Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
1.
J Neurophysiol ; 129(4): 781-792, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36883761

RESUMO

Previous studies show that synaptic quantal release decreases during repetitive stimulation, i.e., synaptic depression. Neurotrophin brain-derived neurotrophic factor (BDNF) enhances neuromuscular transmission via activation of tropomyosin-related kinase receptor B (TrkB). We hypothesized that BDNF mitigates synaptic depression at the neuromuscular junction and that the effect is more pronounced at type IIx and/or IIb fibers compared to type I or IIa fibers given the more rapid reduction in docked synaptic vesicles with repetitive stimulation. Rat phrenic nerve-diaphragm muscle preparations were used to determine the effect of BDNF on synaptic quantal release during repetitive stimulation at 50 Hz. An ∼40% decline in quantal release was observed during each 330-ms duration train of nerve stimulation (intratrain synaptic depression), and this intratrain decline was observed across repetitive trains (20 trains at 1/s repeated every 5 min for 30 min for 6 sets). BDNF treatment significantly enhanced quantal release at all fiber types (P < 0.001). BDNF treatment did not change release probability within a stimulation set but enhanced synaptic vesicle replenishment between sets. In agreement, synaptic vesicle cycling (measured using FM4-64 fluorescence uptake) was increased following BDNF [or neurotrophin-4 (NT-4)] treatment (∼40%; P < 0.05). Conversely, inhibiting BDNF/TrkB signaling with the tyrosine kinase inhibitor K252a and TrkB-IgG (which quenches endogenous BDNF or NT-4) decreased FM4-64 uptake (∼34% across fiber types; P < 0.05). The effects of BDNF were generally similar across all fiber types. We conclude that BDNF/TrkB signaling acutely enhances presynaptic quantal release and thereby may serve to mitigate synaptic depression and maintain neuromuscular transmission during repetitive activation.NEW & NOTEWORTHY Neurotrophin brain-derived neurotrophic factor (BDNF) enhances neuromuscular transmission via activation of tropomyosin-related kinase receptor B (TrkB). Rat phrenic nerve-diaphragm muscle preparations were used to determine the rapid effect of BDNF on synaptic quantal release during repetitive stimulation. BDNF treatment significantly enhanced quantal release at all fiber types. BDNF increased synaptic vesicle cycling (measured using FM4-64 fluorescence uptake); conversely, inhibiting BDNF/TrkB signaling decreased FM4-64 uptake.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Diafragma , Ratos , Animais , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Diafragma/fisiologia , Tropomiosina/farmacologia , Junção Neuromuscular/fisiologia
2.
Arch Pharm (Weinheim) ; 356(3): e2200438, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36398500

RESUMO

Tropomyosin receptor kinase (TRK) is a successful target for the treatment of various cancers caused by NTRK gene fusions. Herein, based on a rational drug design strategy, we designed and synthesized 35 aminopyrimidine derivatives that were shown to be TRKA inhibitors in the enzyme assay, among which compounds C3, C4, and C6 showed potent inhibitory activities against TRKA with IC50 values of 6.5, 5.0, and 7.0 nM, respectively. In vitro antiproliferative activity study showed that compound C3 significantly inhibited the proliferation of KM-12 cells but had weak inhibitory effect on MCF-7 cells and HUVEC cells. The preliminary druggability evaluation showed that compound C3 exhibited favorable liver microsomal and plasma stabilities and had weak or no inhibitory activity against cytochrome P450 isoforms at 10 µM. Compounds C3, C4, and C6 were also selected for ADME (absorption, distribution, metabolism, and elimination) properties prediction and molecular docking studies. Inhibition experiments showed that compound C3 was not selective for TRK subtypes. All results indicated that compound C3 was a useful candidate for the development of TRK inhibitors.


Assuntos
Antineoplásicos , Receptor trkA , Humanos , Receptor trkA/genética , Receptor trkA/metabolismo , Tropomiosina/metabolismo , Tropomiosina/farmacologia , Relação Estrutura-Atividade , Simulação de Acoplamento Molecular , Aminopiridinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Desenho de Fármacos , Antineoplásicos/farmacologia , Proliferação de Células
3.
Cannabis Cannabinoid Res ; 8(4): 612-622, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-35639364

RESUMO

Introduction: Adolescence is an important phase in brain maturation, specifically it is a time during which weak synapses are pruned and neural pathways are strengthened. Adolescence is also a time of experimentation with drugs, including cannabis, which may have detrimental effects on the developing nervous system. The cannabinoid type 1 receptor (CB1) is an important modulator of neurotransmitter release and plays a central role in neural development. Neurotrophic factors such as brain-derived neurotrophic factor (BDNF) and its receptor, tropomyosin receptor kinase B (TrkB), are also critical during development for axon guidance and synapse specification. Objective: The objective of this study was to examine the effects of the phytocannabinoids, Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD), on the expression of BDNF, its receptor TrkB, and other synaptic markers in the adolescent mouse hippocampus. Materials and Methods: Mice of both sexes were injected daily from P28 to P49 with 3 mg/kg THC, CBD, or a combination of THC/CBD. Brains were harvested on P50, and the dorsal and ventral hippocampi were analyzed for levels of BDNF, TrkB, and several synaptic markers using quantitative polymerase chain reaction, western blotting, and image analyses. Results: THC treatment statistically significantly reduced transcript levels of BDNF in adolescent female (BDNF I) and male (BDNF I, II, IV, VI, and IX) hippocampi. These changes were prevented when CBD was co-administered with THC. CBD by itself statistically significantly increased expression of some transcripts (BDNF II, VI, and IX for females, BDNF VI for males). No statistically significant changes were observed in protein expression for BDNF, TrkB, phospho-TrkB, phospho-CREB (cAMP response element-binding protein), and the synaptic markers, vesicular GABA transporter, vesicular glutamate transporter, synaptobrevin, and postsynaptic density protein 95. However, CB1 receptors were statistically significantly reduced in the ventral hippocampus with THC treatment. Conclusions: This study found changes in BDNF mRNA expression within the hippocampus of adolescent mice exposed to THC and CBD. THC represses transcript expression for some BDNF variants, and this effect is rescued when CBD is co-administered. These effects were seen in both males and females, but sex differences were observed in specific BDNF isoforms. While a statistically significant reduction in CB1 receptor protein in the ventral dentate gyrus was seen, no other changes in protein levels were observed.


Assuntos
Canabidiol , Feminino , Masculino , Camundongos , Animais , Canabidiol/farmacologia , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Dronabinol/farmacologia , Tropomiosina/metabolismo , Tropomiosina/farmacologia , Hipocampo
4.
J Neuroinflammation ; 19(1): 257, 2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36241997

RESUMO

BACKGROUND: Microglia, the innate immune cells in the central nervous system, play an essential role in brain homeostasis, neuroinflammation and brain infections. Dysregulated microglia, on the other hand, are associated with neurodegenerative diseases, yet the mechanisms underlying pro-inflammatory gene expression in microglia are incompletely understood. METHODS: We investigated the role of the actin-associated protein tropomyosin 1 (TPM1) in regulating pro-inflammatory phenotype of microglia in the retina by using a combination of cell culture, immunocytochemistry, Western blot, qPCR, TUNEL, RNA sequencing and electroretinogram analysis. TREM2-/- mice were used to investigate whether TPM1 regulated pro-inflammatory responses downstream of TREM2. To conditionally deplete microglia, we backcrossed CX3CR1CreER mice with Rosa26iDTR mice to generate CX3CR1CreER:Rosa26iDTR mice. RESULTS: We revealed a vital role for TPM1 in regulating pro-inflammatory phenotype of microglia. We found that TPM1 drove LPS-induced inflammation and neuronal death in the retina via the PKA/CREB pathway. TPM1 knockdown ameliorated LPS-induced inflammation in WT retinas yet exaggerated the inflammation in TREM2-/- retinas. RNA sequencing revealed that genes associated with M1 microglia and A1 astrocytes were significantly downregulated in LPS-treated WT retinas but upregulated in LPS-treated TREM2-/- retinas after TPM1 knockdown. Mechanistically, we demonstrated that CREB activated by TPM1 knockdown mediated anti-inflammatory genes in LPS-treated WT retinas but pro-inflammatory genes in LPS-treated TREM2-/- retinas, suggesting a novel role for TREM2 as a brake on TPM1-mediated inflammation. Furthermore, we identified that TPM1 regulated inflammation downstream of TREM2 and in a microglia-dependent manner. CONCLUSIONS: We demonstrate that TPM1 mediates inflammation downstream of TREM2 via the PKA/CREB signaling pathway. Our findings suggest that TPM1 could be a potential target for therapeutic intervention in brain diseases.


Assuntos
Actinas , Lipopolissacarídeos , Animais , Camundongos , Actinas/metabolismo , Anti-Inflamatórios/uso terapêutico , Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Microglia/metabolismo , Receptores Imunológicos/metabolismo , Transdução de Sinais , Tropomiosina/metabolismo , Tropomiosina/farmacologia , Tropomiosina/uso terapêutico
5.
J Ocul Pharmacol Ther ; 38(9): 635-644, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36260383

RESUMO

Purpose: This study aimed to investigate the simultaneous neuroprotective and proangiogenic effects of 7,8-dihydroxyflavone (7,8-DHF) and explore the potential underlying molecular mechanisms. Methods: A coculture system of rat retinal explants and human umbilical vein endothelial cells (HUVECs) was established to determine the optimal concentration of 7,8-DHF, promoting neurite regeneration and HUVEC proliferation. Subsequently, the neuroprotective effect, proangiogenesis properties, and action mechanism of 7,8-DHF at an optimal concentration were investigated. Results: The cell proliferation, survival, migration, tube formation and p-tropomyosin-related kinase receptor B (TrkB)/TrkB levels in HUVECs were significantly promoted by 5 µM 7,8-DHF. The ganglion cell layer neuron survival, neurite regeneration, and p-TrkB/TrkB levels in retinal explants were also significantly promoted by 5 µM 7,8-DHF. All of these pharmacological actions of 7,8-DHF were blocked by N-[2-[(2-oxoazepan-3-yl)carbamoyl]phenyl]-1-benzothiophene-2-carboxamide. Conclusions: 7,8-DHF yields neuroprotection of retinal explants and proangiogenesis of HUVECs through the TrkB signaling pathway in vitro.


Assuntos
Neuroproteção , Tropomiosina , Humanos , Ratos , Animais , Tropomiosina/farmacologia , Células Endoteliais da Veia Umbilical Humana , Transdução de Sinais
6.
Bioorg Med Chem ; 72: 116995, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-36095945

RESUMO

Aiming to develop novel tropomyosin receptor kinase A (TrkA) inhibitors, a scaffold hopping strategy was utilized by transforming the fused indazole of Entrectinib to phenyl triazole/thiazole skeleton to obtain compounds 7a-7 h and 13a-13 h. In the light of MTT assay, phenyl triazole derivatives 7a-7 h exhibited moderate anti-proliferative activities against KM-12 cells with the IC50 values of 1.78-17.51 µM, while phenyl thiazole derivatives 13a-13 h showed the weaker efficacy. Further structure-guided optimizations by combining the phenyl triazole skeleton with 3,5­difluorophenyl and 3-carbamoyl-4-piperazinylaniline moiety led to compounds 19a-19d and 20. Eventually, 19c bearing (2-(4-methylpiperazin-1-yl)phenyl)(morpholino)methanone moiety exhibited excellent anti-proliferative activity on TrkA-positive KM-12 cells with IC50 value of 0.17 µM. Meanwhile, compound 19c showed the inhibitory potency on TrkA with IC50 value of 1.6 nM, and displayed higher selectivity on TrkA over TrkB (IC50 = 12.3 nM) and TrkC (IC50 = 18.4 nM). The dedicated wound healing and colony formation assay indicated that the optimal compound 19c could suppress migration and significantly inhibit KM-12 cell colony formation in a dose-dependent manner. In addition, 19c could weakly induce apoptosis of KM-12 cell in immunofluorescent staining analysis. Taken together, the above results suggest 19c as a novel TrkA inhibitor worthy of further profiling.


Assuntos
Antineoplásicos , Tiazóis , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Indazóis/farmacologia , Estrutura Molecular , Morfolinos/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Relação Estrutura-Atividade , Tiazóis/farmacologia , Triazóis/farmacologia , Tropomiosina/farmacologia
7.
PLoS Pathog ; 18(9): e1010874, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36121891

RESUMO

Influenza A virus (IAV) infection causes acute respiratory disease with potential severe and deadly complications. Viral pathogenesis is not only due to the direct cytopathic effect of viral infections but also to the exacerbated host inflammatory responses. Influenza viral infection can activate various host signaling pathways that function to activate or inhibit viral replication. Our previous studies have shown that a receptor tyrosine kinase TrkA plays an important role in the replication of influenza viruses in vitro, but its biological roles and functional mechanisms in influenza viral infection have not been characterized. Here we show that IAV infection strongly activates TrkA in vitro and in vivo. Using a chemical-genetic approach to specifically control TrkA kinase activity through a small molecule compound 1NMPP1 in a TrkA knock-in (TrkA KI) mouse model, we show that 1NMPP1-mediated TrkA inhibition completely protected mice from a lethal IAV infection by significantly reducing viral loads and lung inflammation. Using primary lung cells isolated from the TrkA KI mice, we show that specific TrkA inhibition reduced IAV viral RNA synthesis in airway epithelial cells (AECs) but not in alveolar macrophages (AMs). Transcriptomic analysis confirmed the cell-type-specific role of TrkA in viral RNA synthesis, and identified distinct gene expression patterns under the TrkA regulation in IAV-infected AECs and AMs. Among the TrkA-activated targets are various proinflammatory cytokines and chemokines such as IL6, IL-1ß, IFNs, CCL-5, and CXCL9, supporting the role of TrkA in mediating lung inflammation. Indeed, while TrkA inhibitor 1NMPP1 administered after the peak of IAV replication had no effect on viral load, it was able to decrease lung inflammation and provided partial protection in mice. Taken together, our results have demonstrated for the first time an important biological role of TrkA signaling in IAV infection, identified its cell-type-specific contribution to viral replication, and revealed its functional mechanism in virus-induced lung inflammation. This study suggests TrkA as a novel host target for therapeutic development against influenza viral disease.


Assuntos
Vírus da Influenza A , Influenza Humana , Infecções por Orthomyxoviridae , Pneumonia , Animais , Citocinas/metabolismo , Humanos , Vírus da Influenza A/genética , Interleucina-6/metabolismo , Pulmão/patologia , Camundongos , Proteínas Tirosina Quinases/metabolismo , RNA Viral/metabolismo , Receptor trkA/metabolismo , Tropomiosina/metabolismo , Tropomiosina/farmacologia , Replicação Viral/fisiologia
8.
Med Chem ; 19(1): 47-63, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35490310

RESUMO

AIM: The aim of the study was to search for new anticancer agents as TRKA inhibitors. BACKGROUND: A series of new salicylic acid hydrazide hydrazones were synthesized and evaluated for their in vitro anticancer activities against lung (A549), ovarian (SK-OV-3), skin (SK-MEL-2), and colon (HCT15) cancer cell lines, and tropomyosin receptor kinase A (TRKA) inhibitory activities. OBJECTIVE: In this study, we focused on the synthesis and anticancer properties evaluation of salicylic acid hydrazide hydrazones as TRKA inhibitors. The in vitro anticancer activities of hydrazone analogs were measured against four cancer cell lines, and the TRKA inhibitory properties were investigated using an enzyme assay to determine their modes of action. In silico molecular docking was conducted using the crystal structure of the TRKA receptor to study the interactions and modes of binding at its active site, and ligand-based target predictions were used to identify putative secondary enzymatic targets of the synthesized compounds. Additionally, pharmacokinetic properties, toxicity effects, and drug scores of the studied molecules were also assessed. METHODS: A series of hydrazide hydrazones were prepared by means of a facile and straight-forward two-step reaction under soft reflux conditions from a methyl ester of substituted aromatic acids and hydrazine hydrate followed by the condensation with substituted aldehydes. In vitro cytotoxic properties of the synthesized compounds were screened against four human cancer cells using the SRB (sulforhodamine-B) colorimetric method. The TRKA inhibitory activity was measured by enzymatic assay. In silico ADME, drug score properties, docking studies, and ligand-based target prediction analyses were performed using Osiris Cheminformatics and AutoDock Vina, and SwissTargetPrediction bioinformatics software. RESULTS: In vitro bioassays revealed that compound 6 exhibited the most potent broad-spectrum anticancer activities with IC50 values of 0.144, <0.001, 0.019, and 0.022 µM against A549, SK-OV-3, SK-MEL-2, and HCT15 cancer cells, respectively, followed by compounds 11, 3a, and 9. In TRKA inhibitory assays, compounds 3e and 11 demonstrated the highest potency with IC50 values of 111 and 614 nM, respectively. The results of docking studies on 3e and 11 with the active site of the TRKA receptor revealed that both compounds interacted as previously reported TRKA inhibitors with high docking scores. CONCLUSION: New salicylic acid hydrazide hydrazones were synthesized, and the most active compounds exhibited significant anticancer properties against A549, SK-OV-3, SK-MEL-2, and HCT15 cancer cells, suggesting to be good candidates for in vivo studies. The results obtained in the present study would help in the design and preparation of new hydrazidehydrazone analogs as potential TRKA inhibitors for cancer treatment.


Assuntos
Antineoplásicos , Hidrazonas , Humanos , Simulação de Acoplamento Molecular , Tropomiosina/farmacologia , Relação Estrutura-Atividade , Ligantes , Receptor trkA/farmacologia , Desenho de Fármacos , Linhagem Celular Tumoral , Antineoplásicos/química , Hidrazinas/farmacologia , Salicilatos/farmacologia , Estrutura Molecular , Ensaios de Seleção de Medicamentos Antitumorais , Proliferação de Células
9.
Biol Direct ; 17(1): 1, 2022 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-34991683

RESUMO

BACKGROUND: Long non-coding RNAs (lncRNAs) have been reported to be vital factors to affect the expression of genes and proteins. Also, it has been proved that the abnormal expression or mutation of lncRNAs stands as a signal of metastasis and proliferation of cancer. Nevertheless, the majority of lncRNAs still need to be explored in abundant cancers especially in oral squamous cell carcinoma (OSCC). METHODS: RT-qPCR assays were applied to test the expression of RNAs. Mechanism assays were performed to verify the combination among NORAD, TPM4 and miR-577. Also, functional assays were conducted to verify the function of RNAs on OSCC cells. RESULTS: LncRNA NORAD was highly expressed in OSCC tissues and cells. NORAD silencing repressed the biological behaviors of OSCC cells. MiR-577 was found in OSCC with low expression, and RIP assays illustrated that NORAD, miR-577 and TPM4 coexisted in RNA-induced silencing complexes. Rescue assays proved that the overexpression of TPM4 could recover the effect of NORAD silencing on OSCC progression. CONCLUSIONS: It was revealed that NORAD functioned as a tumor promoter to sponge miR-577 thus elevating TPM4 in OSCC, which indicated that NORAD was worthy to be studied as a target for the treatment of OSCC.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , MicroRNAs , Neoplasias Bucais , RNA Longo não Codificante , Carcinoma de Células Escamosas/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias de Cabeça e Pescoço/genética , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Bucais/genética , Neoplasias Bucais/patologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Tropomiosina/genética , Tropomiosina/metabolismo , Tropomiosina/farmacologia
10.
J Formos Med Assoc ; 121(6): 1117-1122, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34696938

RESUMO

BACKGROUND/PURPOSE: Various microRNAs (miRs) have been found to be associated with the development of the precancerous condition of the oral cavity, oral submucous fibrosis (OSF). The expression of miR-29c is dysregulated in oral cancer, but its role in OSF has not been investigated. The purpose of the study is to investigate the functional role of miR-29c and its target in OSF. METHODS: The expression levels of miR-29c in OSF tissues and fibrotic buccal mucosal fibroblasts (fBMFs) were assessed using next-generation sequencing and real-time Polymerase Chain Reaction (PCR) analysis. MiR-29c mimic and inhibitors were employed to examine its functional role of myofibroblast transdifferentiation. In addition, several myofibroblast phenotypes, such as collagen gel contraction and migration were tested, and a luciferase reporter assay was conducted to confirm the relationship between miR-29c and its predicted target, tropomyosin-1 (TPM1). RESULTS: We observed that miR-29c expression was downregulated in fBMFs. fBMFs transfected with miR-29c mimics exhibited reduced migration ability and collagen gel contractility, whereas inhibition of miR-29c in normal BMFs induced the myofibroblast phenotypes. Results from the luciferase reporter assay showed that TPM1 was a direct target of miR-29c and the expression of TPM1 was suppressed in the fBMFs transfected with miR-29c mimics. Besides, we confirmed that the expression of miR-29c was indeed downregulated in OSF specimens. CONCLUSION: MiR-29c seems to exert an inhibitory effect on myofibroblast activation, such as collagen gel contractility and migration ability, via suppressing TPM1. These results suggested that approaches to upregulate miR-29c may be able to ameliorate the progression of OSF.


Assuntos
MicroRNAs , Fibrose Oral Submucosa , Regulação para Baixo , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Miofibroblastos/metabolismo , Fibrose Oral Submucosa/genética , Fibrose Oral Submucosa/metabolismo , Tropomiosina/genética , Tropomiosina/metabolismo , Tropomiosina/farmacologia
11.
Eur J Cancer ; 137: 183-192, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32784118

RESUMO

Targeted neurotrophic tropomyosin receptor kinase (TRK) inhibitors offer a highly specific therapeutic option for patients with infantile fibrosarcoma (IFS) carrying the NTRK gene translocation. International recommendations are needed to define the role of TRK inhibitors (TRKI) for infants with IFS. We analysed retrospective data for all published patients with IFS in the European Paediatric Soft tissue sarcoma Study Group and Cooperative Weichteilsarkomstudiengruppe (CWS) experience and developed a consensus strategy with the Children's Oncology Group. Therapies consisted of tumour resection and/or perioperative chemotherapy for extensive tumours. Among the 172 European patients treated, 162 were alive at the end of the follow-up. Sixty-five patients (40% of all survivors) were treated with surgery alone and 64 patients (39%) with surgery combined with chemotherapy. Radiotherapy was delivered to 3% of survivors (five patients). In addition, 28 survivors (17%) exclusively received chemotherapy. Among the 129 patients treated with surgery, 91% had conservative surgery (118 cases). Overall, nine patients died of disease, one from toxicity (6%) and 20 patients (12%) survived with major functional deficits or had mutilating surgery. Overall, conventional conservative strategies before the era of targeted therapy, even in the case of extensive tumours, demonstrate efficacy in IFS, but are associated with acute and some chronic side effects. TRKI have demonstrated very rapid responses in the vast majority of children with IFS with limited acute toxicity. With the current state of our knowledge, both conventional chemotherapy and TRKI should be regarded as options for patients with localised disease at the physician's and parent's discretion. TRKI should be considered in patients with metastatic disease, and before mutilating surgery when conventional chemotherapy fails. Outside a clinical trial, additional data are needed to resolve the lack of consensus about front-line use of conventional chemotherapy versus TRKI in patients with localised disease.


Assuntos
Fibrossarcoma/tratamento farmacológico , Inibidores de Proteínas Quinases/uso terapêutico , Tropomiosina/antagonistas & inibidores , Tropomiosina/uso terapêutico , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Inibidores de Proteínas Quinases/farmacologia , Tropomiosina/farmacologia
12.
Int J Biol Macromol ; 145: 154-164, 2020 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-31866539

RESUMO

Glioblastoma (GBM) represents the most common, aggressive and deadliest primary tumors with poor prognosis as available therapeutic approaches fail to control its aberrant proliferation and high invasiveness. Thus, the therapeutic agents targeting these two characteristics will be more effective. In present study, a novel polypeptide (MM15), which was originally purified from Meretrix meretrix Linnaeus and has been proven to possess potent antitumor activity by our laboratory, was recombinant expressed and identified as a tropomyosin homologous protein. The recombinant polypeptide (re-MM15) could induce the U87 cell cycle arrest in G2/M phase and cell apoptosis by inducing tubulin polymerization. Additionally, re-MM15 displayed the significant inhibition to the migration and invasion of U87 cells through downregulating FAK/Akt/MMPs signaling. Furthermore, the in vivo analysis suggested that re-MM15 significantly blocked tumor growth in U87 xenograft model. Collectively, our results indicated that re-MM15, with anti-GBM properties in vitro and in vivo, has promising potential as a new anticancer candidate for GBM.


Assuntos
Proliferação de Células/efeitos dos fármacos , Glioma/tratamento farmacológico , Metaloproteinases da Matriz/metabolismo , Microtúbulos/metabolismo , Peptídeos/farmacologia , Polimerização/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Tropomiosina/farmacologia , Animais , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Glioma/metabolismo , Células HCT116 , Células HeLa , Humanos , Células MCF-7 , Camundongos , Camundongos Nus , Células NIH 3T3 , Peptídeos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
13.
Food Chem ; 288: 268-275, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-30902292

RESUMO

The allergenicity suppression of tropomyosin (TM) from Exopalaemon modestus by glycation with saccharides of different molecular sizes (glucose, maltose, maltotriose, maltopentaose and maltoheptaose) was investigated using immunoblotting, human colon epithelial cell line (Caco-2) and human basophil cell line (KU812). Glycation of TM by glucose, maltotriose, maltopentaose and maltoheptaose significantly destructed and masked TM epitopes to obtain lower allergenicity, while glycation of TM by maltose had insignificant suppression on TM allergenicity. In addition, the glycated TM by glucose, maltotriose, maltopentaose and maltoheptaose inhibited the proliferation and IL-8 secretion of Caco-2, and the CD63 and CD203c expression, MAPK signaling of KU812 basophils, while the glycated TM by maltose had insignificant suppression on the allergy reactivities of Caco-2 cells and KU812 basophils. Glycation of TM by saccharides with larger molecular sizes (such as maltoheptaose) could provide new insight into the desensitization of shrimp-induced food allergy.


Assuntos
Alérgenos/imunologia , Oligossacarídeos/metabolismo , Palaemonidae/metabolismo , Tropomiosina/metabolismo , Adolescente , Animais , Células CACO-2 , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Pré-Escolar , Feminino , Glicosilação , Humanos , Imunoglobulina E/sangue , Interleucina-8/metabolismo , Masculino , Maltose/metabolismo , Pessoa de Meia-Idade , Trissacarídeos/metabolismo , Tropomiosina/imunologia , Tropomiosina/farmacologia
14.
ACS Chem Neurosci ; 9(5): 1095-1103, 2018 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-29281262

RESUMO

The binding of the human nerve growth factor (NGF) protein to tropomyosin receptor kinase A (TrkA) is associated with Alzhemeir's development. Owing to the large presence of zinc(II) ions in the synaptic compartments, the zinc ions might be bound to the complex in vivo. Here, we have identified a putative zinc binding site using a combination of computations and experiments. First, we have predicted structural features of the NGF/TrkA complex in an aqueous solution by molecular simulation. Metadynamics free energy calculations suggest that these are very similar to those in the X-ray structure. Here, the "crab" structure of the NGF shape binds tightly to two TrkA "pincers". Transient conformations of the complex include both more extended and more closed conformations. Interestingly, the latter features facial histidines (His60 and His61) among the N-terminal D1-D3 domains, each of which is a potential binding region for biometals. This suggests the presence of a four-His Zn binding site connecting the two chains. To address this issue, we investigated the binding of a D1-D3 domains' peptide mimic by stability constant and nuclear magnetic resonance measurements, complemented by density functional theory-based calculations. Taken together, these establish unambiguously a four-His coordination of the metal ion in the model systems, supporting the presence of our postulated binding site in the NGF/TrkA complex.


Assuntos
Conformação Molecular/efeitos dos fármacos , Fator de Crescimento Neural/metabolismo , Tropomiosina/farmacologia , Zinco/metabolismo , Humanos , Fator de Crescimento Neural/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Proteínas Quinases/metabolismo , Receptor trkA/efeitos dos fármacos , Receptor trkA/metabolismo
15.
FEBS Lett ; 591(13): 1884-1891, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28555876

RESUMO

Tropomyosin (Tpm) plays an important role in regulating the organisation and functions of the actin cytoskeleton. Here, we describe a new approach to analyse the effects of Tpm on actin dynamics. Using F-actin proteolytically modified within the DNase-binding loop (ECP-actin), we show that Tpm binding almost completely suppresses the increased subunit exchange intrinsic for this F-actin. The effect is both concentration-dependent and cooperative, with half-maximal inhibition observed at about a 1 : 50 Tpm : actin ratio. Tpm decreases not only the number concentration of ECP-actin filaments, but also the rate of the filament subunit exchange. Our data suggest that Tpm regulates the dynamics of actin filaments by an allosteric strengthening of intermonomer contacts in the actin filament, and that this mechanism may be involved in the modulation of cytoskeletal dynamics.


Assuntos
Citoesqueleto de Actina/efeitos dos fármacos , Citoesqueleto de Actina/metabolismo , Tropomiosina/farmacologia , Actinas/química , Actinas/metabolismo , Adenosina Trifosfatases/metabolismo , Animais , Isoformas de Proteínas/farmacologia , Multimerização Proteica/efeitos dos fármacos , Estrutura Quaternária de Proteína , Proteólise/efeitos dos fármacos , Coelhos
16.
Biophys J ; 112(2): 376-387, 2017 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-28122223

RESUMO

We investigated the functional impact of α-tropomyosin (Tm) substituted with one (D137L) or two (D137L/G126R) stabilizing amino acid substitutions on the mechanical behavior of rabbit psoas skeletal myofibrils by replacing endogenous Tm and troponin (Tn) with recombinant Tm mutants and purified skeletal Tn. Force recordings from myofibrils (15°C) at saturating [Ca2+] showed that Tm-stabilizing substitutions did not significantly affect the maximal isometric tension and the rates of force activation (kACT) and redevelopment (kTR). However, a clear effect was observed on force relaxation: myofibrils with D137L/G126R or D137L Tm showed prolonged durations of the slow phase of relaxation and decreased rates of the fast phase. Both Tm-stabilizing substitutions strongly decreased the slack sarcomere length (SL) at submaximal activating [Ca2+] and increased the steepness of the SL-passive tension relation. These effects were reversed by addition of 10 mM 2,3-butanedione 2-monoxime. Myofibrils also showed an apparent increase in Ca2+ sensitivity. Measurements of myofibrillar ATPase activity in the absence of Ca2+ showed a significant increase in the presence of these Tms, indicating that single and double stabilizing substitutions compromise the full inhibition of contraction in the relaxed state. These data can be understood with the three-state (blocked-closed-open) theory of muscle regulation, according to which the mutations increase the contribution of the active open state in the absence of Ca2+ (M-). Force measurements on myofibrils substituted with C-terminal truncated TnI showed similar compromised relaxation effects, indicating the importance of TnI-Tm interactions in maintaining the blocked state. It appears that reducing the flexibility of native Tm coiled-coil structure decreases the optimum interactions of the central part of Tm with the C-terminal region of TnI. This results in a shift away from the blocked state, allowing myosin binding and activity in the absence of Ca2+. This work provides a basis for understanding the effects of disease-producing mutations in muscle proteins.


Assuntos
Substituição de Aminoácidos , Relaxamento Muscular , Miofibrilas/fisiologia , Tropomiosina/química , Tropomiosina/metabolismo , Animais , Cálcio/metabolismo , Humanos , Relaxamento Muscular/efeitos dos fármacos , Miofibrilas/efeitos dos fármacos , Miofibrilas/metabolismo , Estabilidade Proteica , Músculos Psoas/citologia , Músculos Psoas/fisiologia , Coelhos , Deleção de Sequência , Tropomiosina/genética , Tropomiosina/farmacologia , Troponina I/genética , Troponina I/metabolismo
17.
J Sci Food Agric ; 96(12): 4263-7, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26800007

RESUMO

BACKGROUND: Malonaldehyde, the primary by-product of lipid peroxidation in food, modifies the structural and functional properties of proteins by cross-linking. The aim of this study was to investigate the effect of malonaldehyde on the allergenicity of shrimp tropomyosin. RESULTS: RBL-2H3 cells, a model of type I allergic reactions, were sensitised with sera from patients allergic to shrimp, and were stimulated with native and cross-linked tropomyosin. Release of inflammatory mediators such as ß-hexosaminidase, histamine, tryptase, cysteinyl leukotriene, and prostaglandin D2 was clearly suppressed in a manner that depended on the extent of tropomyosin cross-linking. Release of interleukin-4 (IL-4) and IL-13 was similarly decreased. Notably, cells sensitised with one patient's serum released IL-4 at comparable levels in response to native and cross-linked tropomyosin. CONCLUSION: Cross-linking strongly modulates the ability of shrimp tropomyosin to induce release of inflammatory cytokines and mediators from activated RBL-2H3 cells. © 2016 Society of Chemical Industry.


Assuntos
Alérgenos/efeitos dos fármacos , Reagentes de Ligações Cruzadas/farmacologia , Citocinas/metabolismo , Mediadores da Inflamação/metabolismo , Malondialdeído/farmacologia , Tropomiosina/farmacologia , Animais , Linhagem Celular , Citocinas/imunologia , Hipersensibilidade Alimentar/sangue , Hipersensibilidade Alimentar/imunologia , Humanos , Mediadores da Inflamação/imunologia , Penaeidae/química , Penaeidae/imunologia , Ratos , Tropomiosina/imunologia
18.
PLoS Negl Trop Dis ; 9(12): e0004310, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26720603

RESUMO

BACKGROUND: Trichinella spiralis expresses paramyosin (Ts-Pmy) as a defense mechanism. Ts-Pmy is a functional protein with binding activity to human complement C8 and C9 and thus plays a role in evading the attack of the host's immune system. In the present study, the binding activity of Ts-Pmy to human complement C1q and its ability to inhibit classical complement activation were investigated. METHODS AND FINDINGS: The binding of recombinant and natural Ts-Pmy to human C1q were determined by ELISA, Far Western blotting and immunoprecipitation, respectively. Binding of recombinant Ts-Pmy (rTs-Pmy) to C1q inhibited C1q binding to IgM and consequently inhibited C3 deposition. The lysis of antibody-sensitized erythrocytes (EAs) elicited by the classical complement pathway was also inhibited in the presence of rTs-Pmy. In addition to inhibiting classical complement activation, rTs-Pmy also suppressed C1q binding to THP-1-derived macrophages, thereby reducing C1q-induced macrophages migration. CONCLUSION: Our results suggest that T. spiralis paramyosin plays an important role in immune evasion by interfering with complement activation through binding to C1q in addition to C8 and C9.


Assuntos
Complemento C1q/imunologia , Via Clássica do Complemento/efeitos dos fármacos , Evasão da Resposta Imune/efeitos dos fármacos , Trichinella spiralis/imunologia , Triquinelose/imunologia , Tropomiosina/farmacologia , Animais , Complemento C1q/metabolismo , Complemento C8/antagonistas & inibidores , Complemento C8/imunologia , Complemento C9/antagonistas & inibidores , Complemento C9/imunologia , Eritrócitos/efeitos dos fármacos , Feminino , Hemólise , Humanos , Fatores Imunológicos/imunologia , Fatores Imunológicos/metabolismo , Fatores Imunológicos/farmacologia , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos ICR , Proteínas Recombinantes , Tropomiosina/imunologia , Tropomiosina/metabolismo
19.
Acta Neuropathol Commun ; 2: 25, 2014 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-24581221

RESUMO

BACKGROUND: Aberrant biometal metabolism is a key feature of neurodegenerative disorders including Alzheimer's and Parkinson's diseases. Metal modulating compounds are promising therapeutics for neurodegeneration, but their mechanism of action remains poorly understood. Neuronal ceroid lipofuscinoses (NCLs), caused by mutations in CLN genes, are fatal childhood neurodegenerative lysosomal storage diseases without a cure. We previously showed biometal accumulation in ovine and murine models of the CLN6 variant NCL, but the mechanism is unknown. This study extended the concept that alteration of biometal functions is involved in pathology in these disorders, and investigated molecular mechanisms underlying impaired biometal trafficking in CLN6 disease. RESULTS: We observed significant region-specific biometal accumulation and deregulation of metal trafficking pathways prior to disease onset in CLN6 affected sheep. Substantial progressive loss of the ER/Golgi-resident Zn transporter, Zip7, which colocalized with the disease-associated protein, CLN6, may contribute to the subcellular deregulation of biometal homeostasis in NCLs. Importantly, the metal-complex, ZnII(atsm), induced Zip7 upregulation, promoted Zn redistribution and restored Zn-dependent functions in primary mouse Cln6 deficient neurons and astrocytes. CONCLUSIONS: This study demonstrates the central role of the metal transporter, Zip7, in the aberrant biometal metabolism of CLN6 variants of NCL and further highlights the key contribution of deregulated biometal trafficking to the pathology of neurodegenerative diseases. Importantly, our results suggest that ZnII(atsm) may be a candidate for therapeutic trials for NCLs.


Assuntos
Transporte Biológico/genética , Proteínas de Transporte de Cátions/deficiência , Metais/metabolismo , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Regulação para Cima/genética , Fatores Etários , Fosfatase Alcalina/metabolismo , Animais , Astrócitos/enzimologia , Proteínas de Transporte de Cátions/genética , Células Cultivadas , Dipeptídeos/farmacologia , Modelos Animais de Doenças , Embrião de Mamíferos , Homeostase/genética , Humanos , Proteínas de Membrana/genética , Camundongos , Camundongos Transgênicos , Mutação/genética , Doenças Neurodegenerativas/genética , Ovinos , Tropomiosina/farmacologia , Regulação para Cima/efeitos dos fármacos , Zinco/farmacologia
20.
J Neurosci ; 32(46): 16080-94, 2012 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-23152593

RESUMO

The formation of neuronal circuits is a key process of development, laying foundations for behavior. The cellular mechanisms regulating circuit development are not fully understood. Here, we reveal Psidin as an intracellular regulator of Drosophila olfactory system formation. We show that Psidin is required in several classes of olfactory receptor neurons (ORNs) for survival and subsequently for axon guidance. During axon guidance, Psidin functions as an actin regulator and antagonist of Tropomyosin. Accordingly, Psidin-deficient primary neurons in culture display growth cones with significantly smaller lamellipodia. This lamellipodial phenotype, as well as the mistargeting defects in vivo, is suppressed by parallel removal of Tropomyosin. In contrast, Psidin functions as the noncatalytic subunit of the N-acetyltransferase complex B (NatB) to maintain the number of ORNs. Psidin physically binds the catalytic NatB subunit CG14222 (dNAA20) and functionally interacts with it in vivo. We define the dNAA20 interaction domain within Psidin and identify a conserved serine as a candidate for phosphorylation-mediated regulation of NatB complex formation. A phosphomimetic mutation of this serine showed severely reduced binding to dNAA20 in vitro. In vivo, it fully rescued the targeting defect but not the reduction in neuron numbers. In addition, we show that a different amino acid point mutation shows exactly the opposite effect by rescuing only the cell number but not the axon targeting defect. Together, our data suggest that Psidin plays two independent developmental roles via the acquisition of separate signaling pathways, both of which contribute to the formation of olfactory circuits.


Assuntos
Axônios/fisiologia , Proteínas Sanguíneas/fisiologia , Proteínas de Drosophila/fisiologia , Drosophila/fisiologia , Neurônios/fisiologia , Condutos Olfatórios/fisiologia , Acetiltransferases/metabolismo , Animais , Western Blotting , Contagem de Células , Células Cultivadas , Genótipo , Cones de Crescimento/fisiologia , Imunoprecipitação , Hibridização In Situ , Rede Nervosa/citologia , Rede Nervosa/crescimento & desenvolvimento , Rede Nervosa/fisiologia , Condutos Olfatórios/citologia , Condutos Olfatórios/crescimento & desenvolvimento , Fenótipo , Fosforilação/fisiologia , Pseudópodes/fisiologia , Interferência de RNA , Saccharomyces cerevisiae/metabolismo , Tropomiosina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...