Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 213
Filtrar
1.
Annu Rev Pathol ; 18: 19-45, 2023 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-36055769

RESUMO

African trypanosomes are bloodstream protozoan parasites that infect mammals including humans, where they cause sleeping sickness. Long-lasting infection is required to favor parasite transmission between hosts. Therefore, trypanosomes have developed strategies to continuously escape innate and adaptive responses of the immune system, while also preventing premature death of the host. The pathology linked to infection mainly results from inflammation and includes anemia and brain dysfunction in addition to loss of specificity and memory of the antibody response. The serum of humans contains an efficient trypanolytic factor, the membrane pore-forming protein apolipoprotein L1 (APOL1). In the two human-infective trypanosomes, specific parasite resistance factors inhibit APOL1 activity. In turn, many African individuals express APOL1 variants that counteract these resistance factors, enabling them to avoid sleeping sickness. However, these variants are associated with chronic kidney disease, particularly in the context of virus-induced inflammation such as coronavirus disease 2019. Vaccination perspectives are discussed.


Assuntos
COVID-19 , Tripanossomíase Africana , Humanos , Apolipoproteína L1/genética , Inflamação , Trypanosoma brucei rhodesiense/fisiologia , Tripanossomíase Africana/genética , Tripanossomíase Africana/parasitologia
2.
PLoS Pathog ; 18(2): e1010300, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35139131

RESUMO

Genetic exchange among disease-causing micro-organisms can generate progeny that combine different pathogenic traits. Though sexual reproduction has been described in trypanosomes, its impact on the epidemiology of Human African Trypanosomiasis (HAT) remains controversial. However, human infective and non-human infective strains of Trypanosoma brucei circulate in the same transmission cycles in HAT endemic areas in subsaharan Africa, providing the opportunity for mating during the developmental cycle in the tsetse fly vector. Here we investigated inheritance among progeny from a laboratory cross of T. brucei and then applied these insights to genomic analysis of field-collected isolates to identify signatures of past genetic exchange. Genomes of two parental and four hybrid progeny clones with a range of DNA contents were assembled and analysed by k-mer and single nucleotide polymorphism (SNP) frequencies to determine heterozygosity and chromosomal inheritance. Variant surface glycoprotein (VSG) genes and kinetoplast (mitochondrial) DNA maxi- and minicircles were extracted from each genome to examine how each of these components was inherited in the hybrid progeny. The same bioinformatic approaches were applied to an additional 37 genomes representing the diversity of T. brucei in subsaharan Africa and T. evansi. SNP analysis provided evidence of crossover events affecting all 11 pairs of megabase chromosomes and demonstrated that polyploid hybrids were formed post-meiotically and not by fusion of the parental diploid cells. VSGs and kinetoplast DNA minicircles were inherited biparentally, with approximately equal numbers from each parent, whereas maxicircles were inherited uniparentally. Extrapolation of these findings to field isolates allowed us to distinguish clonal descent from hybridization by comparing maxicircle genotype to VSG and minicircle repertoires. Discordance between maxicircle genotype and VSG and minicircle repertoires indicated inter-lineage hybridization. Significantly, some of the hybridization events we identified involved human infective and non-human infective trypanosomes circulating in the same geographic areas.


Assuntos
DNA de Cinetoplasto/genética , Hibridização Genética/genética , Trypanosoma brucei brucei/genética , Trypanosoma/genética , Animais , DNA Mitocondrial/genética , DNA de Protozoário/genética , Genótipo , Humanos , Tripanossomíase Africana/genética
3.
PLoS Negl Trop Dis ; 15(11): e0009892, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34762691

RESUMO

Human African trypanosomiasis (HAT), also known as sleeping sickness, is a major cause of mortality and morbidity in sub-Saharan Africa. We hypothesised that recent findings of neurological features and parasite brain infiltration occurring at much earlier stages in HAT than previously thought could be explained by early activation of host genetic programmes controlling CNS disease. Accordingly, a transcriptomal analysis was performed on brain tissue at 0, 7, 14, 21 and 28dpi from the HAT CD1/GVR35 mouse model. Up to 21dpi, most parasites are restricted to the blood and lymphatic system. Thereafter the trypanosomes enter the brain initiating the encephalitic stage. Analysis of ten different time point Comparison pairings, revealed a dynamic transcriptome comprising four message populations. All 7dpi Comparisons had by far more differentially expressed genes compared to all others. Prior to invasion of the parenchyma, by 7dpi, ~2,000 genes were up-regulated, denoted [7dpi↑] in contrast to a down regulated population [7dpi↓] also numbering ~2,000. However, by 14dpi both patterns had returned to around the pre-infected levels. The third, [28dpi↑] featured over three hundred transcripts which had increased modestly up to14dpi, thereafter were significantly up-regulated and peaked at 28dpi. The fourth, a minor population, [7dpi↑-28dpi↑], had similar elevated levels at 7dpi and 28dpi. KEGG and GO enrichment analysis predicted a diverse phenotype by 7dpi with changes to innate and adaptive immunity, a Type I interferon response, neurotransmission, synaptic plasticity, pleiotropic signalling, circadian activity and vascular permeability without disruption of the blood brain barrier. This key observation is consistent with recent rodent model neuroinvasion studies and clinical reports of Stage 1 HAT patients exhibiting CNS symptoms. Together, these findings challenge the strict Stage1/Stage2 phenotypic demarcation in HAT and show that that significant neurological, and immune changes can be detected prior to the onset of CNS disease.


Assuntos
Encéfalo/parasitologia , Doenças do Sistema Nervoso Central/genética , Doenças do Sistema Nervoso Central/imunologia , Trypanosoma brucei brucei/fisiologia , Tripanossomíase Africana/genética , Tripanossomíase Africana/imunologia , Animais , Barreira Hematoencefálica/imunologia , Barreira Hematoencefálica/parasitologia , Encéfalo/imunologia , Doenças do Sistema Nervoso Central/parasitologia , Modelos Animais de Doenças , Progressão da Doença , Feminino , Perfilação da Expressão Gênica , Humanos , Camundongos , Fenótipo , Análise Serial de Proteínas , Transcrição Gênica , Tripanossomíase Africana/parasitologia
4.
PLoS One ; 16(10): e0258711, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34695154

RESUMO

The Trypanosoma brucei repeat (TBR) is a tandem repeat sequence present on the Trypanozoon minichromosomes. Here, we report that the TBR sequence is not as homogenous as previously believed. BLAST analysis of the available T. brucei genomes reveals various TBR sequences of 177 bp and 176 bp in length, which can be sorted into two TBR groups based on a few key single nucleotide polymorphisms. Conventional and quantitative PCR with primers matched to consensus sequences that target either TBR group show substantial copy-number variations in the TBR repertoire within a collection of 77 Trypanozoon strains. We developed the qTBR, a novel PCR consisting of three primers and two probes, to simultaneously amplify target sequences from each of the two TBR groups into one single qPCR reaction. This dual probe setup offers increased analytical sensitivity for the molecular detection of all Trypanozoon taxa, in particular for T.b. gambiense and T. evansi, when compared to existing TBR PCRs. By combining the qTBR with 18S rDNA amplification as an internal standard, the relative copy-number of each TBR target sequence can be calculated and plotted, allowing for further classification of strains into TBR genotypes associated with East, West or Central Africa. Thus, the qTBR takes advantage of the single-nucleotide polymorphisms and copy number variations in the TBR sequences to enhance amplification and genotyping of all Trypanozoon strains, making it a promising tool for prevalence studies of African trypanosomiasis in both humans and animals.


Assuntos
Variações do Número de Cópias de DNA , DNA de Protozoário/genética , Polimorfismo de Nucleotídeo Único , Proteínas de Protozoários/genética , Sequências Repetitivas de Ácido Nucleico , Trypanosoma brucei brucei/genética , Tripanossomíase Africana/genética , DNA de Protozoário/análise , Trypanosoma brucei brucei/crescimento & desenvolvimento , Tripanossomíase Africana/parasitologia
5.
FEBS J ; 288(18): 5430-5445, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33755328

RESUMO

A subset of flavoproteins has a covalently attached flavin prosthetic group enzymatically attached via phosphoester bonding. In prokaryotes, this is catalysed by alternative pyrimidine biosynthesis E (ApbE) flavin transferases. ApbE-like domains are present in few eukaryotic taxa, for example the N-terminal domain of fumarate reductase (FRD) of Trypanosoma, a parasitic protist known as a tropical pathogen causing African sleeping sickness. We use the versatile reverse genetic tools available for Trypanosoma to investigate the flavinylation of glycosomal FRD (FRDg) in vivo in the physiological and organellar context. Using direct in-gel fluorescence detection of covalently attached flavin as proxy for activity, we show that the ApbE-like domain of FRDg has flavin transferase activity in vivo. The ApbE domain is preceded by a consensus flavinylation target motif at the extreme N terminus of FRDg, and serine 9 in this motif is essential as flavin acceptor. The preferred mode of flavinylation in the glycosome was addressed by stoichiometric expression and comparison of native and catalytically inactive ApbE domains. In addition to the trans-flavinylation activity, the ApbE domain catalyses the intramolecular cis-flavinylation with at least fivefold higher efficiency. We discuss how the higher efficiency due to unusual fusion of the ApbE domain to its substrate protein FRD may provide a selective advantage by faster FRD biogenesis during rapid metabolic adaptation of trypanosomes. The first 37 amino acids of FRDg, including the consensus motif, are sufficient as flavinylation target upon fusion to other proteins. We propose FRDg(1-37) as 4-kDa heat-stable, detergent-resistant fluorescent protein tag and suggest its use as a new tool to study glycosomal protein import.


Assuntos
Flavoproteínas/genética , Succinato Desidrogenase/genética , Transferases/genética , Trypanosoma brucei brucei/genética , Dinitrocresóis/metabolismo , Flavoproteínas/química , Humanos , Domínios Proteicos/genética , Transporte Proteico/genética , Pirimidinas/biossíntese , Succinato Desidrogenase/química , Trypanosoma brucei brucei/patogenicidade , Tripanossomíase Africana/genética , Tripanossomíase Africana/parasitologia , Triptofano/análogos & derivados , Triptofano/genética
6.
Sci Rep ; 11(1): 5755, 2021 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-33707699

RESUMO

Trypanosoma brucei is a protozoan parasite that causes important human and livestock diseases in sub-Saharan Africa. By overexpressing a single RNA-binding protein, RBP6, in non-infectious procyclics trypanosomes, we previously recapitulated in vitro the events occurring in the tsetse fly vector, namely the development of epimastigotes and infectious, quiescent metacyclic parasites. To identify genes involved in this developmental progression, we individually targeted 86 transcripts by RNAi in the RBP6 overexpression cell line and assessed the loss-of-function phenotypes on repositioning the kinetoplast, an organelle that contains the mitochondrial genome, the expression of BARP or brucei alanine rich protein, a marker for epimastigotes, and metacyclic variant surface glycoprotein. This screen identified 22 genes that positively or negatively regulate the stepwise progression towards infectivity at different stages. Two previously uncharacterized putative nucleic acid binding proteins emerged as potent regulators, namely the cold shock domain-containing proteins CSD1 and CSD2. RNA-Seq data from a selected group of cell lines further revealed that the components of gene expression regulatory networks identified in this study affected the abundance of a subset of transcripts in very similar fashion. Finally, our data suggest a considerable overlap between the genes that regulate the formation of stumpy bloodstream form trypanosomes and the genes that govern the development of metacyclic form parasites.


Assuntos
Progressão da Doença , Proteínas de Protozoários/metabolismo , Trypanosoma brucei brucei/patogenicidade , Tripanossomíase Africana/patologia , Tripanossomíase Africana/parasitologia , Linhagem Celular , Regulação para Baixo/genética , Perfilação da Expressão Gênica , Polirribossomos/metabolismo , Biossíntese de Proteínas , Interferência de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA-Seq , Tripanossomíase Africana/genética , Regulação para Cima/genética
7.
Genes (Basel) ; 12(2)2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33535521

RESUMO

DEAD-box RNA helicases are ubiquitous proteins found in all kingdoms of life and that are associated with all processes involving RNA. Their central roles in biology make these proteins potential targets for therapeutic or prophylactic drugs. The Ded1/DDX3 subfamily of DEAD-box proteins is of particular interest because of their important role(s) in translation. In this paper, we identified and aligned the protein sequences of 28 different DEAD-box proteins from the kinetoplast-protozoan parasite Leishmania infantum, which is the cause of the visceral form of leishmaniasis that is often lethal if left untreated, and compared them with the consensus sequence derived from DEAD-box proteins in general, and from the Ded1/DDX3 subfamily in particular, from a wide variety of other organisms. We identified three potential homologs of the Ded1/DDX3 subfamily and the equivalent proteins from the related protozoan parasite Trypanosoma brucei, which is the causative agent of sleeping sickness. We subsequently tested these proteins for their ability to complement a yeast strain deleted for the essential DED1 gene. We found that the DEAD-box proteins from Trypanosomatids are highly divergent from other eukaryotes, and consequently they are suitable targets for protein-specific drugs.


Assuntos
RNA Helicases DEAD-box/genética , Proteínas de Saccharomyces cerevisiae/genética , Trypanosoma brucei brucei/genética , Tripanossomíase Africana/genética , Sequência de Aminoácidos/genética , Simulação por Computador , Humanos , Leishmania infantum/genética , Leishmania infantum/patogenicidade , Biossíntese de Proteínas/genética , RNA/genética , Saccharomyces cerevisiae/genética , Trypanosoma brucei brucei/patogenicidade , Tripanossomíase Africana/parasitologia
8.
Int J Mol Sci ; 22(2)2021 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-33429951

RESUMO

African Animal Trypanosomiasis (AAT) is transmitted by the tsetse fly which carries pathogenic trypanosomes in its saliva, thus causing debilitating infection to livestock health. As the disease advances, a multistage progression process is observed based on the progressive clinical signs displayed in the host's body. Investigation of genes expressed with regular monotonic patterns (known as Monotonically Expressed Genes (MEGs)) and of their master regulators can provide important clue for the understanding of the molecular mechanisms underlying the AAT disease. For this purpose, we analysed MEGs for three tissues (liver, spleen and lymph node) of two cattle breeds, namely trypanosusceptible Boran and trypanotolerant N'Dama. Our analysis revealed cattle breed-specific master regulators which are highly related to distinguish the genetic programs in both cattle breeds. Especially the master regulators MYC and DBP found in this study, seem to influence the immune responses strongly, thereby susceptibility and trypanotolerance of Boran and N'Dama respectively. Furthermore, our pathway analysis also bolsters the crucial roles of these master regulators. Taken together, our findings provide novel insights into breed-specific master regulators which orchestrate the regulatory cascades influencing the level of trypanotolerance in cattle breeds and thus could be promising drug targets for future therapeutic interventions.


Assuntos
Imunidade Inata/genética , Trypanosoma/genética , Tripanossomíase Africana/genética , Animais , Bovinos , Interações Hospedeiro-Patógeno/genética , Humanos , Imunidade Inata/imunologia , Fígado/metabolismo , Fígado/parasitologia , Especificidade de Órgãos/genética , Proteínas Proto-Oncogênicas c-myc/genética , Baço/metabolismo , Baço/parasitologia , Trypanosoma/patogenicidade , Tripanossomíase Africana/parasitologia , Tripanossomíase Africana/transmissão , Tripanossomíase Africana/veterinária , Moscas Tsé-Tsé/parasitologia , Moscas Tsé-Tsé/patogenicidade
9.
PLoS Pathog ; 17(1): e1009224, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33481935

RESUMO

Animal African trypanosomiasis (AAT) is a severe, wasting disease of domestic livestock and diverse wildlife species. The disease in cattle kills millions of animals each year and inflicts a major economic cost on agriculture in sub-Saharan Africa. Cattle AAT is caused predominantly by the protozoan parasites Trypanosoma congolense and T. vivax, but laboratory research on the pathogenic stages of these organisms is severely inhibited by difficulties in making even minor genetic modifications. As a result, many of the important basic questions about the biology of these parasites cannot be addressed. Here we demonstrate that an in vitro culture of the T. congolense genomic reference strain can be modified directly in the bloodstream form reliably and at high efficiency. We describe a parental single marker line that expresses T. congolense-optimized T7 RNA polymerase and Tet repressor and show that minichromosome loci can be used as sites for stable, regulatable transgene expression with low background in non-induced cells. Using these tools, we describe organism-specific constructs for inducible RNA-interference (RNAi) and demonstrate knockdown of multiple essential and non-essential genes. We also show that a minichromosomal site can be exploited to create a stable bloodstream-form line that robustly provides >40,000 independent stable clones per transfection-enabling the production of high-complexity libraries of genome-scale. Finally, we show that modified forms of T. congolense are still infectious, create stable high-bioluminescence lines that can be used in models of AAT, and follow the course of infections in mice by in vivo imaging. These experiments establish a base set of tools to change T. congolense from a technically challenging organism to a routine model for functional genetics and allow us to begin to address some of the fundamental questions about the biology of this important parasite.


Assuntos
Genética Microbiana , Proteínas de Protozoários/genética , Transgenes , Trypanosoma congolense/genética , Trypanosoma congolense/patogenicidade , Tripanossomíase Africana/parasitologia , Animais , Feminino , Genoma de Protozoário , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Tripanossomíase Africana/genética
10.
FEBS J ; 288(2): 360-381, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32530132

RESUMO

The discovery that apolipoprotein L1 (APOL1) is the trypanolytic factor of human serum raised interest about the function of APOLs, especially following the unexpected finding that in addition to their protective action against sleeping sickness, APOL1 C-terminal variants also cause kidney disease. Based on the analysis of the structure and trypanolytic activity of APOL1, it was proposed that APOLs could function as ion channels of intracellular membranes and be involved in mechanisms triggering programmed cell death. In this review, the recent finding that APOL1 and APOL3 inversely control the synthesis of phosphatidylinositol-4-phosphate (PI(4)P) by the Golgi PI(4)-kinase IIIB (PI4KB) is commented. APOL3 promotes Ca2+ -dependent activation of PI4KB, but due to their increased interaction with APOL3, APOL1 C-terminal variants can inactivate APOL3, leading to reduction of Golgi PI(4)P synthesis. The impact of APOLs on several pathological processes that depend on Golgi PI(4)P levels is discussed. I propose that through their effect on PI4KB activity, APOLs control not only actomyosin activities related to vesicular trafficking, but also the generation and elongation of autophagosomes induced by inflammation.


Assuntos
Apolipoproteína L1/genética , Apolipoproteínas L/genética , Transtorno Autístico/genética , Neoplasias/genética , Insuficiência Renal/genética , Esquizofrenia/genética , Viroses/genética , Actomiosina/genética , Actomiosina/metabolismo , Animais , Apolipoproteína L1/metabolismo , Apolipoproteínas L/metabolismo , Transtorno Autístico/metabolismo , Transtorno Autístico/patologia , Autofagossomos/metabolismo , Cálcio/metabolismo , Regulação da Expressão Gênica , Complexo de Golgi/metabolismo , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Fosfatos de Fosfatidilinositol/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Insuficiência Renal/metabolismo , Insuficiência Renal/patologia , Esquizofrenia/metabolismo , Esquizofrenia/patologia , Tripanossomíase Africana/tratamento farmacológico , Tripanossomíase Africana/genética , Tripanossomíase Africana/metabolismo , Tripanossomíase Africana/parasitologia , Viroses/metabolismo , Viroses/patologia
11.
Biochim Biophys Acta Proteins Proteom ; 1869(2): 140577, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33271348

RESUMO

Trypanosoma cruzi, the agent of the American Trypanosomiasis, Chagas disease, and Trypanosoma brucei gambiense and Trypanosoma brucei rhodesiense, the agents of Sleeping sickness (Human African Trypanosomiasis, HAT), as well as Trypanosoma brucei brucei, the agent of the cattle disease nagana, contain cysteine, serine, threonine, aspartyl and metallo peptidases. The most abundant among these enzymes are the cysteine proteases from the Clan CA, the Cathepsin L-like cruzipain and rhodesain, and the Cathepsin B-like enzymes, which have essential roles in the parasites and thus are potential targets for chemotherapy. In addition, several other proteases, present in one or both parasites, have been characterized, and some of them are also promising candidates for the developing of new drugs. Recently, new inhibitors, with good selectivity for the parasite proteasomes, have been described and are very promising as lead compounds for the development of new therapies for these neglected diseases. This article is part of a Special Issue entitled: "Play and interplay of proteases in health and disease".


Assuntos
Peptídeo Hidrolases/genética , Trypanosoma brucei brucei/genética , Trypanosoma cruzi/genética , Tripanossomíase Africana/genética , Animais , Catepsina B/genética , Catepsina B/isolamento & purificação , Bovinos , Cisteína Endopeptidases/química , Cisteína Endopeptidases/uso terapêutico , Cisteína Proteases/genética , Inibidores de Cisteína Proteinase/uso terapêutico , Humanos , Proteínas de Protozoários/química , Proteínas de Protozoários/uso terapêutico , Trypanosoma brucei brucei/enzimologia , Trypanosoma brucei brucei/patogenicidade , Trypanosoma cruzi/enzimologia , Trypanosoma cruzi/patogenicidade , Tripanossomíase Africana/enzimologia , Tripanossomíase Africana/parasitologia
12.
Comput Biol Chem ; 88: 107347, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32745971

RESUMO

Human African trypanosomiasis (HAT), also known as sleeping sickness, causes millions of deaths worldwide. HAT is primarily transmitted by the vector tsetse fly (Glossina morsitans). Early diagnosis remains a key objective for treating this disease. MicroRNAs (miRNAs) are evolutionarily conserved small non-coding RNAs that play key roles in vector-borne diseases. To date, the roles of proteins and miRNAs in HAT disease have not been thoroughly elucidated. In this study, we have re-annotated the function of protein-coding genes and identified several miRNAs based on a series of bioinformatics tools. A batch of 81.1 % of tsetse fly proteins could be determined homology in mosquito genome, suggesting their probable similar mechanisms in vector-borne diseases. A set of 11 novel salivary proteins and 14 midgut proteins were observed in the tsetse fly, which could be applied to the development of vaccine candidates for the control of HAT disease. In addition, 35 novel miRNAs were identified, among which 10 miRNAs were found to be unique in tsetse fly. Pathway analysis of these 10 miRNAs indicated that targets of miR-15a-5p were significantly enriched in the HAT-related neurotrophin signaling pathway. Besides, topological analysis of the miRNA-gene network indicated that miR-619-5p and miR-2490-3p targeted several genes that respond to trypanosome infection, including thioester-containing protein Tep1 and heat shock protein Hsp60a. In conclusion, our work helps to elucidate the function of miRNAs in tsetse fly and establishes a foundation for further investigations into the molecular regulatory mechanisms of HAT disease.


Assuntos
Biologia Computacional , Proteínas de Insetos/genética , MicroRNAs/genética , Tripanossomíase Africana/genética , Moscas Tsé-Tsé/genética , Animais , Humanos , Tripanossomíase Africana/diagnóstico
13.
J Clin Pathol ; 73(8): 441-443, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32404472

RESUMO

Apolipoprotein L1 (APOL1) is a protein encoded by the APOL1 gene, found only in humans and several primates. Two variants encoding two different isoforms exist for APOL1, namely G1 and G2. These variants confer increased protection against trypanosome infection, and subsequent African sleeping sickness, and also increase the likelihood of renal disease in individuals of African ancestry. APOL1 mutations are associated with increased risk of chronic kidney disease, inflammation, and exacerbation of systemic lupus erythematosus-associated renal dysfunction. This review serves to outline the structure and function of APOL1, as well as its role in several disease outcomes.


Assuntos
Apolipoproteína L1/genética , Apolipoproteína L1/fisiologia , Autofagia/genética , Evolução Molecular , Variação Genética , Humanos , Inflamação/genética , Mutação/genética , Insuficiência Renal Crônica/genética , Tripanossomíase Africana/genética
14.
Sci Rep ; 10(1): 2824, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-32071365

RESUMO

The Djallonké (West African Dwarf) sheep is a small-sized haired sheep resulting from a costly evolutionary process of natural adaptation to the harsh environment of West Africa including trypanosome challenge. However, genomic studies carried out in this sheep are scant. In this research, genomic data of 184 Djallonké sheep (and 12 Burkina-Sahel sheep as an outgroup) generated using medium-density SNP Chips were analyzed. Three different statistics (iHS, XP-EHH and nSL) were applied to identify candidate selection sweep regions spanning genes putatively associated with adaptation of sheep to the West African environment. A total of 207 candidate selection sweep regions were defined. Gene-annotation enrichment and functional annotation analyses allowed to identify three statistically significant functional clusters involving 12 candidate genes. Genes included in Functional Clusters associated to selection signatures were mainly related to metabolic response to stress, including regulation of oxidative and metabolic stress and thermotolerance. The bovine chromosomal areas carrying QTLs for cattle trypanotolerance were compared with the regions on which the orthologous functional candidate cattle genes were located. The importance of cattle BTA4 for trypanotolerant response might have been conserved between species. The current research provides new insights on the genomic basis for adaptation and highlights the importance of obtaining information from non-cosmopolite livestock populations managed in harsh environments.


Assuntos
Genômica , Locos de Características Quantitativas/genética , Seleção Genética , Carneiro Doméstico/genética , Aclimatação/genética , Adaptação Fisiológica/genética , Animais , Evolução Biológica , Cruzamento , Domesticação , Humanos , Gado , Polimorfismo de Nucleotídeo Único/genética , Ovinos/genética , Carneiro Doméstico/fisiologia , Trypanosoma congolense/patogenicidade , Tripanossomíase Africana/genética , Tripanossomíase Africana/parasitologia
15.
J Struct Biol ; 209(1): 107406, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31747559

RESUMO

The essential SAS2-related acetyltransferase 1 (Esa1), as a acetyltransferase of MYST family, is indispensable for the cell cycle and transcriptional regulation. The Tudor domain consists of 60 amino acids and belongs to the Royal family, which serves as a module interacting with methylated histone and/or DNA. Although Tudor domain has been widely studied in higher eukaryotes, its structure and function remain unclear in Trypanosoma brucei (T. brucei), a protozoan unicellular parasite causing sleeping sickness in human and nagana in cattle in sub-Saharan Africa. Here, we determined a high-resolution structure of TbEsa1 presumed Tudor domain from T. brucei by X-ray crystallography. TbEsa1 Tudor domain adopts a conserved Tudor-like fold, which is comprised of a five-stranded ß-barrel surrounded by two short α-helices. Furthermore, we revealed a non-specific DNA binding pattern of TbEsa1 Tudor domain. However, TbEsa1 Tudor domain showed no methyl-histone binding ability, due to the absence of key aromatic residues forming a conserved aromatic cage.


Assuntos
Histona Acetiltransferases/ultraestrutura , Trypanosoma brucei brucei/ultraestrutura , Tripanossomíase Africana/microbiologia , Domínio Tudor/genética , Sequência de Aminoácidos/genética , Animais , Sítios de Ligação/genética , Bovinos , Cristalografia por Raios X , Histona Acetiltransferases/química , Histona Acetiltransferases/genética , Humanos , Modelos Moleculares , Ligação Proteica/genética , Trypanosoma brucei brucei/enzimologia , Trypanosoma brucei brucei/genética , Tripanossomíase Africana/enzimologia , Tripanossomíase Africana/genética
16.
Parasite Immunol ; 41(8): e12632, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31099071

RESUMO

Trypanosoma brucei gambiense, an extracellular eukaryotic flagellate parasite, is the main etiological agent of human African trypanosomiasis (HAT) or sleeping sickness. Dendritic cells (DCs) play a pivotal role at the interface between innate and adaptive immune response and are implicated during HAT. In this study, we investigated the effects of T gambiense and its excreted/secreted factors (ESF) on the phenotype of human monocyte-derived DCs (Mo-DCs). Mo-DCs were cultured with trypanosomes, lipopolysaccharide (LPS), ESF derived from T gambiense bloodstream strain Biyamina (MHOM/SD/82), or both ESF and LPS. Importantly, ESF reduced the expression of the maturation markers HLA-DR and CD83, as well as the secretion of IL-12, TNF-alpha and IL-10, in LPS-stimulated Mo-DCs. During mixed-leucocyte reactions, LPS- plus ESF-exposed DCs induced a non-significant decrease in the IFN-gamma/IL-10 ratio of CD4 + T-cell cytokines. Based on the results presented here, we raise the hypothesis that T gambiense has developed an immune escape strategy through the secretion of paracrine mediators in order to limit maturation and activation of human DCs. The identification of the factor(s) in the T gambiense ESF and of the DCs signalling pathway(s) involved may be important in the development of new therapeutic targets.


Assuntos
Células Dendríticas/imunologia , Monócitos/imunologia , Proteínas de Protozoários/imunologia , Trypanosoma brucei gambiense/imunologia , Tripanossomíase Africana/imunologia , Animais , Células Dendríticas/parasitologia , Feminino , Antígenos HLA-DR/genética , Antígenos HLA-DR/imunologia , Interações Hospedeiro-Parasita , Humanos , Interleucina-10/genética , Interleucina-10/imunologia , Interleucina-12/genética , Interleucina-12/imunologia , Lipopolissacarídeos/imunologia , Camundongos , Monócitos/parasitologia , Proteínas de Protozoários/genética , Transdução de Sinais , Linfócitos T/imunologia , Linfócitos T/parasitologia , Trypanosoma brucei gambiense/genética , Tripanossomíase Africana/genética , Tripanossomíase Africana/parasitologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia
17.
PLoS Genet ; 15(3): e1008005, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30875383

RESUMO

Dipteran or "true" flies occupy nearly every terrestrial habitat, and have evolved to feed upon a wide variety of sources including fruit, pollen, decomposing animal matter, and even vertebrate blood. Here we analyze the molecular, genetic and cellular basis of odor response in the tsetse fly Glossina morsitans, which feeds on the blood of humans and their livestock, and is a vector of deadly trypanosomes. The G. morsitans antenna contains specialized subtypes of sensilla, some of which line a sensory pit not found in the fruit fly Drosophila. We characterize distinct patterns of G. morsitans Odor receptor (GmmOr) gene expression in the antenna. We devise a new version of the "empty neuron" heterologous expression system, and use it to functionally express several GmmOrs in a mutant olfactory receptor neuron (ORN) of Drosophila. GmmOr35 responds to 1-hexen-3-ol, an odorant found in human emanations, and also alpha-pinene, a compound produced by malarial parasites. Another receptor, GmmOr9, which is expressed in the sensory pit, responds to acetone, 2-butanone and 2-propanol. We confirm by electrophysiological recording that neurons of the sensory pit respond to these odorants. Acetone and 2-butanone are strong attractants long used in the field to trap tsetse. We find that 2-propanol is also an attractant for both G. morsitans and the related species G. fuscipes, a major vector of African sleeping sickness. The results identify 2-propanol as a candidate for an environmentally friendly and practical tsetse attractant. Taken together, this work characterizes the olfactory system of a highly distinct kind of fly, and it provides an approach to identifying new agents for controlling the fly and the devastating diseases that it carries.


Assuntos
Receptores Odorantes/genética , Atrativos Sexuais/genética , Olfato/genética , Tripanossomíase Africana/genética , 2-Propanol/química , Animais , Drosophila melanogaster/genética , Drosophila melanogaster/parasitologia , Humanos , Óleos/química , Neurônios Receptores Olfatórios/metabolismo , Neurônios Receptores Olfatórios/parasitologia , Atrativos Sexuais/química , Trypanosoma/genética , Trypanosoma/patogenicidade , Tripanossomíase Africana/parasitologia , Moscas Tsé-Tsé/genética , Moscas Tsé-Tsé/patogenicidade
18.
Infect Genet Evol ; 71: 108-115, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30914286

RESUMO

Infection by Trypanosoma brucei gambiense is characterized by a wide array of clinical outcomes, ranging from asymptomatic to acute disease and even spontaneous cure. In this study, we investigated the association between macrophage migrating inhibitory factor (MIF), an important pro-inflammatory cytokine that plays a central role in both innate and acquired immunity, and disease outcome during T. b. gambiense infection. A comparative expression analysis of patients, individuals with latent infection and controls found that MIF had significantly higher expression in patients (n = 141; 1.25 ±â€¯0.07; p < .0001) and latent infections (n = 25; 1.23 ±â€¯0.13; p = .0005) relative to controls (n = 46; 0.94 ±â€¯0.11). Furthermore, expression decreased significantly after treatment (patients before treatment n = 33; 1.40 ±â€¯0.18 versus patients after treatment n = 33; 0.99 ±â€¯0.10, p = .0001). We conducted a genome wide eQTL analysis on 29 controls, 128 cases and 15 latently infected individuals for whom expression and genotype data were both available. Four loci, including one containing the chemokine CXCL13, were found to associate with MIF expression. Genes at these loci are candidate regulators of increased expression of MIF after infection. Our study is the first data demonstrating that MIF expression is elevated in T. b. gambiense-infected human hosts but does not appear to contribute to pathology.


Assuntos
Quimiocina CXCL13/metabolismo , Fatores Inibidores da Migração de Macrófagos/metabolismo , Locos de Características Quantitativas/imunologia , Trypanosoma brucei gambiense/patogenicidade , Tripanossomíase Africana/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Quimiocina CXCL13/genética , Criança , Pré-Escolar , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Guiné , Humanos , Fatores Inibidores da Migração de Macrófagos/genética , Masculino , Pessoa de Meia-Idade , Tripanossomíase Africana/imunologia , Tripanossomíase Africana/patologia , Adulto Jovem
19.
PLoS Negl Trop Dis ; 13(3): e0007283, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30908482

RESUMO

BACKGROUND: Human African Trypanosomiasis (HAT) is a neglected tropical disease caused by infections due to Trypanosoma brucei subspecies. In addition to the well-established environmental and behavioural risks of becoming infected, there is evidence for a genetic component to the response to trypanosome infection. We undertook a candidate gene case-control study to investigate genetic associations further. METHODOLOGY: We genotyped one polymorphism in each of seven genes (IL1A, IL1RN, IL4RN, IL6, HP, HPR, and HLA-G) in 73 cases and 250 controls collected from 19 ethno-linguistic subgroups stratified into three major ethno-linguistic groups, 2 pooled ethno-linguistic groups and 11 ethno-linguistic subgroups from three Cameroonian HAT foci. The seven polymorphic loci tested consisted of three SNPs, three variable numbers of tandem repeat (VNTR) and one INDEL. RESULTS: We found that the genotype (TT) and minor allele (T) of IL1A gene as well as the genotype 1A3A of IL1RN were associated with an increased risk of getting Trypanosoma brucei gambiense and develop HAT when all data were analysed together and also when stratified by the three major ethno-linguistic groups, 2 pooled ethno-linguistic subgroups and 11 ethno-linguistic subgroups. CONCLUSION: This study revealed that one SNP rs1800794 of IL1A and one VNTR rs2234663 of IL1RN were associated with the increased risk to be infected by Trypanosoma brucei gambiense and develop sleeping sickness in southern Cameroon. The minor allele T and the genotype TT of SNP rs1800794 in IL1A as well as the genotype 1A3A of IL1RN rs2234663 VNTR seem to increase the risk of getting Trypanosoma brucei gambiense infections and develop sleeping sickness in southern Cameroon.


Assuntos
Doenças Negligenciadas/genética , Polimorfismo de Nucleotídeo Único/genética , Trypanosoma brucei gambiense/fisiologia , Tripanossomíase Africana/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Alelos , Camarões/epidemiologia , Estudos de Casos e Controles , Criança , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Doenças Negligenciadas/epidemiologia , Doenças Negligenciadas/parasitologia , Risco , Tripanossomíase Africana/epidemiologia , Tripanossomíase Africana/parasitologia , Adulto Jovem
20.
Protein J ; 38(1): 50-57, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30604107

RESUMO

Trypanosoma brucei is the etiological agent of African trypanosomiasis responsible for human and animal infections. T. brucei is transmitted by infected tsetse flies. There is no vaccine for the disease and drugs available for treatment are inefficient and high toxicity. In this context, it is a priority to find antigenic targets suitable for the development of new diagnostic tools, drugs and vaccines. In this work, we report that mice infected with T. b. brucei produce antibodies against trans-sialidase recombinant protein (TS). In addition, we also demonstrate that bloodstream T. b. brucei express messenger RNA related to the TS gene. Collectively, our data strongly suggest that bloodstream forms of T. b. brucei also express the TS gene, that to date was described only in the procyclic forms of the T. b. brucei. In conclusion, these results highlight the importance of TS protein as a possible antigen target during infection caused by T. b. brucei.


Assuntos
Regulação Enzimológica da Expressão Gênica , Neuraminidase/sangue , Proteínas de Protozoários/sangue , Trypanosoma brucei brucei/enzimologia , Tripanossomíase Africana/sangue , Animais , Biomarcadores/sangue , Humanos , Camundongos , Neuraminidase/genética , Proteínas de Protozoários/genética , Trypanosoma brucei brucei/genética , Tripanossomíase Africana/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...