRNA in MCF7 cells by inhibition of RNA Polymerase II and the MAPK/ERK pathway Materials and methods: The cell line was treated with T3 at a physiological dose (10−9M) for 10 minutes, 1 and 4 hour (h) in the presence or absence of the inhibitors, α-amanitin (RNA polymerase II inhibitor) and PD98059 (MAPK/ERK pathway inhibitor). TGFA mRNA expression was analyzed by RT-PCR. For data analysis, we used ANOVA, complemented with the Tukey test and Student t-test, with a minimum significance of 5%. Results: T3 increases the expression of TGFA mRNA in MCF7 cells in 4 h of treatment. Inhibition of RNA polymerase II modulates the effect of T3 treatment on the expression of TGFA in MCF7 cells. Activation of the MAPK/ERK pathway is not required for T3 to affect the expression of TGFA mRNA. Conclusion: Treatment with a physiological concentration of T3 after RNA polymerase II inhibition altered the expression of TGFA. Inhibition of the MAPK/ERK pathway after T3 treatment does not interfere with the TGFA gene expression in a breast adenocarcinoma cell line.


Assuntos
Humanos , Feminino , Tri-Iodotironina/genética , Neoplasias da Mama/genética , Adenocarcinoma/genética , Regulação Neoplásica da Expressão Gênica/genética , Fator de Crescimento Transformador alfa/genética , Sistema de Sinalização das MAP Quinases/genética , Tri-Iodotironina/metabolismo , Tri-Iodotironina/farmacologia , Proto-Oncogenes/genética , Neoplasias da Mama/metabolismo , RNA Mensageiro/genética , Adenocarcinoma/metabolismo , Fator de Crescimento Transformador alfa/efeitos dos fármacos , Fator de Crescimento Transformador alfa/metabolismo , Linhagem Celular Tumoral/metabolismo , Células MCF-7/metabolismo
18.
Rev. argent. endocrinol. metab ; 54(2): 83-91, abr.-jun. 2017. ilus, tab
Artigo em Espanhol | LILACS | ID: biblio-957972

RESUMO

La enfermedad no tiroidea es una entidad que se presenta frecuentemente en los pacientes que se encuentran cursando algún tipo de enfermedad, ya sea crítica o no; y puede manifestarse aun en ausencia de enfermedad tiroidea subyacente, condicionando cambios en el eje tiroideo. Es importante poder reconocer la enfermedad no tiroidea para hacer diagnóstico diferencial con la patología tiroidea verdadera y evaluar si merece ser tratada. Aún no existe consenso acerca de si la enfermedad no tiroidea representa una respuesta fisiológica a una enfermedad sistémica para que disminuyan los requerimientos de energía o si se trata de una condición adaptativa que induce un estado hipotiroideo que finalmente resulta perjudicial a nivel tisular.


Non-thyroidal illness is a disorder that occurs frequently in patients that are experiencing some kind of illness, whether critical or not. It can manifest even in the absence of thyroid dysfunction, leading to changes in the thyroid axis. It is important to detect Non-Thyroidal Illness in order to establish a differential diagnosis with the true thyroid disease and to determine whether treatment is required. Currently, there is still no consensus on whether Non-Thyroidal Illness is a physiological response to a systemic disease to reduce energy requirements or whether it is an adaptive condition that induces a hypothyroid state that ultimately is harmful at the tissue level.


Assuntos
Humanos , Masculino , Feminino , Síndromes do Eutireóideo Doente/classificação , Síndromes do Eutireóideo Doente/fisiopatologia , Testes de Função Tireóidea , Hormônios Tireóideos/metabolismo , Tri-Iodotironina/metabolismo , Síndromes do Eutireóideo Doente/terapia , Estado Terminal/terapia , Diagnóstico Diferencial
19.
Arq. bras. endocrinol. metab ; 58(5): 452-463, 07/2014. tab, graf
Artigo em Inglês | LILACS | ID: lil-719190

RESUMO

Differently from most hormones, which commonly are specialized molecules able to influence other cells, tissues and systems, thyroid hormones (TH) are pleiotropic peptides, whose primordial function is difficult to identify. The complex action of TH on human economy can be easily witnessed by examining the diverse consequences of TH excess and deficiency during development and after maturity. In particular, different manifestations in bone modeling and remodeling reflect the circumstantial consequences of thyroid disturbances, which are age dependent. While hyperthyroidism during childhood enhances bone mineralization and accelerates epiphyseal maturation, in adults it induces bone loss by predominant activation of osteoclast activity. Furthermore, the syndrome of TH resistance is a multifaceted condition in which different sites exhibit signs of hormone excess or deficiency depending on the configuration of the TH receptor isoform. The investigation of the impact of TH resistance on the skeleton still remains to be elucidated. We present here a thorough review of the action of TH on bone and of the impact of thyroid disorders, including hyper- and hypothyroidism and the syndrome of TH resistance, on the skeleton.


Diferentemente da maioria dos hormônios, que usualmente são moléculas especializadas capazes de influenciar outras células, tecidos e sistemas, os hormônios da tireoide (HT) são peptídeos pleiotrópicos, cuja função primordial é difícil de identificar. A ação complexa dos HT na fisiologia humana pode ser facilmente reconhecida ao observar as diversas consequências do excesso e da deficiência de HT durante e após o pleno desenvolvimento. Em particular as diferentes manifestações na modelação e remodelação óssea refletem que as consequências esqueléticas das disfunções tireoidianas dependem das circunstâncias e variam com a idade. Enquanto o hipertireoidismo durante a infância aumenta a mineralização óssea e acelera a maturação epifisária, em adultos induz a perda óssea pela ativação predominante da ação osteoclástica. Além disso, a síndrome de resistência ao HT é uma condição multifacetada na qual diferentes tecidos apresentam sinais de excesso ou deficiência hormonal, dependendo da predominância da expressão das diversas isoformas do receptor de HT. O impacto da resistência ao HT sobre o esqueleto ainda é motivo de investigação. Apresentamos aqui uma revisão abrangente sobre as ações ósseas dos HT e o impacto no esqueleto dos distúrbios da tireoide, incluindo hipo e hipertireoidismo e síndrome de resistência ao HT.


Assuntos
Animais , Humanos , Osso e Ossos/metabolismo , Hipotireoidismo/metabolismo , Minerais/metabolismo , Síndrome da Resistência aos Hormônios Tireóideos/metabolismo , Tireotoxicose/metabolismo , Calcificação Fisiológica/fisiologia , Cálcio/metabolismo , Bases de Dados Bibliográficas , Epífises/crescimento & desenvolvimento , Osteoclastos/metabolismo , Osteoporose/etiologia , Fósforo/metabolismo , Doenças da Glândula Tireoide/metabolismo , Tireotoxicose/complicações , Tiroxina/metabolismo , Tri-Iodotironina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA