Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 810
Filtrar
1.
Anim Biotechnol ; 35(1): 2345238, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38775564

RESUMO

Tropomyosin 3 (TPM3) plays a significant role as a regulatory protein in muscle contraction, affecting the growth and development of skeletal muscles. Despite its importance, limited research has been conducted to investigate the influence of TPM3 on bovine skeletal muscle development. Therefore, this study revealed the role of TPM3 in bovine myoblast growth and development. This research involved conducting a thorough examination of the Qinchuan cattle TPM3 gene using bioinformatics tools to examine its sequence and structural characteristics. Furthermore, TPM3 expression was evaluated in various bovine tissues and cells using quantitative real-time polymerase chain reaction (qRT-PCR). The results showed that the coding region of TPM3 spans 855 bp, with the 161st base being the T base, encoding a protein with 284 amino acids and 19 phosphorylation sites. This protein demonstrated high conservation across species while displaying a predominant α-helix secondary structure despite being an unstable acidic protein. Notably, a noticeable increase in TPM3 expression was observed in the longissimus dorsi muscle and myocardium of calves and adult cattle. Expression patterns varied during different stages of myoblast differentiation. Functional studies that involved interference with TPM3 in Qinchuan cattle myoblasts revealed a very significantly decrease in S-phase cell numbers and EdU-positive staining (P < 0.01), and disrupted myotube morphology. Moreover, interference with TPM3 resulted in significantly (P < 0.05) or highly significantly (P < 0.01) decreased mRNA and protein levels of key proliferation and differentiation markers, indicating its role in the modulation of myoblast behavior. These findings suggest that TPM3 plays an essential role in bovine skeletal muscle growth by influencing myoblast proliferation and differentiation. This study provides a foundation for further exploration into the mechanisms underlying TPM3-mediated regulation of bovine muscle development and provides valuable insights that could guide future research directions as well as potential applications for livestock breeding and addressing muscle-related disorders.


Assuntos
Diferenciação Celular , Proliferação de Células , Clonagem Molecular , Mioblastos , Tropomiosina , Animais , Bovinos/genética , Tropomiosina/genética , Tropomiosina/metabolismo , Tropomiosina/química , Diferenciação Celular/genética , Mioblastos/metabolismo , Mioblastos/citologia , Músculo Esquelético , Sequência de Aminoácidos , Desenvolvimento Muscular/genética
2.
J Agric Food Chem ; 72(20): 11672-11681, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38713521

RESUMO

Crustacean shellfish are major allergens in East Asia. In the present study, a major allergic protein in crustaceans, tropomyosin, was detected accurately using multiple reaction monitoring mode-based mass spectrometry, with shared signature peptides identified through proteomic analysis. The peptides were deliberately screened through thermal stability and enzymatic digestion efficiency to improve the suitability and accuracy of the developed method. Finally, the proposed method demonstrated a linear range of 0.15 to 30 mgTM/kgfood (R2 > 0.99), with a limit of detection of 0.15 mgTM/kg food and a limit of quantification of 0.5mgTM/kgfood and successfully applied to commercially processed foods, such as potato chips, biscuits, surimi, and hot pot seasonings, which evidenced the applicability of proteomics-based methodology for food allergen analysis.


Assuntos
Alérgenos , Crustáceos , Espectrometria de Massas , Peptídeos , Proteômica , Frutos do Mar , Tropomiosina , Tropomiosina/química , Tropomiosina/imunologia , Tropomiosina/análise , Animais , Proteômica/métodos , Alérgenos/química , Alérgenos/análise , Peptídeos/química , Frutos do Mar/análise , Espectrometria de Massas/métodos , Crustáceos/química , Proteínas de Artrópodes/química , Proteínas de Artrópodes/imunologia , Hipersensibilidade a Frutos do Mar/imunologia , Hipersensibilidade Alimentar/imunologia , Alimento Processado
3.
Food Funct ; 15(10): 5397-5413, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38639426

RESUMO

Limited research has been conducted on the differences in allergenicity among Alectryonella plicatula tropomyosin (ATM), Haliotis discus hannai tropomyosin (HTM), and Mimachlamys nobilis tropomyosin (MTM) in molluscs. Our study aimed to comprehensively analyze and compare their immunoreactivity, sensitization, and allergenicity while simultaneously elucidating the underlying molecular mechanisms involved. We assessed the immune binding activity of TM utilizing 86 sera from allergic patients and evaluated sensitization and allergenicity through two different types of mouse models. The dot-blot and basophil activation test assays revealed strong immunoreactivity for HTM, ATM, and MTM, with HTM exhibiting significantly lower levels compared to ATM. In the BALB/c mouse sensitization model, all TM groups stimulated the production of specific antibodies, elicited IgE-mediated immediate hypersensitivity responses, and caused an imbalance in the IL-4/IFN-γ ratio. Similarly, in the BALB/c mouse model of food allergy, all TM variants induced IgE-mediated type I hypersensitivity responses, leading to the development of food allergies characterized by clinical symptoms and an imbalance in the IL-4/IFN-γ ratio. The stimulation ability of sensitization and the severity of food allergies consistently ranked as ATM > MTM > HTM. Through an in-depth analysis of non-polar amino acid frequency and polar hydrogen bonds, HTM exhibited higher frequencies of non-polar amino acids in its amino acid sequence and IgE epitopes, in comparison with ATM and MTM. Furthermore, HTM demonstrated a lower number of polar hydrogen bonds in IgE epitopes. Overall, HTM exhibited the lowest allergenic potential in both allergic patients and mouse models, likely due to its lower polarity in the amino acid sequence and IgE epitopes.


Assuntos
Alérgenos , Epitopos , Imunoglobulina E , Camundongos Endogâmicos BALB C , Tropomiosina , Animais , Tropomiosina/imunologia , Tropomiosina/química , Imunoglobulina E/imunologia , Camundongos , Humanos , Epitopos/imunologia , Alérgenos/imunologia , Alérgenos/química , Feminino , Masculino , Adulto , Aminoácidos , Moluscos/imunologia , Hipersensibilidade Alimentar/imunologia , Adulto Jovem , Criança , Adolescente , Pessoa de Meia-Idade , Pré-Escolar , Sequência de Aminoácidos
4.
Langmuir ; 40(16): 8373-8392, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38606767

RESUMO

Amorphous calcium carbonate (ACC) is an important precursor phase for the formation of aragonite crystals in the shells of Pinctada fucata. To identify the ACC-binding protein in the inner aragonite layer of the shell, extracts from the shell were used in the ACC-binding experiments. Semiquantitative analyses using liquid chromatography-mass spectrometry revealed that paramyosin was strongly associated with ACC in the shell. We discovered that paramyosin, a major component of the adductor muscle, was included in the myostracum, which is the microstructure of the shell attached to the adductor muscle. Purified paramyosin accumulates calcium carbonate and induces the prism structure of aragonite crystals, which is related to the morphology of prism aragonite crystals in the myostracum. Nuclear magnetic resonance measurements revealed that the Glu-rich region was bound to ACC. Activity of the Glu-rich region was stronger than that of the Asp-rich region. These results suggest that paramyosin in the adductor muscle is involved in the formation of aragonite prisms in the myostracum.


Assuntos
Exoesqueleto , Carbonato de Cálcio , Pinctada , Tropomiosina , Animais , Pinctada/química , Pinctada/metabolismo , Carbonato de Cálcio/química , Carbonato de Cálcio/metabolismo , Exoesqueleto/química , Exoesqueleto/metabolismo , Tropomiosina/química , Tropomiosina/metabolismo
5.
J Mol Biol ; 436(6): 168498, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38387550

RESUMO

Cardiac muscle contraction occurs due to repetitive interactions between myosin thick and actin thin filaments (TF) regulated by Ca2+ levels, active cross-bridges, and cardiac myosin-binding protein C (cMyBP-C). The cardiac TF (cTF) has two nonequivalent strands, each comprised of actin, tropomyosin (Tm), and troponin (Tn). Tn shifts Tm away from myosin-binding sites on actin at elevated Ca2+ levels to allow formation of force-producing actomyosin cross-bridges. The Tn complex is comprised of three distinct polypeptides - Ca2+-binding TnC, inhibitory TnI, and Tm-binding TnT. The molecular mechanism of their collective action is unresolved due to lack of comprehensive structural information on Tn region of cTF. C1 domain of cMyBP-C activates cTF in the absence of Ca2+ to the same extent as rigor myosin. Here we used cryo-EM of native cTFs to show that cTF Tn core adopts multiple structural conformations at high and low Ca2+ levels and that the two strands are structurally distinct. At high Ca2+ levels, cTF is not entirely activated by Ca2+ but exists in either partially or fully activated state. Complete dissociation of TnI C-terminus is required for full activation. In presence of cMyBP-C C1 domain, Tn core adopts a fully activated conformation, even in absence of Ca2+. Our data provide a structural description for the requirement of myosin to fully activate cTFs and explain increased affinity of TnC to Ca2+ in presence of active cross-bridges. We suggest that allosteric coupling between Tn subunits and Tm is required to control actomyosin interactions.


Assuntos
Actinas , Troponina , Actinas/metabolismo , Actomiosina , Cálcio/metabolismo , Microscopia Crioeletrônica , Miosinas/química , Tropomiosina/química , Troponina/química , Troponina/metabolismo
6.
Int J Biol Macromol ; 262(Pt 2): 130099, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38342255

RESUMO

The study aimed to assay the allergenicity of shrimp tropomyosin (TM) following covalent conjugation with quercetin (QR) and chlorogenic acid (CA). The structure of the TM-polyphenol covalent conjugates was examined by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), circular dichroism (CD), fluorescence, differential scanning calorimetry (DSC), and Fourier Transform infrared spectroscopy (FTIR). Potential allergenicity was evaluated using in vitro and in vivo methods. The results showed that QR and CA induced structural changes in TM through aggregation. RBL-2H3 cell results showed that TM-QR and TM-CA covalent conjugates reduced the release of ß-hexosaminidase and histamine, respectively. In the mice model, TM-QR and TM-CA covalent conjugates reduced the level of IgE, IgG, IgG1, histamine, and mMCP-1 in sera. Furthermore, the allergenicity was reduced by suppressing Th2-related cytokines (IL-4, IL-5, IL-13) and promoting Th1-related cytokines (IFN-γ). These research findings demonstrate that the covalent binding of TM with QR and CA, modifies the allergenic epitopes of shrimp TM, thereby reducing its potential allergenicity. This approach holds practical applications in the production of low-allergenicity food within the food industry.


Assuntos
Alérgenos , Tropomiosina , Camundongos , Animais , Tropomiosina/química , Alérgenos/química , Ácido Clorogênico/química , Quercetina , Histamina , Imunoglobulina E/metabolismo , Citocinas
7.
Arch Biochem Biophys ; 752: 109881, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38185233

RESUMO

Tropomyosin (Tpm) is a regulatory actin-binding protein involved in Ca2+ activation of contraction of striated muscle. In human slow skeletal muscles, two distinct Tpm isoforms, γ and ß, are present. They interact to form three types of dimeric Tpm molecules: γγ-homodimers, γß-heterodimers, or ßß-homodimers, and a majority of the molecules are present as γß-Tpm heterodimers. Point mutation R91P within the TPM3 gene encoding γ-Tpm is linked to the condition known as congenital fiber-type disproportion (CFTD), which is characterized by severe muscle weakness. Here, we investigated the influence of the R91P mutation in the γ-chain on the properties of the γß-Tpm heterodimer. We found that the R91P mutation impairs the functional properties of γß-Tpm heterodimer more severely than those of earlier studied γγ-Tpm homodimer carrying this mutation in both γ-chains. Since a significant part of Tpm molecules in slow skeletal muscle is present as γß-heterodimers, our results explain why this mutation leads to muscle weakness in CFTD.


Assuntos
Doenças Musculares , Tropomiosina , Humanos , Tropomiosina/química , Músculo Esquelético/metabolismo , Doenças Musculares/genética , Mutação , Debilidade Muscular/metabolismo , Actinas/genética , Actinas/metabolismo
8.
J Sci Food Agric ; 104(3): 1564-1571, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37807842

RESUMO

BACKGROUND: Myofibrillar proteins, the main contributors to the quality of meat products, are the main structural protein component of muscle and have functional properties such as the formation of a 3D protein gel network and water binding. The susceptibility of meat-derived proteins to heat-induced aggregation is the functional constraint that hinders their applications in industry, and so establishing an effective but simple method to improve their thermostability of the proteins is of great importance. RESULTS: In the present study, we describe an easy approach to perform high colloidal thermostability of both paramyosin and actin by mixing them at low ionic strength. The improvement in thermal stability was found to be derived from intermolecular interactions between these two different proteins through non-covalent binding with each other. Consequently, such interactions protected each of them from thermal-induced degradation compared to individual components. Notably, this binary native protein mixture rather than single paramyosin or actin component has the ability to form protein hydrogels with a shear-thinning and reversible sol-gel transformation behavior, which is markedly different from most of reported heat-induced, denatured protein hydrogels. CONCLUSION: The present study not only presents a facile and effective strategy for improvement of the thermal stability and gel properties of a binary paramyosin and actin mixture, but also enhances our understanding of how mutual interactions of protein components affect their physicochemical and functional properties. © 2023 Society of Chemical Industry.


Assuntos
Actinas , Tropomiosina , Tropomiosina/química , Actinas/química , Músculos/metabolismo , Hidrogéis
9.
Food Chem ; 438: 137920, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38000156

RESUMO

The digestion products of Penaeus vannamei still had sensitizing and eliciting capacity; however, the underlying mechanism has not been identified. This study analyzed the structural changes of shrimp proteins during digestion, predicted the linearmimotopepeptides and first validated the allergenicity of immunodominantepitopes with binding ability. The results showed that the shrimp proteins were gradually degraded into small peptides during digestion, which might lead to the destruction of linear epitopes. However, these peptides carried IgE epitopes that still trigger allergic reactions. Eighteen digestion-resistant epitopes were predicted by multiple immunoinformatics tools and digestomics. Five epitopes contained more critical amino acids and had strong molecular docking (P1: DSGVGIYAPDAEA, P2: EGELKGTYYPLTGM, P3: GRQGDPHGKFDLPPGV, P4: IFAWPHKDNNGIE, P5: KSTESSVTVPDVPSIHD), and these epitopes were identified as novel IgE binding immunodominantepitopes in Penaeus vannamei. These findings provide novel insight into allergenic epitopes, which might serve as key targets for reducing the allergenicity in shrimp.


Assuntos
Penaeidae , Animais , Sequência de Aminoácidos , Epitopos Imunodominantes , Alérgenos/química , Simulação de Acoplamento Molecular , Imunoglobulina E , Peptídeos , Epitopos/química , Digestão , Tropomiosina/química
10.
FASEB J ; 38(1): e23400, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38156416

RESUMO

Tropomyosin (Tpm) is an actin-binding protein central to muscle contraction regulation. The Tpm sequence consists of periodic repeats corresponding to seven actin-binding sites, further divided in two functionally distinct halves. To clarify the importance of the first and second halves of the actin-binding periods in regulating the interaction of myosin with actin, we introduced hypercontractile mutations D20H, E181K located in the N-terminal halves of periods 1 and 5 and hypocontractile mutations E41K, N202K located in the C-terminal halves of periods 1 and 5 of the skeletal muscle Tpm isoform Tpm2.2. Wild-type and mutant Tpms displayed similar actin-binding properties, however, as revealed by FRET experiments, the hypercontractile mutations affected the binding geometry and orientation of Tpm2.2 on actin, causing a stimulation of myosin motor performance. Contrary, the hypocontractile mutations led to an inhibition of both, actin activation of the myosin ATPase and motor activity, that was more pronounced than with wild-type Tpm2.2. Single ATP turnover kinetic experiments indicate that the introduced mutations have opposite effects on product release kinetics. While the hypercontractile Tpm2.2 mutants accelerated product release, the hypocontractile mutants decelerated product release from myosin, thus having either an activating or inhibitory influence on myosin motor performance, which agrees with the muscle disease phenotypes caused by these mutations.


Assuntos
Doenças Musculares , Tropomiosina , Actinas/metabolismo , Músculo Esquelético/metabolismo , Doenças Musculares/genética , Doenças Musculares/metabolismo , Mutação , Miosinas/genética , Miosinas/metabolismo , Tropomiosina/química , Animais
11.
Int J Mol Sci ; 24(22)2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-38003336

RESUMO

A novel variant of unknown significance c.8A > G (p.Glu3Gly) in TPM3 was detected in two unrelated families. TPM3 encodes the transcript variant Tpm3.12 (NM_152263.4), the tropomyosin isoform specifically expressed in slow skeletal muscle fibers. The patients presented with slowly progressive muscle weakness associated with Achilles tendon contractures of early childhood onset. Histopathology revealed features consistent with a nemaline rod myopathy. Biochemical in vitro assays performed with reconstituted thin filaments revealed defects in the assembly of the thin filament and regulation of actin-myosin interactions. The substitution p.Glu3Gly increased polymerization of Tpm3.12, but did not significantly change its affinity to actin alone. Affinity of Tpm3.12 to actin in the presence of troponin ± Ca2+ was decreased by the mutation, which was due to reduced interactions with troponin. Altered molecular interactions affected Ca2+-dependent regulation of the thin filament interactions with myosin, resulting in increased Ca2+ sensitivity and decreased relaxation of the actin-activated myosin ATPase activity. The hypercontractile molecular phenotype probably explains the distal joint contractions observed in the patients, but additional research is needed to explain the relatively mild severity of the contractures. The slowly progressive muscle weakness is most likely caused by the lack of relaxation and prolonged contractions which cause muscle wasting. This work provides evidence for the pathogenicity of the TPM3 c.8A > G variant, which allows for its classification as (likely) pathogenic.


Assuntos
Contratura , Miopatias da Nemalina , Humanos , Pré-Escolar , Actinas/genética , Tropomiosina/genética , Tropomiosina/química , Debilidade Muscular/genética , Debilidade Muscular/patologia , Miopatias da Nemalina/genética , Mutação , Miosinas/genética , Contratura/patologia , Fenótipo , Troponina/genética , Músculo Esquelético/patologia
12.
J Agric Food Chem ; 71(42): 15796-15808, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37816072

RESUMO

Tropomyosin (TM) is a major crustacean allergen, and the present studies have tried to reduce its allergenicity by processing technologies. However, most research stopped on the allergenicity and structure of allergens, while information about epitopes was less. In this study, we first investigated the effects of cold plasma (CP) combined with glycation (CP-G) treatment on the processing and trypsin cleavage sites of TM from shrimp (Penaeus chinensis). The results showed a significant reduction in the IgE-binding capacity of TM after CP-G treatment, with a maximum reduction of 30%. This reduction was associated with the combined effects: modification induced by CP destroyed the core helical structure (D137 and E218) and occupied the potential glycation sites, leading to sequent glycation on conserved areas of TM, especially the epitope L130-Q147. Additionally, CP-G treatment decreased the digestion stability of TM by increasing the number of cleavage sites of trypsin and improving the efficiency of some sites, including K5, K6, K30, and R133, resulting in a lower IgE-binding capacity of digestion products, which fell to a maximum of 20%. Thus, CP-G is a valuable and reliable processing technology for the desensitization of aquatic products.


Assuntos
Penaeidae , Gases em Plasma , Animais , Tropomiosina/química , Reação de Maillard , Tripsina , Alérgenos/química , Penaeidae/química , Imunoglobulina E/química , Epitopos/química , Digestão
13.
Biochemistry ; 62(14): 2137-2146, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37379571

RESUMO

The disordered and basic C-terminal 14 residues of human troponin T (TnT) are essential for full inhibition of actomyosin ATPase activity at low Ca2+ levels and for limiting activation at saturating Ca2+. In previous studies, stepwise truncation of the C-terminal region of TnT increased activity in proportion to the number of positive charges eliminated. To define key basic residues more closely, we generated phosphomimetic-like mutants of TnT. Phosphomimetic mutants were chosen because of reports that phosphorylation of TnT, including sites within the C terminal region, depressed activity, contrary to our expectations. Four constructs were made where one or more Ser and Thr residues were replaced with Asp residues. The S275D and T277D mutants, near the IT helix and adjacent to basic residues, produced the greatest activation of ATPase rates in solution; the effects of the S275D mutant were recapitulated in muscle fiber preparations with enhanced myofilament Ca2+ sensitivity. Actin filaments containing S275D TnT were also shown to be incapable of populating the inactive state at low Ca2+ levels. Actin filaments containing both S275D/T284D were not statistically different from those containing only S275D in both solution and cardiac muscle preparation studies. Finally, actin filaments containing T284D TnT, closer to the C-terminus and not adjacent to a basic residue, had the smallest effect on activity. Thus, the effects of negative charge placement in the C-terminal region of TnT were greatest near the IT helix and adjacent to a basic residue.


Assuntos
Actinas , Troponina T , Humanos , Troponina T/genética , Troponina T/química , Actinas/química , Citoesqueleto de Actina , Miosinas/genética , Adenosina Trifosfatases , Cálcio/química , Tropomiosina/química
14.
J Agric Food Chem ; 71(23): 9120-9134, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37257052

RESUMO

The mechanism by which thermal/pressure processing influences the allergenicity of shrimp (Penaeus vannamei) was explored by anaphylaxis in mice, the protein structure, gastrointestinal digestion, and linear epitopes. Roasting induced the unfolding of the structure, which may reduce the allergenicity, but it made more linear epitopes to be exposed, causing mice to exhibit similar systemic anaphylaxis as mice fed with the raw shrimp protein (p > 0.05). However, the roasted + reverse-pressure-sterilized shrimp can significantly reduce specific antibodies, mast cell degranulation, vascular permeability, and histopathological morphology in mice compared with the raw and roasted shrimp (p < 0.05) because reverse-pressure sterilization causes protein to aggregate, hiding the heat/digested stable epitopes of arginine kinase (Glu59-Ser63, Asn112-Lys118, Leu131-Phe136, and Ser158-Glu162) and sarcoplasmic calcium-binding protein (Asn57-Phe67, Ser159-Cys165, and Glu126-Ala130) inside a 3D structure, while gastrointestinal digestion can destroy immunodominant, minor epitopes and the epitopes exposed by roasting. Meanwhile, the low binding frequency of IgE to troponin C was also responsible for maintaining the hypoallergenicity of shrimp.


Assuntos
Anafilaxia , Penaeidae , Camundongos , Animais , Epitopos/química , Alérgenos/química , Tropomiosina/química , Digestão
15.
Int J Mol Sci ; 24(9)2023 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-37176047

RESUMO

In the myocardium, the TPM1 gene expresses two isoforms of tropomyosin (Tpm), alpha (αTpm; Tpm 1.1) and kappa (κTpm; Tpm 1.2). κTpm is the result of alternative splicing of the TPM1 gene. We studied the structural features of κTpm and its regulatory function in the atrial and ventricular myocardium using an in vitro motility assay. We tested the possibility of Tpm heterodimer formation from α- and κ-chains. Our result shows that the formation of ακTpm heterodimer is thermodynamically favorable, and in the myocardium, κTpm most likely exists as ακTpm heterodimer. Using circular dichroism, we compared the thermal unfolding of ααTpm, ακTpm, and κκTpm. κκTpm had the lowest stability, while the ακTpm was more stable than ααTpm. The differential scanning calorimetry results indicated that the thermal stability of the N-terminal part of κκTpm is much lower than that of ααTpm. The affinity of ααTpm and κκTpm to F-actin did not differ, and ακTpm interacted with F-actin significantly worse. The troponin T1 fragment enhanced the κκTpm and ακTpm affinity to F-actin. κκTpm differently affected the calcium regulation of the interaction of pig and rat ventricular myosin with the thin filament. With rat myosin, calcium sensitivity of thin filaments containing κκTpm was significantly lower than that with ααTpm and with pig myosin, and the sensitivity did not differ. Thin filaments containing κκTpm and ακTpm were better activated by pig atrial myosin than those containing ααTpm.


Assuntos
Actinas , Cálcio , Animais , Ratos , Suínos , Actinas/química , Cálcio/análise , Tropomiosina/genética , Tropomiosina/química , Citoesqueleto de Actina/química , Miosinas/análise
16.
J Sci Food Agric ; 103(12): 5819-5830, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37092326

RESUMO

BACKGROUND: Snail allergy is rare but can be fatal. Pila polita, a freshwater snail, was considered as a popular exotic food, particularly in tropical countries, and consumed in processed forms. Thus, the purpose of this study was to identify the major and cross-reactive allergens of P. polita and to determine the impact of food processing on the allergen stability. RESULTS: Sodium dodecyl sulfate-polyacrylamide gel electrophoresis fractionated raw snail extract to approximately 24 protein bands, between 9 and 245 kDa. The prominent band at 33 kDa was detected in all raw and processed snail extracts. Immunoblotting tests of the raw extract demonstrated 19 immunoglobulin E (IgE)-binding proteins, and four of them, at 30, 35, 42 and 49 kDa, were revealed as the major IgE-binding proteins of P. polita. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry identified the 49 and 42 kDa major allergens as actin, whereas the 30 and 35 kDa major allergens were identified as tropomyosin. Immunoblotting revealed that the raw snail had more allergenic proteins than the processed snail. The degree of allergenicity in decreasing order was raw > brine pickled> boiled > roasted > fried > vinegar pickled. The presence of cross-reactivity between P. polita and the shellfish tested was exhibited with either no, complete, or partial inhibitions. CONCLUSION: Actin and tropomyosin were identified as the major and cross-reactive allergens of P. polita among local patients with snail allergy. Those major allergens are highly stable to high temperatures, acidic pH, and high salt, which might played a crucial role in snail allergy in Malaysia. © 2023 Society of Chemical Industry.


Assuntos
Alérgenos , Hipersensibilidade Alimentar , Animais , Humanos , Alérgenos/química , Tropomiosina/química , Actinas , Imunoglobulina E , Caramujos , Manipulação de Alimentos , Eletroforese em Gel de Poliacrilamida , Água Doce , Immunoblotting
17.
Methods Mol Biol ; 2652: 405-437, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37093489

RESUMO

Binding affinity of an individual binding site of an intrinsically disordered protein for its folded partner may be moderate. In such cases, a straightforward determination of the structure of the binding interface is difficult. We offer a hybrid protocol combining NMR chemical shift information, NMR spectral data on amino acid residue sequence substitution effects, residual dipolar coupling, and molecular dynamics simulation that allowed us to determine the structure of a complex between the intrinsically disordered tropomyosin-binding site of leiomodin and a coiled-coil peptide modeling the N-terminal fragment of tropomyosin. The protocol can be used for other moderate-affinity complexes composed of an intrinsically disordered peptide bound to a structured protein partner.


Assuntos
Proteínas Intrinsicamente Desordenadas , Tropomiosina , Tropomiosina/química , Tropomiosina/metabolismo , Ressonância Magnética Nuclear Biomolecular/métodos , Espectroscopia de Ressonância Magnética , Ligação Proteica , Proteínas Intrinsicamente Desordenadas/química , Peptídeos/metabolismo
18.
J Agric Food Chem ; 71(16): 6445-6457, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37057995

RESUMO

Antarctic krill (Euphausia superba), a shrimp-like marine crustacean, has become a beneficial source of high-quality animal protein. Meanwhile, a special focus has been placed on its potential sensitization issue. In this study, a 35 kDa protein was purified and identified to be Antarctic krill tropomyosin (AkTM) by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). The purified TM showed a strong IgE-binding capacity to shrimp/crab-allergic patients' sera, indicating that TM is the primary allergen in Antarctic krill. Simulated gastrointestinal digestion revealed that the digestion stability of TM to pepsin was higher than that to trypsin. The strong degranulation triggered by TM in RBL-2H3 cells suggested that AkTM has a strong sensitization capacity. The TM-sensitized BALB/c mice displayed severe anaphylactic symptoms; high levels of TM-specific IgE, sIgG1, and histamine; and increased IL-4, indicating that AkTM could provoke IgE-mediated allergic reactions. Bioinformatics prediction, indirect competition ELISA, and mast cell degranulation assay were used to map the antigenic epitopes of AkTM. Finally, nine peptides of T43-58, T88-101, T111-125, T133-143, T144-155, T183-197, T223-236, T249-261, and T263-281 were identified as the linear epitopes of AkTM. The findings may help us develop efficient food processing techniques to reduce krill allergy and gain a deeper comprehension of the allergenicity of krill allergens.


Assuntos
Euphausiacea , Animais , Camundongos , Euphausiacea/química , Tropomiosina/química , Epitopos/química , Espectrometria de Massas em Tandem , Crustáceos , Alérgenos/química , Imunoglobulina E , Regiões Antárticas
19.
Int J Biol Macromol ; 234: 123690, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36801287

RESUMO

Tropomyosin (TM) is a major allergen in crustaceans, and its allergenicity mainly depends on epitopes. In this study, the locations of IgE-binding sites between plasma active particles and allergenic peptides of TM in shrimp (Penaeus chinensis) during cold plasma (CP) treatment were explored. Results showed that the IgE-binding ability of two critical peptides (P1 and P2) increased and then decreased by 9.97 % and 19.50 % after 15 min of CP treatment. It was the first time to show that the contribution rate of target active particles was •O > e(aq)- > â€¢OH for reducing IgE-binding ability by 23.51 %-45.40 %, and the contribution rates of other long-lived particles including NO3- and NO2- was about 54.60 %-76.49 %. In addition, Glu131 and Arg133 in P1 and Arg255 in P2 were certified as the IgE sites. These results were helpful for accurately controlling TM allergenicity, shedding more light on allergenicity mitigation during food processing.


Assuntos
Penaeidae , Gases em Plasma , Animais , Tropomiosina/química , Penaeidae/química , Sequência de Aminoácidos , Alérgenos/química , Peptídeos , Sítios de Ligação , Imunoglobulina E
20.
Food Chem ; 414: 135686, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-36827779

RESUMO

To solve the lack of rapid and accurate methods for allergen identification and traceability, an infrared spectroscopic chemometric analytical model (IR-CAM) was established by combining infrared spectroscopy with principal component and cluster analysis. By comparing the second derivative infrared (SD-IR) spectra of 5 proteins and 14 crustaceans and shellfish tropomyosin (TM), 8 shared peaks and unique fingerprint peaks in the amide III region were found for crabs, shrimps, and shellfish. Based on the unique fingerprint peaks coexisting with shared peaks, allergen TM in crustaceans and shellfish could be identified within 10 min (cf. ELISA âˆ¼ 4 h). Concurrently, the species differentiation of TM at the Class/Family level was achieved based on IR-CAM. Validation by fermented aquatic products TM (n = 60) demonstrated that the developed IR-CAM could simultaneously identify and differentiate TM in crustaceans and shellfish accurately. It could be applied for allergen detection and traceability of aquatic products on an antibody-free basis.


Assuntos
Braquiúros , Tropomiosina , Animais , Tropomiosina/química , Alérgenos/química , Quimiometria , Frutos do Mar/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...