Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 185
Filtrar
1.
Redox Biol ; 72: 103082, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38527399

RESUMO

The explosive compound 2,4,6-trinitrotoluene (TNT) is well known as a major component of munitions. In addition to its potential carcinogenicity and mutagenicity in humans, recent reports have highlighted TNT toxicities in diverse organisms due to its occurrence in the environment. These toxic effects have been linked to the intracellular metabolism of TNT, which is generally characterised by redox cycling and the generation of noxious reactive molecules. The reactive intermediates formed, such as nitroso and hydroxylamine compounds, also interact with oxygen molecules and cellular components to cause macromolecular damage and oxidative stress. The current review aims to highlight the crucial role of TNT metabolism in mediating TNT toxicity, via increased generation of reactive oxygen species. Cellular proliferation of reactive species results in depletion of cellular antioxidant enzymes, DNA and protein adduct formation, and oxidative stress. While TNT toxicity is well known, its ability to induce oxidative stress, resulting from its reductive activation, suggests that some of its toxic effects may be caused by its reactive metabolites. Hence, further research on TNT metabolism is imperative to elucidate TNT-induced toxicities.


Assuntos
Estresse Oxidativo , Espécies Reativas de Oxigênio , Trinitrotolueno , Trinitrotolueno/metabolismo , Trinitrotolueno/toxicidade , Humanos , Espécies Reativas de Oxigênio/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ativação Metabólica , Animais , Substâncias Explosivas/metabolismo , Substâncias Explosivas/toxicidade , Oxirredução
2.
Environ Sci Pollut Res Int ; 30(42): 96412-96423, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37567992

RESUMO

Although 2,4,6-trinitrotoluene (TNT) is a dangerous carcinogen in environmental pollution, information on the reproductive effects of TNT explosive contamination is limited. To explore the possible ovarian effects, TNT explosive-exposed rat models were established, and Wistar female rats were exposed to low and high TNT (40 g and 80 g, air and internal) explosives. After a month of exposure, the estrous cycle, ovarian histopathology, and follicle counting were conducted. Serum hormones follicle-stimulating hormone (FSH), luteinizing hormone (LH), anti-Müllerian hormone (AMH), progesterone, testosterone, and estradiol were detected, and the mRNA and protein expression of steroidogenic enzymes were measured. The results showed that the diestrus phase duration was significantly (P < 0.05) increased in the high TNT-exposed groups. In addition, the proportions of preantral follicles were significantly (P < 0.05) decreased in the high TNT-exposed groups, as well as the proportions of atretic follicles. The serum estradiol levels were significantly (P < 0.05) increased, and the follicle-stimulating hormone and luteinizing hormone levels were significantly (P < 0.05) decreased in the high TNT-exposed groups. The mRNA levels of steroidogenic acute regulatory protein (Star), cytochrome P450 cholesterol side chain cleavage (Cyp11a1, Cyp17a1 and Cyp19a1), hydroxysteroid dehydrogenase 3b (Hsd3b) and steroidogenic factor-1 (SF-1) were significantly (P < 0.05) increased in the TNT-exposed groups. The protein levels of Star, Cyp11a1 and Hsd3b were increased (P < 0.05) in the TNT-exposed groups. These results indicate that the exposure of rats to TNT explosive can subsequently affect ovarian follicle development, suggesting that the mechanism may involve disrupting steroidogenesis.


Assuntos
Poluentes Ambientais , Substâncias Explosivas , Trinitrotolueno , Feminino , Ratos , Animais , Substâncias Explosivas/toxicidade , Trinitrotolueno/toxicidade , Poluentes Ambientais/farmacologia , Enzima de Clivagem da Cadeia Lateral do Colesterol/genética , Enzima de Clivagem da Cadeia Lateral do Colesterol/metabolismo , Ratos Wistar , Hormônio Luteinizante , Estradiol , Hormônio Foliculoestimulante , Folículo Ovariano , RNA Mensageiro/metabolismo
3.
Environ Pollut ; 311: 120018, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36002099

RESUMO

2,4,6-trinitrotoluene (TNT) is a highly toxic explosive that contaminates soil and water and may interfere with the degradation of co-occurring compounds, such as hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). We proposed that TNT may influence RDX-degrading bacteria via either general toxicity or a specific effect on the |RDX degradation mechanisms. Thus, we examined the impact of TNT on RDX degradation by Rhodococcus strains YH1, T7, and YY1, which were isolated from an explosives-polluted environment. Although partly degraded, TNT did not support the growth of any of the strains when used as either sole carbon or sole nitrogen sources, or as carbon and nitrogen sources. The incubation of a mixture of TNT (25 mg/l) and RDX (20 mg/l) completely inhibited RDX degradation. The effect of TNT on the cytochrome P450, catalyzing RDX degradation, was tested in a resting cell experiment, proving that TNT inhibits XplA protein activity. A dose-response experiment showed that the IC50/trans values for YH1, T7, and YY1 were 7.272, 5.098, and 9.140 (mg/l of TNT), respectively, illustrating variable sensitivity to TNT among the strains. The expression of xplA was also strongly suppressed by TNT. Cells that were pre-grown with RDX (allowing xplA expression) and incubated with ammonium chloride, glucose, and TNT, completely transformed into their amino dinitrotoluene isomers and formed azoxy toluene isomers. The presence of oxygen-insensitive nitroreductase that enable reduction of the nitro group in the presence of O2 in the genomes of these strains suggests that they are responsible for TNT transformation in the cultures. The experimental results concluded that TNT has an adverse effect on RDX degradation by the examined strains. It inhibits RDX degradation due to the direct impact on cytochrome P450, xplA, or its expression. The tested strains can transform TNT independently of RDX. Thus, degradation of both compounds is possible if TNT concentrations are below their IC50 values.


Assuntos
Substâncias Explosivas , Rhodococcus , Poluentes do Solo , Trinitrotolueno , Biodegradação Ambiental , Carbono/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Substâncias Explosivas/toxicidade , Nitrogênio/metabolismo , Rhodococcus/metabolismo , Solo , Poluentes do Solo/metabolismo , Poluentes do Solo/toxicidade , Triazinas/metabolismo , Triazinas/toxicidade , Trinitrotolueno/toxicidade , Água/metabolismo
4.
Environ Toxicol Pharmacol ; 92: 103865, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35436606

RESUMO

2,4,6-trinitrotoluene (TNT) as an energetic compound widely used in military applications has aroused great concerns in recent years due to its large-scale contamination in soil and water; however, its toxicity is still largely unknown. In this study, we investigated the reproductive toxicity and the transgenerational effects of TNT on Caenorhabditis elegans (C. elegans). Our data showed that exposure to TNT at concentrations ranging from 10 to 100 ng/mL resulted in decreasing the lifespan, brood size, number of oocytes and eggs in uterus, while increasing the number of germ cell apoptosis in C. elegans. The apoptotic effects of TNT were blocked in mutants of cep-1 (w40), egl-1 (n487), and hus-1 (op241), indicating conserved genotoxic response genes was involved in mediating TNT-induced germ cell apoptosis. Parental exposure to TNT significantly increased the germ cell apoptosis from P0 to F2 generation, but the toxicity faded away in F3 and F4 generations. Furthermore, TNT was rapidly metabolized in P0, and the accumulation of 4-aminodinitrotoluene (4-ADNT), the main metabolite of TNT in C. elegans, showed a significant decrease from P0 to F1 and a slow decrease in the subsequent generations. Our results demonstrated that ingested TNT can cause severe transgenerational reproductive toxicity and be rapidly converted to 4-ADNT in the nematodes. These data provided basis for future studies on the effects of energetic compounds across generations.


Assuntos
Caenorhabditis elegans , Trinitrotolueno , Animais , Apoptose , Caenorhabditis elegans/metabolismo , Feminino , Células Germinativas , Reprodução , Trinitrotolueno/metabolismo , Trinitrotolueno/toxicidade
5.
J Hazard Mater ; 433: 128779, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35364534

RESUMO

Nitroaromatic compounds, as the important chemical feedstock, have caused widespread environmental contaminations, and exhibited high toxicity and mutagenic activity to nearly all living organisms. The clean-up of nitroaromatic-contaminated soil and water has long been a major international concern. Here, we uncovered the role of a novel nitroreductase family gene, streptolysin S (SLS)-associated gene B (SagB), in enhancing nitroaromatic tolerance and detoxification of plants, and its potential application in phytoremediation of nitroaromatic contaminations. The expression of both the Arabidopsis and rice SagB genes is significantly induced by multiple hazardous nitroaromatic substances, including explosive pollutant 2,4,6-trinitrotoluene (TNT), natural compound 1-nitropyrene (1-NP) and herbicide pendimethalin (Pen). In vitro and in vivo evidences revealed that plant SagBs possess activities in degradation of these nitroaromatic substances. Arabidopsis and rice transgenic assays suggested that plant SagB genes increase tolerance and detoxification of nitroaromatic through facilitating its transformation to the amino derivative. More importantly, overexpression of plant SagBs increase their ability in TNT uptake, and remove more TNT from the growth culture. Our findings shed novel insights into a plant endogenous nitroreductase-mediated nitroaromatic tolerance and detoxification, and provide a new gene target for phytoremediation of nitroaromatic-contaminated environments.


Assuntos
Arabidopsis , Poluentes do Solo , Trinitrotolueno , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Bactérias , Biodegradação Ambiental , Nitrorredutases/genética , Nitrorredutases/metabolismo , Plantas/metabolismo , Poluentes do Solo/metabolismo , Estreptolisinas , Trinitrotolueno/metabolismo , Trinitrotolueno/toxicidade
6.
Plant Cell Rep ; 41(5): 1273-1284, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35305132

RESUMO

KEY MESSAGE: Alfalfa has the ability to degrade TNT. TNT exposure caused root disruption of mineral nutrient metabolism. The exposure of TNT imbalanced basal cell energy metabolism. The mechanism of 2,4,6-trinitrotoluene (TNT) toxicity effects was analyzed in alfalfa (Medicago sativa L.) seedlings by examining the mineral nutrition and secondary metabolism of the plant roots. Exposure to 25-100 mg·L-1 TNT in a hydroponic solution for 72 h resulted in a TNT absorption rate of 26.8-63.0%. The contents of S, K, and B in root mineral nutrition metabolism increased significantly by 1.70-5.46 times, 1.38-4.01 times, and 1.40-4.03 times, respectively, after TNT exposure. Non-targeted metabolomics analysis of the roots identified 189 significantly upregulated metabolites and 420 significantly downregulated metabolites. The altered metabolites were primarily lipids and lipid-like molecules, and the most significant enrichment pathways were alanine, aspartate, and glutamate metabolism and glycerophospholipid metabolism. TNT itself was transformed in the root system into several intermediate products, including 4-hydroxylamino-2,6-dinitrotoluene, 4-amino-2,6-dinitrotoluene, 2-hydroxylamino-4,6-dinitrotoluene, 2,4',6,6'-tetranitro-2',4-azoxytoluene, 4,4',6,6'-tetranitro-2,2'-azoxytoluene, and 2,4-dinitrotoluene. Overall, TNT exposure disturbed the mineral metabolism balance, and significantly interfered with basic plant metabolism.


Assuntos
Trinitrotolueno , Medicago sativa/metabolismo , Minerais , Metabolismo Secundário , Trinitrotolueno/metabolismo , Trinitrotolueno/toxicidade
7.
Environ Pollut ; 285: 117478, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34087636

RESUMO

This experiment was conducted to evaluate the ecotoxicity of typical explosives and their mechanisms in the soil microenvironment. Here, TNT (trinitrotoluene), RDX (cyclotrimethylene trinitramine), and HMX (cyclotetramethylene tetranitramine) were used to simulate the soil pollution of single explosives and their combination. The changes in soil enzyme activity and microbial community structure and function were analyzed in soil, and the effects of explosives exposure on the soil metabolic spectrum were revealed by non-targeted metabonomics. TNT, RDX, and HMX exposure significantly inhibited soil microbial respiration and urease and dehydrogenase activities. Explosives treatment reduced the diversity and richness of the soil microbial community structure, and the microorganisms able to degrade explosives began to occupy the soil niche, with the Sphingomonadaceae, Actinobacteria, and Gammaproteobacteria showing significantly increased relative abundances. Non-targeted metabonomics analysis showed that the main soil differential metabolites under explosives stress were lipids and lipid-like molecules, organic acids and derivatives, with the phosphotransferase system (PTS) pathway the most enriched pathway. The metabolic pathways for carbohydrates, lipids, and amino acids in soil were specifically inhibited. Therefore, residues of TNT, RDX, and HMX in the soil could inhibit soil metabolic processes and change the structure of the soil microbial community.


Assuntos
Substâncias Explosivas , Microbiota , Poluentes do Solo , Trinitrotolueno , Azocinas , Substâncias Explosivas/análise , Substâncias Explosivas/toxicidade , Metaboloma , Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade , Triazinas/análise , Trinitrotolueno/análise , Trinitrotolueno/toxicidade
8.
Chemosphere ; 281: 130842, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34023765

RESUMO

The aim of this study was to reveal the mechanism underlying the toxicity of TNT (trinitrotoluene), RDX (cyclotrimethylene trinitroamine), and HMX (cyclotetramethylene tetranitramine) explosives pollution in plants. Here, the effects of exposure to these three explosives were examined on chlorophyll fluorescence, antioxidant enzyme activity, and the metabolite spectrum in alfalfa (Medicago sativa) plants. The degradation rates for TNT, RDX, and HMX by alfalfa were 26.8%, 20.4%, and 18.4%, respectively, under hydroponic conditions. TNT caused damage to the microstructure of the plant roots and inhibited photosynthesis, whereas RDX and HMX induced only minor changes. Exposure to any of the three explosives caused disturbances in the oxidase system. Non-targeted metabolomics identified a total of 6185 metabolites. TNT exposure induced the appearance of 609 differentially expressed metabolites (189 upregulated, 420 downregulated), RDX exposure induced 197 differentially expressed metabolites (155 upregulated and 42 downregulated), and HMX induced 234 differentially expressed metabolites (132 upregulated and 102 downregulated). Of these differentially expressed metabolites, lipids and lipid-like molecules were the main metabolites induced by explosives poisoning. TNT mainly caused significant changes in the alanine, aspartate, and glutamate metabolism metabolic pathways, RDX mainly caused disorders in the arginine biosynthesis metabolic pathway, and HMX disrupted the oxidative phosphorylation metabolic pathway. Taken together, the results show that exposure to TNT, RDX, and HMX leads to imbalances in plant photosynthetic characteristics and antioxidant enzyme systems, changes the basic metabolism of plants, and has significant ecotoxicity effects.


Assuntos
Trinitrotolueno , Azocinas , Medicago sativa , Triazinas , Trinitrotolueno/toxicidade
9.
Chemosphere ; 270: 129280, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33418226

RESUMO

The aim of this study was to reveal the biodegradation characteristics and physiological response mechanism of a newly isolated bacterium to 2,4,6-trinitrotoluene (TNT) contamination. A Klebsiella variicola strain with high efficiency of TNT degradation was used as the test strain to analyze the changes in cell growth, morphology, and functional groups under different TNT concentrations (0, 100 mg⋅L-1) and the effects of TNT stress on the metabolic profile as revealed by non-targeted metabonomics. A TNT concentration of 100 mg L-1 caused a significant increase in the 5-day biochemical oxygen demand (BOD5) to 950 mg L-1, while the degradation rate of TNT reached 100% within 30 h after inoculation with Klebsiella variicola. Fourier transform infrared spectroscopy (FTIR) analysis showed changes in the characteristic peak of triamide by TNT treatment. Non-targeted metabonomics identified a total of 544 differentially produced metabolites under TNT treatment (252 upregulated and 292 downregulated), mainly lipids and lipid-like molecules. The metabolic pathways associated with amino acid biosynthesis and metabolism were the most significantly enriched pathways, and simultaneous detection showed that TNT was degraded to 4-amino-2,6-dinitrotoluene (DNT), 2-hydroxylamino-4,6-DNT, 2-amino-4,6-DNT, 2-amino-4-nitrotoluene, and 2,4-DNT. These results confirmed that Klebsiella variicola has a high tolerance to TNT and efficiently degrades it. The degradation mechanism involves TNT-induced accelerated amino acid biosynthesis, production of a protease to catalyze the TNT transformation, and the participation of the transformed TNT products in cell metabolism.


Assuntos
Trinitrotolueno , Biodegradação Ambiental , Dinitrobenzenos , Klebsiella , Trinitrotolueno/toxicidade
10.
Arch Toxicol ; 94(12): 4043-4054, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33094350

RESUMO

Millions of tons of all kind of munitions, including mines, bombs and torpedoes have been dumped after World War II in the marine environment and do now pose a new threat to the seas worldwide. Beside the acute risk of unwanted detonation, there is a chronic risk of contamination, because the metal vessels corrode and the toxic and carcinogenic explosives (trinitrotoluene (TNT) and metabolites) leak into the environment. While the mechanism of toxicity and carcinogenicity of TNT and its derivatives occurs through its capability of inducing oxidative stress in the target biota, we had the idea if TNT can induce the gene expression of carbonyl reductase in blue mussels. Carbonyl reductases are members of the short-chain dehydrogenase/reductase (SDR) superfamily. They metabolize xenobiotics bearing carbonyl functions, but also endogenous signal molecules such as steroid hormones, prostaglandins, biogenic amines, as well as sugar and lipid peroxidation derived reactive carbonyls, the latter providing a defence mechanism against oxidative stress and reactive oxygen species (ROS). Here, we identified and cloned the gene coding for carbonyl reductase from the blue mussel Mytilus spp. by a bioinformatics approach. In both laboratory and field studies, we could show that TNT induces a strong and concentration-dependent induction of gene expression of carbonyl reductase in the blue mussel. Carbonyl reductase may thus serve as a biomarker for TNT exposure on a molecular level which is useful to detect TNT contaminations in the environment and to perform a risk assessment both for the ecosphere and the human seafood consumer.


Assuntos
Oxirredutases do Álcool/biossíntese , Bombas (Dispositivos Explosivos) , Monitoramento Ambiental , Substâncias Explosivas/toxicidade , Resíduos Perigosos , Mytilus edulis/efeitos dos fármacos , Trinitrotolueno/toxicidade , Poluentes Químicos da Água/toxicidade , Oxirredutases do Álcool/genética , Animais , Biologia Computacional , Relação Dose-Resposta a Droga , Biomarcadores Ambientais/genética , Indução Enzimática , Mytilus edulis/enzimologia , Mytilus edulis/genética , Oceanos e Mares , Medição de Risco , II Guerra Mundial
11.
Mar Environ Res ; 160: 104992, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32907729

RESUMO

Livers from dab (Limanda limanda), plaice (Pleuronectes platessa) and flounder (Platichthys flesus) sampled from the Baltic Sea were used to determine the interaction of flatfish CYP1A enzymes with 2,4,6-trinitrotoluene (TNT) in vitro. Competitive inhibition of 7-ethoxyresorufin-O-deethylase (EROD) and 7-methoxyresorufin-O-deethylase (MROD) could be demonstrated for all three flatfish species. The highest inhibition of CYP1A activities was measured in liver samples of flounder resulting in a half maximal inhibitory concentration (IC50) of 28.1 µM TNT. Due to their lower inhibition (EROD IC50 65.2 µM TNT, MROD IC50 40.3 µM TNT), dab liver samples were used to conduct in vitro metabolization experiments with TNT. The metabolization of TNT in fish was investigated with post-mitochondrial fractions (PMF) of dab liver as a model system after adding different cofactors. Rapid and time-dependent enzymatic degradation of TNT was observed. The concentrations of 4-amino-2,6-dinitrotoluene and 2-amino-4,6-dinitrotoluene increased in the samples over time. Additionally, 2,2,6,6-tetranitro-4,4-azoxytoluene was detected in one sample. The results of this study indicate that in vitro experiments are useful to investigate the xenobiotic metabolism of fish under controlled conditions prior to field studies. The metabolites found can serve as target compounds for marine monitoring of TNT contamination in munition dumpsites.


Assuntos
Linguado , Trinitrotolueno , Poluentes Químicos da Água , Animais , Citocromo P-450 CYP1A1 , Fígado , Trinitrotolueno/farmacocinética , Trinitrotolueno/toxicidade , Poluentes Químicos da Água/farmacocinética , Poluentes Químicos da Água/toxicidade
12.
Aquat Toxicol ; 217: 105345, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31715477

RESUMO

Lethal and sublethal effects of trinitrotoluene (TNT) and its degradation products 2-amino-4,6-dinitrotoluene (2-ADNT) and 4-amino-2,6-dinitrotoluene (4-ADNT) to zebrafish embryos (Danio rerio) were investigated in a 120 h exposure scenario. Lethal concentrations (LC50) were 4.5 mg/l for TNT, 13.4 mg/l for 2-ADNT and 14.4 mg/l for 4-ADNT. Embryos exposed to 2-ADNT or 4-ADNT revealed a high proportion of chorda deformations among the surviving individuals. Genotoxicity of the nitroaromatic compounds in zebrafish embryos was investigated by comet assay isolating cells from whole embryos after 48 h in vivo exposure. Significant genotoxicity was induced by all three compounds tested, in comparison to the corresponding controls at 0.1 mg/l and 1.0 mg/l as lowest tested concentrations. The genotoxicity caused by TNT was about three to four times higher than that of 2-ADNT and 4-ADNT. To our knowledge, this is the first study demonstrating the genotoxicity of TNT in fish embryos by in vivo exposure. The results are discussed in the context of dumped munition in the marine environment.


Assuntos
Dano ao DNA , Embrião não Mamífero/efeitos dos fármacos , Mutagênicos/toxicidade , Trinitrotolueno/toxicidade , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/crescimento & desenvolvimento , Compostos de Anilina/toxicidade , Animais , Peixe-Zebra/genética
13.
Ecotoxicol Environ Saf ; 173: 452-460, 2019 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-30798189

RESUMO

Although laccase is involved in the biotransformation of 2,4,6-trinitrotoluene (TNT), little is known regarding the effect of E. coli laccase on TNT biotransformation. In this study, E. coli K12 served as the parental strain to construct a laccase deletion strain and two laccase-overexpressing strains. These E. coli strains were used to investigate the effect of laccase together with copper ions on the efficiency of TNT biotransformation, the variety of TNT biotransformation products generated and the toxicity of the TNT metabolites. The results showed that the laccase level was not relevant to TNT biotransformation in the soluble fraction of the culture medium. Conversely, TNT metabolites varied in the insoluble fraction analyzed by thin-layer chromatography (TLC). The insoluble fraction from the laccase-null strain showed fewer and relatively fainter spots than those detected in the wild-type and laccase-overexpressing strains, indicating that laccase expression levels were interrelated determinants of the varieties and amounts of TNT metabolites produced. In addition, the aquatic invertebrate Tigriopus japonicus was used to assess the toxicity of the TNT metabolites. The toxicity of the TNT metabolite mixture increased when the intracellular laccase level in strains increased or when purified E. coli recombinant Laccase (rLaccase) was added to the culture medium. Thus, our results suggest that laccase activity must be considered when performing microbial TNT remediation.


Assuntos
Proteínas de Bactérias/metabolismo , Copépodes/efeitos dos fármacos , Cobre/farmacologia , Escherichia coli/metabolismo , Lacase/metabolismo , Trinitrotolueno/toxicidade , Animais , Proteínas de Bactérias/genética , Biotransformação , Cromatografia em Camada Fina , Escherichia coli/genética , Trinitrotolueno/metabolismo
14.
PLoS One ; 13(12): e0208281, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30521592

RESUMO

Microbiome studies focused on ecologically relevant vertebrate models like reptiles have been limited. Because of their relatively small home range, fast maturation, and high fecundity, lizards are an excellent reptilian terrestrial indicator species. For this study we used the green anole, Anolis carolinensis, to assess the impact of military relevant contaminants on fecal microbiome composition. Fourteen day sub-acute exposures were conducted via oral gavage with 2,4,6-Trinitrotoluene (TNT) and inorganic lead at doses of 60 mg/kg and 20 mg/kg of body weight, respectively. Body weights and food consumption were monitored and fecal samples were collected for high-throughput 16S rRNA gene amplicon sequencing and analytical chemistry at days 0 and 15. At the end of the study, liver and gut were harvested for body burden data. Chemical analysis confirmed accumulation of TNT, TNT transformation products, and lead in liver tissue and fecal samples. Bacterial community analysis of fecal material revealed significant differences between day 0 and day 15 of TNT exposed anoles with an operational taxonomic unit (OTU) within the genus Erwinia representing 32% of the microbial community in TNT exposed anoles. Predictable changes in gut microbiome composition could offer an easily assayed, noninvasive biomarker for specific chemical exposure providing enhanced scientific support to risk assessments on military installations.


Assuntos
Fezes/microbiologia , Chumbo/toxicidade , Microbiota/efeitos dos fármacos , Trinitrotolueno/toxicidade , Animais , Peso Corporal/efeitos dos fármacos , Lagartos
15.
BMC Genomics ; 19(1): 877, 2018 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-30518325

RESUMO

BACKGROUND: The health and resilience of species in natural environments is increasingly challenged by complex anthropogenic stressor combinations including climate change, habitat encroachment, and chemical contamination. To better understand impacts of these stressors we examined the individual- and combined-stressor impacts of malaria infection, food limitation, and 2,4,6-trinitrotoluene (TNT) exposures on gene expression in livers of Western fence lizards (WFL, Sceloporus occidentalis) using custom WFL transcriptome-based microarrays. RESULTS: Computational analysis including annotation enrichment and correlation analysis identified putative functional mechanisms linking transcript expression and toxicological phenotypes. TNT exposure increased transcript expression for genes involved in erythropoiesis, potentially in response to TNT-induced anemia and/or methemoglobinemia and caused dose-specific effects on genes involved in lipid and overall energy metabolism consistent with a hormesis response of growth stimulation at low doses and adverse decreases in lizard growth at high doses. Functional enrichment results were indicative of inhibited potential for lipid mobilization and catabolism in TNT exposures which corresponded with increased inguinal fat weights and was suggestive of a decreased overall energy budget. Malaria infection elicited enriched expression of multiple immune-related functions likely corresponding to increased white blood cell (WBC) counts. Food limitation alone enriched functions related to cellular energy production and decreased expression of immune responses consistent with a decrease in WBC levels. CONCLUSIONS: Despite these findings, the lizards demonstrated immune resilience to malaria infection under food limitation with transcriptional results indicating a fully competent immune response to malaria, even under bio-energetic constraints. Interestingly, both TNT and malaria individually increased transcriptional expression of immune-related genes and increased overall WBC concentrations in blood; responses that were retained in the TNT x malaria combined exposure. The results demonstrate complex and sometimes unexpected responses to multiple stressors where the lizards displayed remarkable resiliency to the stressor combinations investigated.


Assuntos
Poluentes Ambientais/toxicidade , Lagartos/metabolismo , Transcriptoma/efeitos dos fármacos , Animais , Peso Corporal/efeitos dos fármacos , Mudança Climática , Análise por Conglomerados , Ecossistema , Metabolismo Energético/efeitos dos fármacos , Eritropoese/efeitos dos fármacos , Hemólise/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Lagartos/genética , Lagartos/parasitologia , Linfócitos/citologia , Linfócitos/imunologia , Linfócitos/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Plasmodium/patogenicidade , RNA/química , RNA/isolamento & purificação , RNA/metabolismo , Análise de Sequência de RNA , Baço/parasitologia , Baço/fisiologia , Trinitrotolueno/toxicidade
16.
Plant Mol Biol ; 95(1-2): 99-109, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28762129

RESUMO

KEY MESSAGE: Expression of the bacterial nitroreductase gene, nfsI, in tobacco plastids conferred the ability to detoxify TNT. The toxic pollutant 2,4,6-trinitrotoluene (TNT) is recalcitrant to degradation in the environment. Phytoremediation is a potentially low cost remediation technique that could be applied to soil contaminated with TNT; however, progress is hindered by the phytotoxicity of this compound. Previous studies have demonstrated that plants transformed with the bacterial nitroreductase gene, nfsI have increased ability to tolerate and detoxify TNT. It has been proposed that plants engineered to express nfsI could be used to remediate TNT on military ranges, but this could require steps to mitigate transgene flow to wild populations. To address this, we have developed nfsI transplastomic tobacco (Nicotiana tabacum L.) to reduce pollen-borne transgene flow. Here we have shown that when grown on solid or liquid media, the transplastomic tobacco expressing nfsI were significantly more tolerant to TNT, produced increased biomass and removed more TNT from the media than untransformed plants. Additionally, transplastomic plants expressing nfsI regenerated with high efficiency when grown on medium containing TNT, suggesting that nfsI and TNT could together be used to provide a selectable screen for plastid transformation.


Assuntos
Bactérias/enzimologia , Nicotiana/genética , Nitrorredutases/metabolismo , Plastídeos/genética , Trinitrotolueno/metabolismo , Biodegradação Ambiental/efeitos dos fármacos , Vetores Genéticos/metabolismo , Plantas Geneticamente Modificadas , Regeneração/efeitos dos fármacos , Nicotiana/efeitos dos fármacos , Nicotiana/crescimento & desenvolvimento , Transformação Genética , Trinitrotolueno/toxicidade
17.
Environ Toxicol Chem ; 36(8): 2050-2057, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28059482

RESUMO

Insensitive munitions are desirable alternatives to historically used formulations, such as 2,4,6-trinitrotoluene (TNT), because of their so-called insensitivity to unintended detonation. The insensitive munition IMX-101 is a mixture of 2,4-dinitroanisole (DNAN), 3-nitro-1,2,4-triazol-5-one (NTO), and nitroguanidine (NQ). Environmental releases of munitions may be from production wastewaters or training; these munitions may be exposed to ultraviolet (UV) light. Therefore, it is useful to understand the relative toxicity of IMX-101 and its constituents both before and after photodegradation. The intent of the present study was to generate relative hazard information by exposing the standard ecotoxicological model Ceriodaphnia dubia to each insensitive munition constituent individually and to IMX-101 before and after the exposure solution was irradiated in a UV photoreactor. Without photodegradation, DNAN was more toxic (median lethal concentration [LC50] = 43 mg/L) than the other 2 constituents and it contributed predominantly to the toxicity of IMX-101 (LC50 = 206 mg/L) based on toxic units. Toxicity was observed only at high levels of NQ (LC50 = 1174 mg/L) and pH-adjusted NTO (LC50 = 799 mg/L). The toxicity of IMX-101 is lower than literature-reported TNT toxicity. Photodegradation efficiency was greater at lower insensitive munition concentrations. The observed degradation was greatest for NQ (42-99%), which in turn corresponded to the greatest relative increase in toxicity (100-1000-fold). Modest percent of degradation (4-18%) and increases in phototoxicity (2-100-fold) were observed for NTO and DNAN. Photodegraded NQ products were the predominant source of toxicity of photodegraded IMX-101. Future work involves research to enable analytical and computational confirmation of the specific degradation compounds inducing the observed photoenhanced toxicity. Environ Toxicol Chem 2017;36:2050-2057. Published 2017 Wiley Periodicals Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America.


Assuntos
Anisóis/toxicidade , Substâncias Explosivas/toxicidade , Guanidinas/toxicidade , Nitrocompostos/toxicidade , Fotólise , Triazóis/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Anisóis/efeitos da radiação , Cladocera/efeitos dos fármacos , Monitoramento Ambiental , Substâncias Explosivas/efeitos da radiação , Guanidinas/efeitos da radiação , Dose Letal Mediana , Nitrocompostos/efeitos da radiação , Triazóis/efeitos da radiação , Trinitrotolueno/toxicidade , Estados Unidos , Poluentes Químicos da Água/efeitos da radiação
18.
Environ Toxicol ; 32(3): 989-1006, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27322098

RESUMO

2,4,6-Trinitrotoluene (TNT) has been widely used as an explosive substance and its toxicity is still of interest as it persisted in polluted areas. TNT is metabolized in hepatocytes which are prone to its toxicity. Since analysis of the human liver or hepatocytes is restricted due to ethical reasons, we investigated the effects of TNT on cell viability, reactive oxygen species (ROS) production, peroxisome proliferation, and antioxidative enzymes in human (HepG2), mouse (Hepa 1-6), and rat (H4IIEC3) hepatoma cell lines. Under control conditions, hepatoma cells of all three species were highly comparable exhibiting identical proliferation rates and distribution of their cell cycle phases. However, we found strong differences in TNT toxicity with the lowest IC50 values (highest cell death rate) for rat cells, whereas human and mouse cells were three to sevenfold less sensitive. Moreover, a strong decrease in cellular dehydrogenase activity (MTT assay) and increased ROS levels were noted. TNT caused peroxisome proliferation with rat hepatoma cells being most responsive followed by those from mouse and human. Under control conditions, rat cells contained fivefold higher peroxisomal catalase and mitochondrial SOD2 activities and a twofold higher capacity to reduce MTT than human and mouse cells. TNT treatment caused an increase in catalase and SOD2 mRNA and protein levels in human and mouse, but not in rat cells. Similarly, human and mouse cells upregulated SOD2 activity, whereas rat cells failed therein. We conclude that TNT induced oxidative stress, peroxisome proliferation and mitochondrial damage which are highest in rat cells rendering them most susceptible toward TNT. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 989-1006, 2017.


Assuntos
Carcinoma Hepatocelular/patologia , Catalase/metabolismo , Poluentes Ambientais/toxicidade , Neoplasias Hepáticas/patologia , Peroxissomos/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Trinitrotolueno/toxicidade , Animais , Antioxidantes/metabolismo , Carcinoma Hepatocelular/metabolismo , Células Cultivadas , Substâncias Explosivas/toxicidade , Células Hep G2 , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Neoplasias Hepáticas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Peroxissomos/metabolismo , Ratos , Espécies Reativas de Oxigênio/metabolismo , Especificidade da Espécie , Regulação para Cima/efeitos dos fármacos
19.
Int J Phytoremediation ; 19(1): 56-64, 2017 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-27483131

RESUMO

Quantifying vegetation response to explosive compounds has focused predominantly on morphological impacts and uptake efficiency. A more comprehensive understanding of the total impacts of explosives on vegetation can be gained using a multivariate approach. We hypothesized that multiple variables representing morphological and physiological responses will more clearly differentiate species and treatments than any single variable. Individuals of three plant species were placed in soils contaminated with Composition B, which comprises 60% hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and 40% 2,4,6-trinitrotoluene (TNT), and grown for 2 months. Response metrics used included photosynthetic operation, water relations, growth characteristics, as well as nitrogen and carbon concentrations and isotopic compositions. Individual metrics showed high variability in response across the three species tested. Water relations and nitrogen isotopic composition exhibited the most consistent response across species. By comparing multiple variables simultaneously, better separation of both species and exposure was observed. The inclusion of novel metrics can reinforce previously established concepts and provide a new perspective. Additionally, the inclusion of various other metrics can greatly increase the ability to identify and differentiate particular groups. By using multivariate analyses and standard vegetation metrics, new aspects of the vegetation response to explosive compounds can be identified.


Assuntos
Poluentes Ambientais/toxicidade , Substâncias Explosivas/toxicidade , Plantas/efeitos dos fármacos , Triazinas/toxicidade , Trinitrotolueno/toxicidade , Cyperus/anatomia & histologia , Cyperus/efeitos dos fármacos , Cyperus/fisiologia , Plantas/anatomia & histologia , Plantas/metabolismo , Ulmus/anatomia & histologia , Ulmus/efeitos dos fármacos , Ulmus/fisiologia , Vitis/anatomia & histologia , Vitis/efeitos dos fármacos , Vitis/fisiologia
20.
New Phytol ; 214(1): 294-303, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27924627

RESUMO

The explosive 2,4,6-trinitrotoluene (TNT) is a significant, global environmental pollutant that is both toxic and recalcitrant to degradation. Given the sheer scale and inaccessible nature of contaminated areas, phytoremediation may be a viable clean-up approach. Here, we have characterized a Drosophila melanogaster glutathione transferase (DmGSTE6) which has activity towards TNT. Recombinantly expressed, purified DmGSTE6 produces predominantly 2-glutathionyl-4,6-dinitrotoluene, and has a 2.5-fold higher Maximal Velocity (Vmax ), and five-fold lower Michaelis Constant (Km ) than previously characterized TNT-active Arabidopsis thaliana (Arabidopsis) GSTs. Expression of DmGSTE6 in Arabidopsis conferred enhanced resistance to TNT, and increased the ability to remove TNT from contaminated soil relative to wild-type plants. Arabidopsis lines overexpressing TNT-active GSTs AtGST-U24 and AtGST-U25 were compromised in biomass production when grown in the absence of TNT. This yield drag was not observed in the DmGSTE6-expressing Arabidopsis lines. We hypothesize that increased levels of endogenous TNT-active GSTs catalyse excessive glutathionylation of endogenous substrates, depleting glutathione pools, an activity that DmGST may lack. In conclusion, DmGSTE6 has activity towards TNT, producing a compound with potential for further biodegradation. Selecting or manipulating plants to confer DmGSTE6-like activity could contribute towards development of phytoremediation strategies to clean up TNT from polluted military sites.


Assuntos
Arabidopsis/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/enzimologia , Poluentes Ambientais/toxicidade , Substâncias Explosivas/toxicidade , Glutationa Transferase/genética , Trinitrotolueno/toxicidade , Animais , Arabidopsis/efeitos dos fármacos , Proteínas de Arabidopsis/metabolismo , Proteínas de Drosophila/metabolismo , Poluição Ambiental , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Glutationa/metabolismo , Glutationa Transferase/metabolismo , Inativação Metabólica/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Trinitrotolueno/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...