Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 304
Filtrar
1.
Microb Pathog ; 186: 106489, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38061666

RESUMO

Trichinellosis caused by Trichinella spiralis (T. spiralis) is a zoonotic disease that poses a substantial risk to human health. At present, vaccines used to prevent trichinellosis are effective, but the production of antibody levels and immunogenicity are low. Adjuvants can increase antibody levels and vaccine immunogenicity. As a result, it is critical to develop an effective adjuvant for the T. spiralis vaccine. Recent research has shown that traditional Chinese medicine polysaccharides with low-toxicity and biodegradability can act as adjuvants in vaccines. In this study, BALB/c mice were orally inoculated with a recombinant Lactobacillus plantarum (L. plantarum) vaccine expressing the T. spiralis cathepsin F-like protease 1 gene (rTs-CPF1), which was given three times at 10-day intervals. Lycium barbarum polysaccharide (LBP) was administered orally for 37 days. At 37 days after the first immunization, mice were infected with 350 T. spiralis muscle larvae (ML). Specific IgG and sIgA antibody levels against the T. spiralis CPF1 protein were increased in mice immunized with rTs-CPF1+LBP compared to those immunized with rTs-CPF1 alone. Furthermore, LBP increased IFN-γ and IL-4 expression levels, and the number of intestinal and intramuscular worms was significantly reduced in the rTs-CPF1+LBP group compared to that in the rTs-CPF1 group. In the rTs-CPF1+LBP group, the reduction rates of adult worms and muscle larvae were 47.31 % and 68.88 %, respectively. To summarize, LBP promotes the immunoprotective effects of the T. spiralis vaccine and may be considered as a novel adjuvant in parasitic vaccines.


Assuntos
Lactobacillus plantarum , Trichinella spiralis , Triquinelose , Camundongos , Humanos , Animais , Trichinella spiralis/genética , Triquinelose/prevenção & controle , Triquinelose/parasitologia , Catepsina F , Lactobacillus plantarum/genética , Antígenos de Helmintos/genética , Vacinas Sintéticas , Adjuvantes Imunológicos/farmacologia , Camundongos Endogâmicos BALB C
2.
Res Vet Sci ; 165: 105075, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37931574

RESUMO

Previous studies showed that recombinant Trichinella spiralis galectin (rTsgal) promoted larval invasion of gut epithelial cells, while anti-rTsgal antibodies inhibited the invasion. Galactomannan (GM) is a polysaccharide capable of regulating immune response. The aim of this study was to evaluate protective immunity induced by rTsgal immunization and the potential of GM as a novel adjuvant. The results showed that vaccination of mice with rTsgal+ISA201 and rTsgal+GM elicited a Th1/Th2 immune response. Mice immunized with rTsgal+ISA201 and rTsgal+GM exhibited significantly higher levels of serum anti-rTsgal antibodies, mucosal sIgA and cellular immune responses, but level of specific antibodies and cytokines of rTsgal+GM group was lower than the rTsgal+ISA201 group. Immunization of mice with rTsgal+ISA201 and rTsgal+GM showed a 50.5 and 40.16% reduction of intestinal adults, and 52.04 and 37.53% reduction of muscle larvae after challenge. Moreover, the numbers of goblet cells and expression level of mucin 2, Muc5ac and pro-inflammatory cytokines (TNF-α and IL-1ß) in gut tissues of vaccinated mice were obviously decreased, while Th2 inducing cytokine (IL-4) expression was evidently increased. Galactomannan enhanced protective immunity, alleviated intestinal and muscle inflammation of infected mice. The results indicated that rTsgal+ISA201 vaccination induced a more prominent gut local as well as systemic immune response and protection compared to rTsgal+GM vaccination. The results suggested that Tsgal could be considered as a candidate vaccine target against Trichinella infection and galactomannan might be a potential novel candidate adjuvant of anti-Trichinella vaccines.


Assuntos
Trichinella spiralis , Triquinelose , Vacinas , Animais , Camundongos , Larva , Galectinas , Triquinelose/prevenção & controle , Triquinelose/veterinária , Adjuvantes Imunológicos , Citocinas , Camundongos Endogâmicos BALB C , Anticorpos Anti-Helmínticos
3.
PLoS Negl Trop Dis ; 16(11): e0010929, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36445875

RESUMO

BACKGROUND: Trichinella spiralis is a foodborne parasitic nematode which is a serious risk to meat safety. Development of anti-Trichinella vaccine is needed to control Trichinella infection in food animals. In this study, two novel T. spiralis genes (calreticulin and serine protease 1.1) in combination were used to construct oral DNA vaccines, and their induced protective immunity was evaluated in a murine model. METHODOLOGY/PRINCIPAL FINDINGS: TsCRT+TsSP1.1, TsCRT and TsSP1.1 DNA were transformed into attenuated Salmonella typhimurium ΔcyaSL1344. Oral vaccination of mice with TsCRT+TsSP1.1, TsCRT and TsSP1.1 DNA vaccines elicited a gut local mucosal sIgA response and systemic Th1/Th2 mixed response. Oral vaccination with TsCRT+TsSP1.1 induced obviously higher level of serum specific antibodies, mucosal sIgA and cellular immune response than either of single TsCRT or TsSP1.1 DNA vaccination. Oral vaccination of mice with TsCRT+TsSP1.1 exhibited a 53.4% reduction of enteral adult worms and a 46.05% reduction of muscle larvae, conferred a higher immune protection than either of individual TsCRT (44.28 and 42.46%) or TsSP1.1 DNA vaccine (35.43 and 29.29%) alone. Oral vaccination with TsCRT+TsSP1.1, TsCRT and TsSP1.1 also obviously ameliorated inflammation of intestinal mucosa and skeletal muscles of vaccinated mice after challenge. CONCLUSIONS: TsCRT and TsSP1.1 might be regarded the novel potential targets for anti-Trichinella vaccines. Attenuated Salmonella-delivered DNA vaccine provided a prospective approach to control T. spiralis infection in food animals.


Assuntos
Trichinella spiralis , Triquinelose , Vacinas de DNA , Animais , Camundongos , Calreticulina , Imunoglobulina A Secretora , Camundongos Endogâmicos BALB C , Salmonella typhimurium/genética , Trichinella spiralis/genética , Vacinação , Vacinas Atenuadas/genética , Vacinas de DNA/genética , Triquinelose/imunologia , Triquinelose/prevenção & controle , Serina Endopeptidases
4.
J Helminthol ; 96: e71, 2022 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-36189624

RESUMO

Trichinellosis is an important worldwide foodborne zoonosis. The gold standard test to detect Trichinella spp. larvae in muscle samples of animals intended for human consumption is the artificial digestion method. Handling and dispensing of conventional pepsin powder present significant safety risks for analysts. The use of pepsin powder that is resistant to aerosolization should alleviate these safety concerns. The aim of this study was to compare the efficacy of an aerosol-resistant pepsin powder to conventional pepsin powder in the artificial digestion method. Proficiency samples of pork diaphragm containing specific numbers of viable Trichinella spiralis larvae were tested in two laboratories. The results revealed that aerosol-resistant pepsin was simple, effective and convenient to use, and showed good solubility and larval recovery that met the requirements of the European Union regulation EU 2015/1375. Overall, the efficacy of the aerosol-resistant pepsin was comparable to the conventional pepsin and safer for analysts.


Assuntos
Trichinella spiralis , Trichinella , Triquinelose , Aerossóis , Animais , Digestão , Inspeção de Alimentos/métodos , Parasitologia de Alimentos , Humanos , Larva , Carne , Pepsina A , Pós , Triquinelose/diagnóstico , Triquinelose/prevenção & controle , Triquinelose/veterinária
5.
Exp Parasitol ; 241: 108358, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36030886

RESUMO

Nematode infections affect a significant percentage of the human population worldwide, especially in developing countries. There are a small number of drugs available to treat these infections, with variable outcomes. Therefore, the potential use of probiotics to help control parasitic infections has emerged as a suitable option. The main goal of this work was to assess the antinematodic effect of the probiotic Enterococcus faecalis CECT7121 (EFCECT7121) in vitro and in vivo, using Trichinella spiralis as a nematode model of infection. The in vitro assay showed a reduction in T. spiralis larvae viability of 31.6% when compared with the control group (6.3%) after 48 h incubation with EFCECT7121. Nevertheless, the isolated antimicrobial peptide AP7121 when inoculated at different concentrations did not reveal any larvicidal effect. Different EFCECT7121 treatment schemes in mice were evaluated, and the reduction of the enteral and parenteral burden of T. spiralis was determined. In addition, the protective effect of EFCECT7121 combined with the conventional anthelmintic albendazole (ABZ, 5 mg/kg) was also assessed. The oral administration of EFCECT7121 previous T. spiralis infection produced a reduction in the larvae per gram (LPG) of mice muscle tissue ranging from 32.8 to 47.9% on the 28th day post-infection. ABZ alone and the combination EFCECT7121 + ABZ produced a reduction of the LPG of muscle tissue of 62 and 60.7%, respectively. Results obtained in the current work support the hypothesis that probiotics such as EFCECT7121 have an antinematodic effect, and their combination with conventional anthelmintic drugs may result useful for improving clinical and parasitological outcomes.


Assuntos
Anti-Helmínticos , Infecções por Nematoides , Trichinella spiralis , Triquinelose , Animais , Anti-Helmínticos/farmacologia , Anti-Helmínticos/uso terapêutico , Enterococcus faecalis , Humanos , Larva , Camundongos , Infecções por Nematoides/tratamento farmacológico , Triquinelose/tratamento farmacológico , Triquinelose/parasitologia , Triquinelose/prevenção & controle
6.
Acta Trop ; 226: 106263, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34879232

RESUMO

Elastase belongs to the serine protease family. Previous studies showed that Trichinella spiralis elastase (TsE) was highly expressed in intestinal infective larvae (IIL). Recombinant TsE (rTsE) promoted the larval intrusion of enteral epithelium cells (IECs), whereas anti-rTsE antibodies and siRNA impeded larval intrusion. Subcutaneous vaccination of mice with rTsE showed a partial protective immunity, suggesting that TsE might be a promising vaccine target against Trichinella infection. In this study, complete TsE cDNA sequence was cloned into pcDNA3.1, and the rTsE DNA was transformed into attenuated S. typhimurium strain ΔcyaSL1344. Oral vaccination of mice with TsE DNA elicited a systemic Th1/Th2/Treg mixed immune response and gut local mucosal sIgA response. Immunized mice exhibited a significant immune protection against T. spiralis larval challenge, as demonstrated by a 52.48% reduction of enteral adult worms and a 69.43% reduction of muscle larvae. The protection might be related to the TsE-induced production of intestinal mucus, specific anti-TsE sIgA and IgG, and secretion of IFN-γ, IL-2, IL-4 and IL-10, which protected gut mucosa from larval intrusion, suppressed worm development and impeded female reproduction. The results demonstrated that attenuated Salmonella-delivered TsE DNA vaccine provided a prospective strategy for the control of Trichinella infection in food animals.


Assuntos
Trichinella spiralis , Triquinelose , Vacinas de DNA , Animais , Anticorpos Anti-Helmínticos , Feminino , Imunização , Camundongos , Camundongos Endogâmicos BALB C , Elastase Pancreática , Estudos Prospectivos , Salmonella typhimurium/genética , Trichinella spiralis/genética , Triquinelose/prevenção & controle , Vacinação , Vacinas de DNA/genética
7.
Int Immunopharmacol ; 101(Pt A): 108184, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34601334

RESUMO

Trichinellosis is a foodborne zoonosis caused by Trichinella spiralis (T. spiralis) that not only causes considerable economic losses for the global pig breeding and food industries, but also seriously threats the health of human. Therefore, it is very necessary to develop an effective vaccine to prevent trichinellosis. In this study, the invasive Lactobacillus plantarum (L. plantarum) expressing fibronectin-binding protein A (FnBPA) was served as a live bacterial vector to deliver DNA to the host to produce a novel oral DNA vaccine. Co-expressing T. spiralis SS1 and murine interleukin-4 (mIL-4) of DNA vaccine were constructed and subsequently delivered to intestinal epithelial cells via invasive L. plantarum. At 10 days after the third immunization, the experimental mice were challenged with 350 T. spiralis infective larvae. The results found that the mice orally vaccinated with invasive L. plantarum harboring pValac-SS1/pSIP409-FnBPA not only stimulated the production of anti-SS1-specific IgG, Th1/Th2 cell cytokines, and secreted(s) IgA but also decreased worm burden and intestinal damage. However, the mice inoculated with invasive L. plantarum co-expressing SS1 and mIL-4 (pValac-SS1-IL-4/pSIP409-FnBPA) induced the highest protective immune response against T. spiralis infection. The DNA vaccine delivered by invasive L. plantarum provides a novel idea for the prevention of T. spiralis infection.


Assuntos
Vacinas Bacterianas/uso terapêutico , Endodesoxirribonucleases/genética , Proteínas de Helminto/genética , Interleucina-4/genética , Lactobacillus plantarum/imunologia , Vacinas Baseadas em Ácido Nucleico/uso terapêutico , Trichinella spiralis/imunologia , Triquinelose/prevenção & controle , Administração Oral , Animais , Western Blotting , Endodesoxirribonucleases/imunologia , Imunofluorescência , Proteínas de Helminto/imunologia , Interleucina-4/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Triquinelose/imunologia , Vacinas Sintéticas/uso terapêutico
8.
PLoS Negl Trop Dis ; 15(10): e0009865, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34699522

RESUMO

BACKGROUND: Trichinellosis is a serious zoonotic disease distributed around the world. It is needed to develop a safe, effective and feasible anti-Trichinella vaccine for prevention and control of trichinellosis. The aim of this study was to construct a recombinant Lactobacillus plantarum encoding Trichinella spiralis inorganic pyrophosphatase (TsPPase) and investigate its immune protective effects against T. spiralis infection. METHODOLOGY/PRINCIPAL FINDINGS: The growth of recombinant L. plantarum was not affected by TsPPase/pSIP409-pgsA' plasmid, and the recombinant plasmid was inherited stably in bacteria. Western blot and immunofluorescence assay (IFA) indicated that the rTsPPase was expressed on the surface of recombinant L. plantarum. Oral vaccination with rTsPPase induced higher levels of specific serum IgG, IgG1, IgG2a and mucosal secretory IgA (sIgA) in BALB/c mice. ELISA analysis revealed that the levels of IFN-γ and IL-4 released from spleen, mesenteric lymph nodes and Peyer's patches were evidently increased at 2-4 weeks following vaccination, compared to MRS (De Man, Rogosa, Sharpe) medium control group (P < 0.05). Immunization of mice with rTsPPase exhibited a 67.18, 54.78 and 51.91% reduction of intestinal infective larvae, adult worms and muscle larvae at 24 hours post infection (hpi), 6 days post infection (dpi) and 35 dpi, respectively (P < 0.05), and the larval molting and development was significantly inhibited by 45.45% at 24 hpi, compared to the MRS group. CONCLUSIONS: TsPPase plays a crucial role in T. spiralis molting and development, oral vaccination with rTsPPase induced a significant local mucosal sIgA response and systemic Th1/Th2 immune response, and immune protection against T. spiralis infection in BALB/c mice.


Assuntos
Proteínas de Helminto/administração & dosagem , Pirofosfatase Inorgânica/administração & dosagem , Lactobacillus plantarum/genética , Trichinella spiralis/imunologia , Triquinelose/prevenção & controle , Vacinas/administração & dosagem , Administração Oral , Animais , Anticorpos Anti-Helmínticos/imunologia , Feminino , Proteínas de Helminto/genética , Proteínas de Helminto/imunologia , Humanos , Imunoglobulina G/imunologia , Pirofosfatase Inorgânica/genética , Pirofosfatase Inorgânica/imunologia , Lactobacillus plantarum/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Trichinella spiralis/enzimologia , Trichinella spiralis/genética , Triquinelose/imunologia , Triquinelose/parasitologia , Vacinação , Vacinas/genética , Vacinas/imunologia
9.
Ann Parasitol ; 67(2): 195-202, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34592086

RESUMO

Trichinellosis is a common parasitic zoonosis. Complications of anthelmintic drugs combined with steroids raise the urge of alternative protective ways. The study aimed to investigate the protective effects of Lactobacillus acidophilus probiotic on both Trichinella spiralis adults and larvae in experimental animal models. Thirty-six male BALB/c mice were divided into 3 groups: negative control Group (G I); Group (G II) mice were inoculated orally by 500 Trichinella spiralis larvae; tested Group (G III) mice were prophylactic by an oral dose of Lactobacillus acidophilus in commercially available form for seven consecutive days, before infection. Mature worms and encysted larvae were counted on the 5th and 21st day post-infection (dpi), respectively. IL-1, IL-6, IL-10 and TNF-α concentrations were estimated at 5th and 21st dpi of all groups. Significant reductions in mean worms and larvae burden were detected by 62.1% and 73.5% in the prophylactic group compared to the non-prophylactic group. The cytokine profiles were revealed IL-1 and IL-6 up-regulation compared to IL-10 and TNF-α down-regulation in the tested group compared to other groups. Although Lactobacillus acidophilus failed to achieve complete eradication of Trichinella spiralis adults and larvae, it showed powerful effects in reducing parasites and cytokines burdens.


Assuntos
Probióticos , Trichinella spiralis , Triquinelose , Animais , Estudos de Viabilidade , Lactobacillus acidophilus , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Triquinelose/prevenção & controle
10.
Acta Trop ; 224: 106125, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34508714

RESUMO

Trichinella spiralis is a major foodborne zoonotic parasitic nematode which has a serious threat to meat food safety. Development of anti-Trichinella vaccine is requisite for control and elimination of Trichinella infection in food animals to ensure meat safety. Aminopeptidase P (TsAPP) and cathepsin X (TsCX) are two novel proteins identified in T. spiralis intestinal infectious L1 larvae (IIL1). The objective of this study was to investigate the protective immunity elicited by immunization with TsAPP and TsCX alone and TsAPP-TsCX in combination in a mouse model. The results demonstrate that subcutaneous vaccination of mice with rTsAPP, rTsCX or rTsAPP + rTsCX elicited a systemic humoral response (high levels of serum IgG, IgG1/IgG2a and IgA) and significant local gut mucosal sIgA responses. The vaccination with rTsAPP, rTsCX or rTsAPP + rTsCX also induced a systemic and local mixed Th1/Th2 response, as demonstrated by clear elevation levels of IFN-γ and IL-4 in vaccinated mice. Vaccination of mice with rTsAPP+rTsCX exhibited a 63.99 % reduction of intestinal adult worms and 68.50% reduction of muscle larva burdens, alleviated inflammation of intestinal mucosal and muscle tissues, and provided a higher immune protection than that of vaccination with rTsAPP or rTsCX alone. The results demonstrated that TsAPP and TsCX might be considered novel candidate target molecules for anti-Trichinella vaccines.


Assuntos
Trichinella spiralis , Triquinelose , Aminopeptidases , Animais , Anticorpos Anti-Helmínticos , Antígenos de Helmintos , Camundongos , Camundongos Endogâmicos BALB C , Triquinelose/prevenção & controle , Vacinação
11.
Vet Parasitol ; 298: 109556, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34419708

RESUMO

Trichinellosis is a very important food-borne parasitic disease, that seriously endangers animal husbandry and food safety. Therefore, it is necessary to develop a safe and effective vaccine against Trichinella spiralis infection. In this experiment, invasive Lactobacillus plantarum carrying the FnBPA gene served as a live bacterial vector to deliver nucleic acids to the host to produce a novel oral nucleic acid vaccine. Coexpression of the T. spiralis cathepsin F-like protease 1 gene (TsCPF1) and murine IL-4 (mIL-4) by the nucleic acid vaccine was constructed and subsequently delivered to intestinal epithelial cells via invasive L. plantarum. Thirty-seven days after the first immunization, the experimental mice were challenged with 350 T. spiralis infective larvae by oral gavage. The results showed that mice orally immune-stimulated with invasive L. plantarum pValac-TsCPF1/pSIP409-FnBPA not only produce anti-TsCPF1-specific IgG antibodies, sIgA, Th1/Th2 cytokine distinctly increased but also intestinal damage and worm burden relieved compare to non-invasive TsCPF1 group (pValac-TsCPF1/pSIP409). Most notably, experimental mice immunized with invasive L. plantarum coexpressing TsCPF1 and mIL-4 (pValac-TsCPF1-IL-4/pSIP409-FnBPA) exhibited the highest protection efficiency against T. spiralis infection. The above results reveal that invasive L. plantarum-expressing the FnBPA protein improved mucosal and cellular immunity and enhanced resistance to T. spiralis. The nucleic acid vaccine delivered by invasive L. plantarum described in this study offers a novel idea for the prevention of T. spiralis.


Assuntos
Genes de Helmintos , Imunidade , Lactobacillus plantarum , Trichinella spiralis , Triquinelose , Vacinas de DNA , Animais , Genes de Helmintos/genética , Genes de Helmintos/imunologia , Interleucina-4/imunologia , Lactobacillus plantarum/genética , Lactobacillus plantarum/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Trichinella spiralis/imunologia , Triquinelose/prevenção & controle , Triquinelose/veterinária , Vacinas de DNA/administração & dosagem , Vacinas de DNA/imunologia
12.
Acta Trop ; 222: 106071, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34331898

RESUMO

A vaccine against Trichinella spiralis infection is urgently needed to interrupt its transmission from domestic animals to humans. However, no vaccine against T. spiralis is currently available. Our previous study demonstrated that the use of the 43-kDa glycoprotein present in excretory-secretory (ES) proteins of muscle larvae (ML) as an intramuscular DNA vaccine led to a 52.1% protection rate against T. spiralis infection. Attenuated Salmonella strains have the advantage of eliciting mucosal immunity, which is important for controlling T. spiralis infections at the intestinal stage and can be provided as vaccines via oral or intranasal routes. Therefore, in this study, complete 43-kDa glycoprotein (Ts43) sequences of T. spiralis were cloned into the vector pYA3681, and the recombinant plasmid pYA3681-Ts43 was transformed into the attenuated Salmonella typhimurium strain χ11802. The results showed that oral vaccination of mice with attenuated Salmonella carrying the recombinant plasmid pYA3681-Ts43 induced an evident elevation of the local intestinal mucosal sIgA and serum IgG antibody responses. The flow cytometry results showed that the percentages of CD4+ T cells and secreted IFN-γ, IL-4, and IL-17A in CD4+ T cells were significantly increased in the spleen and mesenteric lymph node (MLN) lymphocytes of the vaccinated groups. In addition, increased levels of the IFN-γ, IL-4, and IL-17A cytokines were also observed in the serum of the immunized groups. The above immune response results in the immunized groups demonstrated that protective immunity was elicited in this study. Finally, vaccinated mice demonstrated a significant 45.9% reduction in ML burden after infection with T. spiralis. This study demonstrated that oral vaccination with Ts43 delivered by attenuated Salmonella elicited local and systemic concurrent Th1/Th2/Th17 immune responses and provided partial protection against T. spiralis infection in BALB/c mice. This is a prospective strategy for the prevention and control of trichinellosis.


Assuntos
Antígenos de Helmintos , Triquinelose , Vacinas de DNA , Animais , Anticorpos Anti-Helmínticos , Antígenos de Helmintos/genética , Antígenos de Helmintos/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Salmonella typhimurium , Trichinella spiralis/genética , Trichinella spiralis/imunologia , Triquinelose/prevenção & controle , Vacinação
13.
Acta Trop ; 220: 105947, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33971160

RESUMO

Trichinellosis is a significant food-borne zoonotic parasitic disease caused by parasite Trichinella. Given the side effects of anti-Trichinella drugs (e.g., Mebendazole) aroused in the course of treatments, an effective vaccine against the parasite is called for. The therapies available to date are in most instances targeting a single stage of Trichinella, resulting in an incomplete protective immunity against the parasite in terms of the complexity of its developmental stages. In this study, a recombinant dual-expression double anchor vector NC8-pLp-TsNd-S-pgsA'-gp43 was constructed carrying two antigen genes from Trichinella spiralis (T. spiralis), encoding the gp43 and T. spiralis Nudix hydrolase (TsNd) proteins which were mainly expressed in muscle larva (ML) and intestinal infective larva stages of the parasite respectively. These two proteins were to be expressed by Lactobacillus plantarum NC8 (L. plantarum NC8) which was designed to express the two anchored peptides, a truncated poly-γ-glutamic acid synthetase A (pgsA') and the surface layer protein of Lactobacillus acidophilus (SlpA), on its surface for attaching expressed foreign proteins. Oral immunization with the above recombinant vaccine induced higher levels of specific serum IgG and mucosal secretory IgA (SIgA) in BALB/c mice. In addition, cytokines, interferon-γ (IFN- γ), interleukin-4 (IL-4) and IL-17 released by lymphocytes, and CD4+ levels displayed on the surfaces of splenic and mesenteric lymph cells were significantly enhanced by the vaccination. Moreover, after larval challenges, a 75.67 % reduction of adult worms (AW) at 7 days post-infection (dpi) and 57.14 % reduction of ML at 42 dpi were observed in mice immunized with the recombinant vaccine. Furthermore, this oral vaccination reduced the counts of encysted larvae presented in tongue and masseter muscles after infected with T. spiralis in mice. The overall results demonstrated that the recombinant vaccine developed in this study could induce specific humoral, mucosal, and cellular immune responses, and provides protections against different stages (adult worms and muscle larva) of T. spiralis infections in BALB/c mice, which could make it a promising oral vaccine candidate against trichinellosis.


Assuntos
Lactobacillus plantarum/genética , Pirofosfatases/genética , Trichinella spiralis/imunologia , Triquinelose/prevenção & controle , Vacinação , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Administração Oral , Animais , Expressão Gênica , Imunidade Celular , Camundongos , Camundongos Endogâmicos BALB C , Trichinella spiralis/fisiologia , Nudix Hidrolases
14.
Vet Parasitol ; 297: 109069, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32156436

RESUMO

Trichinellosis caused by Trichinella spiralis (T. spiralis) is an important public health problem. DNase II is an acidic endonuclease that catalyzes the degradation of DNA into oligonucleotides. DNase II-7 has been detected at the adult stage of T. spiralis and has been examined in excretory/secretory products. Previous studies have indicated that the DNase II-7 recombinant protein has a high rate of protection against T. spiralis infection in mice. In the present study, the protective effect of DNase II-7 recombinant protein against T. spiralis infection in Large White pigs was further explored. The humoral and cellular immune responses to the DNase II-7 recombinant protein were evaluated, including the dynamic trends of specific IgG, IgG1, IgG2a and IgM antibodies levels, as well as the levels of Th1 (IFN-γ and IL-2) and Th2 (IL-10 and IL-4) cytokines in serum. Our results showed that a Th1 dominated Th1/Th2 mixed immune response was induced by the DNase II-7 recombinant protein for all the time or a short period after vaccination. And the DNase II-7 recombinant protein induced partial protection against T. spiralis infection in pigs, compared to the control group. Our results showed that the DNase II-7 recombinant protein group displayed a 45.7 % reduction in the muscle larvae burden five weeks after being challenged. This study suggested that DNaseII-7 recombinant protein could be used as a potential candidate vaccine against T. spiralis infection in pigs.


Assuntos
Doenças dos Roedores , Doenças dos Suínos , Trichinella spiralis , Triquinelose , Animais , Anticorpos Anti-Helmínticos , Antígenos de Helmintos , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Recombinantes , Suínos , Doenças dos Suínos/prevenção & controle , Triquinelose/prevenção & controle , Triquinelose/veterinária , Vacinação/veterinária
15.
PLoS Negl Trop Dis ; 14(11): e0008842, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33206649

RESUMO

Trichinella spiralis muscle stage larvae (mL1) produce excretory-secreted products (ESPs), a complex mixture of protein, which are believed to be important for establishing or maintaining an infection niche within skeletal muscle and the intestine. Studies of both whole ESPs and individual cloned proteins have shown that some ESPs are potent immunogens capable of eliciting protective immune responses. Here we describe two novel proteins, Secreted from Muscle stage Larvae SML-4 and SML-5 which are 15 kDa and 12 kDa respectively. The genes encoding these proteins are highly conserved within the Trichinellids, are constituents of mL1 ESP and localized in the parasite stichosome. While SML-5 is only expressed in mL1 and early stages of adult nematode development, SML-4 is a tyvosylated glycoprotein also produced by adult nematodes, indicating it may have a function in the enteral phase of the infection. Vaccination with these proteins resulted in an impaired establishment of adult stages and consequently a reduction in the burden of mL1 in BALB/c mice. This suggests that both proteins may be important for establishment of parasite infection of the intestine and are prophylactic vaccine candidates.


Assuntos
Anticorpos Anti-Helmínticos/imunologia , Antígenos de Helmintos/imunologia , Proteínas de Helminto/imunologia , Vacinas Protozoárias/imunologia , Trichinella spiralis/imunologia , Triquinelose/prevenção & controle , Animais , Feminino , Larva/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Músculos/parasitologia , Ratos , Ratos Sprague-Dawley , Células Th1/imunologia , Células Th2/imunologia , Triquinelose/imunologia , Vacinação , Vacinas Sintéticas/imunologia
16.
Parasitol Res ; 119(12): 4113-4122, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32979104

RESUMO

To ensure that meat from livestock and game is safe for human consumption, European legislation lays down rules for mandatory testing. Helminth larvae are a category of zoonotic foodborne pathogens that can contaminate meat. Among helminths, the only zoonotic nematode regulated in Europe regarding meat inspection is Trichinella spp.. It is precisely during Trichinella testing that other potentially zoonotic larvae can be found. Due to current lack of tools, their identification is often very complicated. Nematode larvae other than Trichinella, recovered from artificial digestions of pig and wild boar muscles from France and Germany, were subjected to a newly developed two-step identification scheme, which includes both morphological examination and molecular assays. The first step is a general orientation towards a broad taxonomic group; the second step consists of targeted identification based on the results of first step. Different parasites were identified, some of which were not zoonotic such as Metastrongylus spp. and Angiostrongylus vasorum, but others are known to be zoonotic such as Toxocara cati, Ascaris suum, and Uncinaria stenocephala. The strategy is efficient for the identification of nematode larvae recovered from muscles but could also be applied for larvae from other sources.


Assuntos
Ancylostomatoidea/isolamento & purificação , Angiostrongylus/isolamento & purificação , Doenças Transmitidas por Alimentos/parasitologia , Carne/parasitologia , Metastrongyloidea/isolamento & purificação , Doenças dos Suínos/parasitologia , Trichinella/isolamento & purificação , Ancylostomatoidea/genética , Angiostrongylus/classificação , Angiostrongylus/genética , Animais , Ascaris suum/genética , Ascaris suum/isolamento & purificação , Digestão , França , Alemanha , Humanos , Larva , Metastrongyloidea/classificação , Metastrongyloidea/genética , Músculos/parasitologia , Reação em Cadeia da Polimerase , Sus scrofa/parasitologia , Suínos/parasitologia , Toxocara/classificação , Toxocara/genética , Toxocara/isolamento & purificação , Trichinella/classificação , Trichinella/genética , Triquinelose/parasitologia , Triquinelose/prevenção & controle
17.
PLoS Negl Trop Dis ; 14(9): e0008632, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32976511

RESUMO

There is an urgent need for the development of new, improved vaccine adjuvants against T. spiralis infection. Polysaccharides are effective, safe, and biodegradable as adjuvant. In our study, we first observed the protective efficacy of lentinan as adjuvant against helminth T. spiralis infection. Recombinant T. spiralis Serpin (rTs-Serpin) immunoscreened from a cDNA library of T. spiralis, as a vaccine, protect host against Trichinella infection. The reduction rate of helminth burden of rTs-Serpin+lentinan-immunized mice was significantly increased compared with rTs-Serpin+FCA -immunized mice. rTs-Serpin+lentinan induced IgG1-dominant immune response and higher levels of IFN-γ and IL-4. rTs-Serpin+lentinan displayed a lower reduction rate of parasite burden in NLRP3-/- mice than that in WT mice and lower level of IgG1 than that in WT mice. The level of IL-4, but not IFN-γ, from NLRP3-/- mice immunized by rTs-Serpin+lentinan was significantly lower than that from WT mice, suggesting that NLRP3 is associated with rTs-Serpin+lentinan -triggering Th2 protective immunity against T. spiralis infection. In summary, we revealed that lentinan was a novel adjuvant against T. spiralis infection via NLRP3. NLRP3 therefore represents an important target for adjuvant discovery and the control of T. spiralis infection.


Assuntos
Adjuvantes Imunológicos , Lentinano/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Trichinella spiralis/efeitos dos fármacos , Trichinella spiralis/imunologia , Triquinelose/imunologia , Vacinas/imunologia , Animais , Anticorpos Anti-Helmínticos , Antígenos de Helmintos/genética , Antígenos de Helmintos/imunologia , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Imunização , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Serpinas/genética , Serpinas/imunologia , Trichinella spiralis/genética , Triquinelose/prevenção & controle
18.
Acta Trop ; 211: 105622, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32645301

RESUMO

Trichinellosis is caused by Trichinella spiralis (T. spiralis), which is an important public health problem. In this study, a gene encoding a serine protease from adult worms of T. spiralis (Ts-Adsp) was screened from a cDNA library of adult worms and was cloned and expressed in a prokaryotic expression system. The gene Ts-Adsp was subcloned into the eukaryotic expression vector pcDNA3.1(+), which was named pcDNA3.1(+)-Adsp. Previous studies have found that recombinant Ts-Adsp protein (rTs-Adsp) can elicit partial protection against T. spiralis infection in mice. Our aim was to explore the protective effect of combining a DNA vaccine with the rTs-Adsp protein against T. spiralis. One week after the last vaccination, the serum and spleen were obtained. The levels of IgG, IgG1 and IgG2a and cytokine production in serum and spleen cells were analyzed. The results showed that the levels of humoral and cell-mediated immune responses increased in the pcDNA3.1(+)-Adsp/rTs-Adsp group mice and demonstrated that a Th1/Th2 mixed immune response was induced by pcDNA3.1(+)-Adsp/rTs-Adsp after vaccination. Moreover, mice vaccinated with pcDNA3.1(+)-Adsp/rTs-Adsp displayed a 69.50% reduction in muscle larvae burden. This study suggested that mixed immunity could improve the muscle larvae reduction rate.


Assuntos
Serina Proteases/imunologia , Trichinella spiralis/enzimologia , Triquinelose/prevenção & controle , Vacinas de DNA/imunologia , Animais , Citocinas/biossíntese , DNA , Feminino , Imunoglobulina G/biossíntese , Larva/imunologia , Camundongos , Camundongos Endogâmicos ICR , Proteínas Recombinantes/imunologia , Triquinelose/imunologia
19.
Euro Surveill ; 25(24)2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32583764

RESUMO

Trichinellosis is a rare parasitic zoonosis in the European Union. Meat from backyard pigs was the common source for a trichinellosis outbreak caused by Trichinella spiralis, which occurred in France and Serbia in the beginning of 2017. An epidemiological study was conducted in France and Serbia to determine the extent of the outbreak, to identify its source and to implement control measures. Three cases were exposed in Serbia and brought back to France pork delicatessen which they shared with relatives and friends. Around 47 individuals were exposed to the parasitised meat in France and Serbia and 20 cases of trichinellosis were reported (nine in France and 11 in Serbia). Nine of them were female. The diagnosis was delayed, in part because the parasitosis was not known by most physicians, which led to complications in the French cases such as facial paralysis and pulmonary embolism. Health alerts and survey networks are indispensable at a European level to control the disease.


Assuntos
Surtos de Doenças/estatística & dados numéricos , Carne de Porco/microbiologia , Doenças dos Suínos/microbiologia , Trichinella spiralis/isolamento & purificação , Triquinelose/epidemiologia , Adolescente , Adulto , Animais , Animais Selvagens , Criança , Busca de Comunicante , Ensaio de Imunoadsorção Enzimática , Feminino , França/epidemiologia , Humanos , Masculino , Produtos da Carne/microbiologia , Pessoa de Meia-Idade , Sérvia/epidemiologia , Sus scrofa , Suínos , Doenças dos Suínos/epidemiologia , Triquinelose/diagnóstico , Triquinelose/prevenção & controle , Adulto Jovem , Zoonoses/epidemiologia
20.
Vet Parasitol ; 280: 109068, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32278937

RESUMO

Interleukin-4 (IL-4), an immunomodulatory cytokine derived from activated T lymphocytes were shown to regulate Th2-type immune responses. It plays an important role in anti-parasitic infections. In this study, a recombinant plasmid was designed using murine IL-4 co-expressed with pgsA anchor system of Lactobacillus plantarum NC8 and was delivered by live Lactobacillus plantarum NC8, which exhibited an enhanced immunogenicity in protection of BALB/c mice from infection with Trichinella spiralis. The results showed that the levels of serum IgG1 and mucosal secretory IgA (sIgA) were both increased significantly in mice orally inoculated with NC8-pSIP409-pgsA-mIL-4, and the Th2 phenotype immune response was up-regulated. A 29.9 % reduction in adult worm burden at 7 days post-infection (dpi) and 83.3 % reduction in muscle larvae burden at 28 dpi were observed in immune-stimulated mice with NC8-pSIP409-pgsA-mIL-4. Moreover, weight loss and pathological changes were also improved in mice of NC8-pSIP409-pgsA-mIL-4 group. Taken together, it suggests that NC8-pSIP409-pgsA-mIL-4 could improve the intestinal mucosal immunity and promoted the elimination of the adult worm in Trichinella-infected mice. This study laid the foundation for the development of a novel vaccines against Trichinellosis.


Assuntos
Interleucina-4/administração & dosagem , Lactobacillus plantarum/química , Probióticos/administração & dosagem , Trichinella spiralis/efeitos dos fármacos , Triquinelose/prevenção & controle , Administração Oral , Animais , Feminino , Interleucina-4/farmacologia , Lactobacillus plantarum/genética , Camundongos , Camundongos Endogâmicos BALB C , Microrganismos Geneticamente Modificados/química , Microrganismos Geneticamente Modificados/genética , Probióticos/química , Probióticos/farmacologia , Triquinelose/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...