Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 416
Filtrar
1.
Biochimie ; 193: 78-89, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34706251

RESUMO

Protozoan parasites with complex life cycles have high mortality rates affecting billions of human lives. Available anti-parasitic drugs are inadequate due to variable efficacy, toxicity, poor patient compliance and drug-resistance. Hence, there is an urgent need for the development of safer and better chemotherapeutics. Mitogen Activated Protein Kinases (MAPKs) have drawn much attention as potential drug targets. This review summarizes unique structural and functional features of MAP kinases and their possible role in pathogenesis of obligate intracellular protozoan parasites namely, Leishmania, Trypanosoma, Plasmodium and Toxoplasma. It also provides an overview of available knowledge concerning the target proteins of parasite MAPKs and the need to understand and unravel unknown interaction network(s) of MAPK(s).


Assuntos
Leishmania , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Plasmodium , Proteínas de Protozoários/metabolismo , Toxoplasma , Trypanosoma , Animais , Antiparasitários/uso terapêutico , Resistência a Medicamentos , Humanos , Leishmania/enzimologia , Leishmania/patogenicidade , Doenças Parasitárias/tratamento farmacológico , Doenças Parasitárias/enzimologia , Doenças Parasitárias/parasitologia , Plasmodium/enzimologia , Plasmodium/patogenicidade , Toxoplasma/enzimologia , Toxoplasma/patogenicidade , Trypanosoma/enzimologia , Trypanosoma/patogenicidade
2.
Protein Expr Purif ; 192: 106041, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34953978

RESUMO

The gene encoding the cAMP-dependent protein kinase (PKA) catalytic subunit-like protein PKAC1 from the Venezuelan TeAp-N/D1 strain of Trypanosoma equiperdum was cloned, and the recombinant TeqPKAC1 protein was overexpressed in bacteria. A major polypeptide with an apparent molecular mass of ∼38 kDa was detected by SDS-polyacrylamide gel electrophoresis, and immunoblotting using antibodies against the human PKA catalytic subunit α. Unfortunately, most of the expressed TeqPKAC1 was highly insoluble. Polypeptides of 36-38 kDa and 45-50 kDa were predominantly seen by immunoblotting in the bacterial particulate and cytosolic fractions, respectively. Since the incorporation of either 4% Triton X-100 or 3% sarkosyl or a mixture of 10 mM MgCl2 and 1 mM ATP (MgATP) improved the solubilization of TeqPKAC1, we used a combination of Triton X-100, sarkosyl and MgATP to solubilize the recombinant protein. TeqPKAC1 was purified by first reconstituting a hybrid holoenzyme between the recombinant protein and a mammalian poly-His-tagged PKA regulatory subunit that was immobilized on a Ni2+-chelating affinity resin, and then by eluting TeqPKAC1 using cAMP. TeqPKAC1 was functional given that it was capable of phosphorylating PKA catalytic subunit substrates, such as kemptide (LRRASLG), histone type II-AS, and the peptide SP20 (TTYADFIASGRTGRRNSIHD), and was inhibited by the peptide IP20 (TTYADFIASGRTGRRNAIHD), which contains the inhibitory motif of the PKA-specific heat-stable inhibitor PKI-α. Optimal enzymatic activity was obtained at 37 °C and pH 8.0-9.0; and the order of effectiveness of nucleotide triphosphates and divalent cations was ATP ¼ GTP â‰… ITP and Mg2+ â‰… Mn2+ â‰… Fe2+ ¼ Ca2+ â‰… Zn2, respectively.


Assuntos
Clonagem Molecular , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Trypanosoma/enzimologia , AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/química , Proteínas Quinases Dependentes de AMP Cíclico/isolamento & purificação , Fosforilação , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/isolamento & purificação , Subunidades Proteicas/metabolismo , Proteínas de Protozoários/química , Proteínas de Protozoários/isolamento & purificação , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Solubilidade , Trypanosoma/química , Trypanosoma/genética
3.
PLoS Negl Trop Dis ; 15(12): e0009985, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34919562

RESUMO

African trypanosomosis, a parasitic disease caused by protozoan parasites transmitted by tsetse flies, affects both humans and animals in sub-Saharan Africa. While the human form (HAT) is now limited to foci, the animal form (AAT) is widespread and affects the majority of sub-Saharan African countries, and constitutes a real obstacle to the development of animal breeding. The control of AAT is hampered by a lack of standardized and easy-to used diagnosis tools. This study aimed to evaluate the diagnostic potential of TbLysoPLA and TbGK proteins from Trypanosoma brucei brucei for AAT serodiagnosis in indirect ELISA using experimental and field sera, individually, in combination, and associated with the BiP C-terminal domain (C25) from T. congolense. These novel proteins were characterized in silico, and their sequence analysis showed strong identities with their orthologs in other trypanosomes (more than 60% for TbLysoPLA and more than 82% for TbGK). TbLysoPLA displays a low homology with cattle (<35%) and Piroplasma (<15%). However, TbGK shares more than 58% with cattle and between 45-55% with Piroplasma. We could identify seven predicted epitopes on TbLysoPLA sequence and 14 potential epitopes on TbGK. Both proteins were recombinantly expressed in Escherichia coli. Their diagnostic potential was evaluated by ELISA with sera from cattle experimentally infected with T. congolense and with T.b. brucei, sera from cattle naturally infected with T. congolense, T. vivax and T.b. brucei. Both proteins used separately had poor diagnostic performance. However, used together with the BiP protein, they showed 60% of sensitivity and between 87-96% of specificity, comparable to reference ELISA tests. In conclusion, we showed that the performance of the protein combinations is much better than the proteins tested individually for the diagnosis of AAT.


Assuntos
Ensaio de Imunoadsorção Enzimática/métodos , Glicerol Quinase/sangue , Lisofosfolipase/sangue , Proteínas de Protozoários/sangue , Testes Sorológicos/métodos , Trypanosoma/imunologia , Tripanossomíase Bovina/diagnóstico , Animais , Bovinos , Glicerol Quinase/genética , Glicerol Quinase/imunologia , Lisofosfolipase/genética , Lisofosfolipase/imunologia , Proteínas de Protozoários/genética , Proteínas de Protozoários/imunologia , Trypanosoma/classificação , Trypanosoma/enzimologia , Trypanosoma/genética , Tripanossomíase Bovina/sangue , Tripanossomíase Bovina/parasitologia
4.
Trop Biomed ; 38(3): 311-317, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34508338

RESUMO

Trypanosoma evansi, the causative agent of surra or camel trypanosomiasis, is characterized by the widest geographic distribution and host range among the known trypanosomes. Its zoonotic importance and increasing evidence of drug resistance necessitate the discovery of new drug targets. The drug discovery process entails finding an exploitable difference between the host and the parasite. In this study, the thymidine metabolic pathways in camel and T. evansi were compared by analyzing their metabolic maps, protein sequences, domain and motif contents, phylogenetic relationships, and 3D structure models. The two organisms were revealed to recycle thymidine differently: performed by thymidine phosphorylase in camels (Camelus genus), this role in T. evansi was associated with nucleoside deoxyribosyltransferase (NDRT), a unique trypanosomal enzyme absent in camels. Thymidine in T. evansi seems to be governed by thymine through NDRT, whereas in camels, thymidine can be produced from thymidylate via 5'-nucleotidase. As a result, NDRT may be a promising drug target against T. evansi.


Assuntos
Antiprotozoários/farmacologia , Pentosiltransferases , Timidina/metabolismo , Trypanosoma , Tripanossomíase , Animais , Camelus , Biologia Computacional , Filogenia , Prevalência , Trypanosoma/enzimologia , Tripanossomíase/tratamento farmacológico , Tripanossomíase/veterinária
5.
Bioorg Med Chem ; 46: 116365, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34419821

RESUMO

Leishmaniasis and trypanosomiasis are endemic neglected disease in South America and Africa and considered a significant public health problem, mainly in poor communities. The limitations of the current available therapeutic options, including the lack of specificity, relatively high toxicity, and the drug resistance acquiring, drive the constant search for new targets and therapeutic options. Advances in knowledge of parasite biology have revealed essential enzymes involved in the replication, survival, and pathogenicity of Leishmania and Trypanosoma species. In this scenario, cysteine proteases have drawn the attention of researchers and they are being proposed as promising targets for drug discovery of antiprotozoal drugs. In this systematic review, we will provide an update on drug discovery strategies targeting the cysteine proteases as potential targets for chemotherapy against protozoal neglected diseases.


Assuntos
Cisteína Proteases/metabolismo , Inibidores de Cisteína Proteinase/farmacologia , Descoberta de Drogas , Leishmania/efeitos dos fármacos , Tripanossomicidas/farmacologia , Trypanosoma/efeitos dos fármacos , Inibidores de Cisteína Proteinase/síntese química , Inibidores de Cisteína Proteinase/química , Humanos , Leishmania/enzimologia , Leishmaniose/tratamento farmacológico , Estrutura Molecular , Testes de Sensibilidade Parasitária , Tripanossomicidas/síntese química , Tripanossomicidas/química , Trypanosoma/enzimologia , Tripanossomíase/tratamento farmacológico
6.
Eur J Med Chem ; 220: 113470, 2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-33940464

RESUMO

We have recently reported on the development and trypanocidal activity of a class of inhibitors of Trypanosome Alternative Oxidase (TAO) that are targeted to the mitochondrial matrix by coupling to lipophilic cations via C14 linkers to enable optimal interaction with the enzyme's active site. This strategy resulted in a much-enhanced anti-parasite effect, which we ascribed to the greater accumulation of the compound at the location of the target protein, i.e. the mitochondrion, but to date this localization has not been formally established. We therefore synthesized a series of fluorescent analogues to visualize accumulation and distribution within the cell. The fluorophore chosen, julolidine, has the remarkable extra feature of being able to function as a viscosity sensor and might thus additionally act as a probe of the cellular glycerol that is expected to be produced when TAO is inhibited. Two series of fluorescent inhibitor conjugates incorporating a cationic julolidine-based viscosity sensor were synthesized and their photophysical and biological properties were studied. These probes display a red emission, with a high signal-to-noise ratio (SNR), using both single- and two-photon excitation. Upon incubation with T. brucei and mammalian cells, the fluorescent inhibitors 1a and 2a were taken up selectively in the mitochondria as shown by live-cell imaging. Efficient partition of 1a in functional isolated (rat liver) mitochondria was estimated to 66 ± 20% of the total. The compounds inhibited recombinant TAO enzyme in the submicromolar (1a, 2c, 2d) to low nanomolar range (2a) and were effective against WT and multidrug-resistant trypanosome strains (B48, AQP1-3 KO) in the submicromolar range. Good selectivity (SI > 29) over mammalian HEK cells was observed. However, no viscosity-related shift could be detected, presumably because the glycerol was produced cytosolically, and released through aquaglyceroporins, whereas the probe was located, virtually exclusively, in the trypanosome's mitochondrion.


Assuntos
Inibidores Enzimáticos/farmacologia , Corantes Fluorescentes/farmacologia , Proteínas Mitocondriais/antagonistas & inibidores , Oxirredutases/antagonistas & inibidores , Proteínas de Plantas/antagonistas & inibidores , Trypanosoma brucei brucei/efeitos dos fármacos , Trypanosoma/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Teoria da Densidade Funcional , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/química , Células HEK293 , Humanos , Microscopia de Fluorescência , Proteínas Mitocondriais/metabolismo , Estrutura Molecular , Imagem Óptica , Oxirredutases/metabolismo , Proteínas de Plantas/metabolismo , Relação Estrutura-Atividade , Trypanosoma/enzimologia , Trypanosoma brucei brucei/enzimologia
7.
Nat Commun ; 12(1): 1052, 2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33594070

RESUMO

The parasitic protist Trypanosoma brucei is the causative agent of Human African Trypanosomiasis, also known as sleeping sickness. The parasite enters the blood via the bite of the tsetse fly where it is wholly reliant on glycolysis for the production of ATP. Glycolytic enzymes have been regarded as challenging drug targets because of their highly conserved active sites and phosphorylated substrates. We describe the development of novel small molecule allosteric inhibitors of trypanosome phosphofructokinase (PFK) that block the glycolytic pathway resulting in very fast parasite kill times with no inhibition of human PFKs. The compounds cross the blood brain barrier and single day oral dosing cures parasitaemia in a stage 1 animal model of human African trypanosomiasis. This study demonstrates that it is possible to target glycolysis and additionally shows how differences in allosteric mechanisms may allow the development of species-specific inhibitors to tackle a range of proliferative or infectious diseases.


Assuntos
Glicólise/efeitos dos fármacos , Fosfofrutoquinases/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Trypanosoma/enzimologia , Tripanossomíase Africana/metabolismo , Tripanossomíase Africana/parasitologia , Doença Aguda , Regulação Alostérica/efeitos dos fármacos , Animais , Células Hep G2 , Humanos , Concentração Inibidora 50 , Estimativa de Kaplan-Meier , Camundongos , Parasitos/efeitos dos fármacos , Fosfofrutoquinases/química , Fosfofrutoquinases/metabolismo , Ligação Proteica/efeitos dos fármacos , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacocinética , Inibidores de Proteínas Quinases/uso terapêutico , Multimerização Proteica , Relação Estrutura-Atividade , Trypanosoma/efeitos dos fármacos , Tripanossomíase Africana/tratamento farmacológico
8.
Biochimie ; 181: 204-213, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33388361

RESUMO

Homologous proteins of the cAMP-dependent protein kinase (PKA) regulatory and catalytic subunits have been identified in Trypanosoma equiperdum (TeqR-like and TeqC-like, respectively). Partially purified TeqR-like from parasites isolated in the presence of glucose migrated as an apparent 55 kDa/57 kDa polypeptide doublet when separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. However, a single polypeptide of 57 kDa was obtained when parasites were deprived of glucose, a condition that has been shown to activate a TeqC-like enzyme. As revealed by immunoblots using anti-phospothreonine antibodies, the 57 kDa band corresponded to a form of TeqR-like that was phosphorylated in threonine residues. TeqR-like phosphorylation was reversible since the level of phospho-TeqR-like decreased once glucose was readded to glucose starved-parasites. Dephospho- and phospho-TeqR-like proteins are monomers with native molecular masses of 54.93-57.41 kDa, Stokes radii of 3.42-3.37 nm, and slightly asymmetric shapes (frictional ratio f/fo = 1.36-1.32). A protein kinase of ∼40 kDa was also partially purified from glucose deprived-trypanosomes, which corresponded to the TeqC-like enzyme by its ability to phosphorylate kemptide, its inhibition by PKA-specific inhibitors, and its immunorecognition by anti-PKA catalytic subunit antibodies. TeqR-like and TeqC-like did not coelute following anion-exchange chromatography, revealing that these proteins are not associated forming a complex in T. equiperdum. Yet, when TeqR-like was incubated in vitro with TeqC-like in the presence of Mg2+ and ATP, the 55 kDa dephospho form of the 55kDa/57 kDa polypeptide doublet of TeqR-like was converted into the 57 kDa phospho form, demonstrating that TeqR-like is a substrate for TeqC-like.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/química , Proteínas de Protozoários/química , Trypanosoma/enzimologia
9.
Mol Microbiol ; 115(5): 942-958, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33513291

RESUMO

Trypanosoma and Leishmania parasites cause devastating tropical diseases resulting in serious global health consequences. These organisms have complex life cycles with mammalian hosts and insect vectors. The parasites must, therefore, survive in different environments, demanding rapid physiological and metabolic changes. These responses depend upon regulation of gene expression, which primarily occurs posttranscriptionally. Altering the composition or conformation of RNA through nucleotide modifications is one posttranscriptional mechanism of regulating RNA fate and function, and modifications including N6-methyladenosine (m6A), N1-methyladenosine (m1A), N5-methylcytidine (m5C), N4-acetylcytidine (ac4C), and pseudouridine (Ψ), dynamically regulate RNA stability and translation in diverse organisms. Little is known about RNA modifications and their machinery in Trypanosomatids, but we hypothesize that they regulate parasite gene expression and are vital for survival. Here, we identified Trypanosomatid homologs for writers of m1A, m5C, ac4C, and Ψ and analyze their evolutionary relationships. We systematically review the evidence for their functions and assess their potential use as therapeutic targets. This work provides new insights into the roles of these proteins in Trypanosomatid parasite biology and treatment of the diseases they cause and illustrates that Trypanosomatids provide an excellent model system to study RNA modifications, their molecular, cellular, and biological consequences, and their regulation and interplay.


Assuntos
Transcriptoma , Trypanosoma/genética , Tripanossomíase/parasitologia , Animais , Epigenômica , Humanos , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Processamento Pós-Transcricional do RNA , RNA de Protozoário/genética , RNA de Protozoário/metabolismo , Trypanosoma/enzimologia , Trypanosoma/metabolismo
10.
Open Biol ; 10(10): 200189, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33050792

RESUMO

Polo-like kinases (Plks) are evolutionarily conserved serine/threonine protein kinases playing crucial roles during multiple stages of mitosis and cytokinesis in yeast and animals. Plks are characterized by a unique Polo-box domain, which plays regulatory roles in controlling Plk activation, interacting with substrates and targeting Plk to specific subcellular locations. Plk activity and protein abundance are subject to temporal and spatial control through transcription, phosphorylation and proteolysis. In the early branching protists, Plk orthologues are present in some taxa, such as kinetoplastids and Giardia, but are lost in apicomplexans, such as Plasmodium. Works from characterizing a Plk orthologue in Trypanosoma brucei, a kinetoplastid protozoan, discover its essential roles in regulating the inheritance of flagellum-associated cytoskeleton and the initiation of cytokinesis, but not any stage of mitosis. These studies reveal evolutionarily conserved and species-specific features in the control of Plk activation, substrate recognition and protein abundance, and suggest the divergence of Plk function and regulation for specialized needs in this flagellated unicellular eukaryote.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Trypanosoma/enzimologia , Evolução Biológica , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Citocinese , Citoesqueleto/metabolismo , Flagelos/metabolismo , Mitose , Modelos Moleculares , Família Multigênica , Filogenia , Conformação Proteica , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/química , Proteínas Proto-Oncogênicas/genética , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Transdução de Sinais , Relação Estrutura-Atividade , Trypanosoma/classificação , Trypanosoma/genética , Tripanossomíase/parasitologia , Quinase 1 Polo-Like
11.
Parasitology ; 147(14): 1801-1809, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32981530

RESUMO

Trypanosomes are blood-borne parasites that can infect a variety of different vertebrates, including animals and humans. This study aims to broaden scientific knowledge about the presence and biodiversity of trypanosomes in Australian bats. Molecular and morphological analysis was performed on 86 blood samples collected from seven different species of microbats in Western Australia. Phylogenetic analysis on 18S rDNA and glycosomal glyceraldehyde phosphate dehydrogenase (gGAPDH) sequences identified Trypanosoma dionisii in five different Australian native species of microbats; Chalinolobus gouldii, Chalinolobus morio, Nyctophilus geoffroyi, Nyctophilus major and Scotorepens balstoni. In addition, two novels, genetically distinct T. dionisii genotypes were detected and named T. dionisii genotype Aus 1 and T. dionisii genotype Aus 2. Genotype Aus 2 was the most prevalent and infected 20.9% (18/86) of bats in the present study, while genotype Aus 1 was less prevalent and was identified in 5.8% (5/86) of Australian bats. Morphological analysis was conducted on trypomastigotes identified in blood films, with morphological parameters consistent with trypanosome species in the subgenus Schizotrypanum. This is the first report of T. dionisii in Australia and in Australian native bats, which further contributes to the global distribution of this cosmopolitan bat trypanosome.


Assuntos
Quirópteros , Trypanosoma/isolamento & purificação , Tripanossomíase/veterinária , Animais , Gliceraldeído-3-Fosfato Desidrogenases/análise , Microcorpos/química , Prevalência , Proteínas de Protozoários/análise , RNA de Protozoário/análise , RNA Ribossômico 18S/análise , Trypanosoma/enzimologia , Trypanosoma/genética , Tripanossomíase/epidemiologia , Austrália Ocidental/epidemiologia
12.
Structure ; 28(11): 1184-1196.e6, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-32814032

RESUMO

Unc-51-like kinase 4 (ULK4) is a pseudokinase that has been linked to the development of several diseases. Even though sequence motifs required for ATP binding in kinases are lacking, ULK4 still tightly binds ATP and the presence of the co-factor is required for structural stability of ULK4. Here, we present a high-resolution structure of a ULK4-ATPγS complex revealing a highly unusual ATP binding mode in which the lack of the canonical VAIK motif lysine is compensated by K39, located N-terminal to αC. Evolutionary analysis suggests that degradation of active site motifs in metazoan ULK4 has co-occurred with an ULK4-specific activation loop, which stabilizes the C helix. In addition, cellular interaction studies using BioID and biochemical validation data revealed high confidence interactors of the pseudokinase and armadillo repeat domains. Many of the identified ULK4 interaction partners were centrosomal and tubulin-associated proteins and several active kinases suggesting interesting regulatory roles for ULK4.


Assuntos
Difosfato de Adenosina/química , Trifosfato de Adenosina/análogos & derivados , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/química , Peptídeos e Proteínas de Sinalização Intracelular/química , Magnésio/química , Proteínas Serina-Treonina Quinases/química , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Animais , Arabidopsis/química , Arabidopsis/enzimologia , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Sítios de Ligação , Cátions Bivalentes , Cristalografia por Raios X , Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Magnésio/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Modelos Moleculares , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Mapeamento de Interação de Proteínas , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Fuso Acromático/genética , Fuso Acromático/metabolismo , Especificidade por Substrato , Trypanosoma/química , Trypanosoma/enzimologia
13.
ChemMedChem ; 15(24): 2420-2435, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-32805075

RESUMO

Leishmania and Trypanosoma parasites are responsible for the challenging neglected tropical diseases leishmaniases, Chagas disease, and human African trypanosomiasis, which account for up to 40,000 deaths annually mainly in developing countries. Current chemotherapy relies on drugs with significant limitations in efficacy and safety, prompting the urgent need to explore innovative approaches to improve the drug discovery pipeline. The unique trypanothione-based redox pathway, which is absent in human hosts, is vital for all trypanosomatids and offers valuable opportunities to guide the rational development of specific, broad-spectrum and innovative anti-trypanosomatid agents. Major efforts focused on the key metabolic enzymes trypanothione synthetase-amidase and trypanothione reductase, whose inhibition should affect the entire pathway and, finally, parasite survival. Herein, we will report and comment on the most recent studies in the search for enzyme inhibitors, underlining the promising opportunities that have emerged so far to drive the exploration of future successful therapeutic approaches.


Assuntos
Inibidores Enzimáticos/farmacologia , Glutationa/análogos & derivados , Espermidina/análogos & derivados , Tripanossomicidas/farmacologia , Amida Sintases/antagonistas & inibidores , Amidoidrolases/antagonistas & inibidores , Animais , Doença de Chagas/tratamento farmacológico , Inibidores Enzimáticos/química , Inibidores Enzimáticos/uso terapêutico , Glutationa/metabolismo , Humanos , Leishmania/efeitos dos fármacos , Leishmania/enzimologia , Leishmaniose/tratamento farmacológico , NADH NADPH Oxirredutases/antagonistas & inibidores , Proteínas de Protozoários/antagonistas & inibidores , Espermidina/metabolismo , Tripanossomicidas/química , Tripanossomicidas/uso terapêutico , Trypanosoma/efeitos dos fármacos , Trypanosoma/enzimologia
14.
PLoS Negl Trop Dis ; 14(2): e0007983, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32106219

RESUMO

The development of chemotherapies against eukaryotic pathogens is especially challenging because of both the evolutionary conservation of drug targets between host and parasite, and the evolution of strain-dependent drug resistance. There is a strong need for new nontoxic drugs with broad-spectrum activity against trypanosome parasites such as Leishmania and Trypanosoma. A relatively untested approach is to target macromolecular interactions in parasites rather than small molecular interactions, under the hypothesis that the features specifying macromolecular interactions diverge more rapidly through coevolution. We computed tRNA Class-Informative Features in humans and independently in eight distinct clades of trypanosomes, identifying parasite-specific informative features, including base pairs and base mis-pairs, that are broadly conserved over approximately 250 million years of trypanosome evolution. Validating these observations, we demonstrated biochemically that tRNA:aminoacyl-tRNA synthetase (aaRS) interactions are a promising target for anti-trypanosomal drug discovery. From a marine natural products extract library, we identified several fractions with inhibitory activity toward Leishmania major alanyl-tRNA synthetase (AlaRS) but no activity against the human homolog. These marine natural products extracts showed cross-reactivity towards Trypanosoma cruzi AlaRS indicating the broad-spectrum potential of our network predictions. We also identified Leishmania major threonyl-tRNA synthetase (ThrRS) inhibitors from the same library. We discuss why chemotherapies targeting multiple aaRSs should be less prone to the evolution of resistance than monotherapeutic or synergistic combination chemotherapies targeting only one aaRS.


Assuntos
Alanina-tRNA Ligase/antagonistas & inibidores , Antiprotozoários/farmacologia , Inibidores Enzimáticos/farmacologia , Leishmania/enzimologia , Proteínas de Protozoários/antagonistas & inibidores , Treonina-tRNA Ligase/antagonistas & inibidores , Trypanosoma/efeitos dos fármacos , Alanina-tRNA Ligase/genética , Alanina-tRNA Ligase/metabolismo , Antiprotozoários/química , Inibidores Enzimáticos/química , Humanos , Leishmania/efeitos dos fármacos , Leishmania/genética , Leishmaniose/parasitologia , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Treonina-tRNA Ligase/genética , Treonina-tRNA Ligase/metabolismo , Trypanosoma/enzimologia , Trypanosoma/genética , Tripanossomíase/parasitologia
15.
Biochimie ; 168: 110-123, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31704351

RESUMO

An enriched fraction of an inhibitor of both the catalytic subunit of the cAMP-dependent protein kinase (PKA) from pig heart and a Trypanosoma equiperdum PKA catalytic subunit-like protein (TeqC-like) was obtained from the soluble fraction of T. equiperdum parasites after three consecutive purification steps: sedimentation through a linear 5-20% sucrose gradient, diethylaminoethyl-Sepharose anion-exchange chromatography, and Bio-Sil Sec-400-S size-exclusion high-performance liquid chromatography. The inhibitor was identified as the T. equiperdum PKA regulatory subunit-like protein (TeqR-like) on the basis of Western blot and mass spectrometry analyses, and behaved as an uncompetitive or anti-competitive inhibitor of the parasite TeqC-like protein, with respect to a fluorescently labeled substrate (kemptide, sequence: LRRASLG), showing a Ki of 1.17 µM. The isolated protein possesses a molecular mass of 57.54 kDa, a Stokes radius of 3.64 nm, and a slightly asymmetric shape with a frictional ratio f/fo = 1.43. As revealed during the purification steps and by immunoprecipitation experiments, the TeqR-like and TeqC-like proteins were not associated forming a heterooligomeric complex, differing from traditional PKA subunits. Co-immunoprecipitation results followed by mass spectrometry sequencing identified two isoforms of the parasite heat-shock protein 70, α-tubulin, and ß-tubulin as candidates that interact with the TeqR-like protein in T. equiperdum.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico , Subunidades Proteicas/química , Trypanosoma/enzimologia , Animais , Proteínas Quinases Dependentes de AMP Cíclico/química , Proteínas Quinases Dependentes de AMP Cíclico/isolamento & purificação , Ligantes , Suínos
16.
Biochemistry (Mosc) ; 84(11): 1268-1279, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31760917

RESUMO

The review describes the use of glyceraldehyde 3-phosphate dehydrogenase (GAPDH) inhibitors to study the enzyme and to suppress its activity in various cell types. The main problem of selective GAPDH inhibition is a highly conserved nature of the enzyme active site and, especially, Cys150 environment important for the catalytic action of cysteine sulfhydryl group. Numerous attempts to find specific inhibitors of sperm GAPDH and enzymes from Trypanosoma sp. and Mycobacterium tuberculosis that would not inhibit GAPDH of somatic mammalian cells have failed, which has pushed researchers to search for new ways to solve this problem. The sections of the review are devoted to the studies of GAPDH inactivation by reactive oxygen species, glutathione, and glycating agents. The final section discusses possible effects of GAPDH inhibition and inactivation on glycolysis and related metabolic pathways (pentose phosphate pathway, uncoupling of the glycolytic oxidation and phosphorylation, etc.).


Assuntos
Inibidores Enzimáticos/química , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Antioxidantes/química , Antioxidantes/metabolismo , Inibidores Enzimáticos/metabolismo , Glutationa/química , Glutationa/metabolismo , Gliceraldeído-3-Fosfato Desidrogenases/antagonistas & inibidores , Glicosilação , Mycobacterium tuberculosis/enzimologia , Espécies Reativas de Oxigênio/química , Espécies Reativas de Oxigênio/metabolismo , Trypanosoma/enzimologia
17.
Parasite ; 26: 69, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31782726

RESUMO

P-type ATPases are critical to the maintenance and regulation of cellular ion homeostasis and membrane lipid asymmetry due to their ability to move ions and phospholipids against a concentration gradient by utilizing the energy of ATP hydrolysis. P-type ATPases are particularly relevant in human pathogenic trypanosomatids which are exposed to abrupt and dramatic changes in their external environment during their life cycles. This review describes the complete inventory of ion-motive, P-type ATPase genes in the human pathogenic Trypanosomatidae; eight Leishmania species (L. aethiopica, L. braziliensis, L. donovani, L. infantum, L. major, L. mexicana, L. panamensis, L. tropica), Trypanosoma cruzi and three Trypanosoma brucei subspecies (Trypanosoma brucei brucei TREU927, Trypanosoma brucei Lister strain 427, Trypanosoma brucei gambiense DAL972). The P-type ATPase complement in these trypanosomatids includes the P1B (metal pumps), P2A (SERCA, sarcoplasmic-endoplasmic reticulum calcium ATPases), P2B (PMCA, plasma membrane calcium ATPases), P2D (Na+ pumps), P3A (H+ pumps), P4 (aminophospholipid translocators), and P5B (no assigned specificity) subfamilies. These subfamilies represent the P-type ATPase transport functions necessary for survival in the Trypanosomatidae as P-type ATPases for each of these seven subfamilies are found in all Leishmania and Trypanosoma species included in this analysis. These P-type ATPase subfamilies are correlated with current molecular and biochemical knowledge of their function in trypanosomatid growth, adaptation, infectivity, and survival.


TITLE: Les ATPases de transport de type P chez Leishmania et Trypanosoma. ABSTRACT: Les ATPases de type P sont essentielles au maintien et à la régulation de l'homéostasie des ions cellulaires et de l'asymétrie des lipides membranaires en raison de leur capacité à déplacer les ions et les phospholipides contre un gradient de concentration en utilisant l'énergie de l'hydrolyse de l'ATP. Les ATPases de type P sont particulièrement utiles chez les trypanosomatidés pathogènes pour l'homme, qui sont exposés à des changements abrupts et dramatiques de leur environnement externe au cours de leur cycle de vie. Cette revue décrit l'inventaire complet des gènes d'ATPase de type P à motif ionique chez les Trypanosomatidae pathogènes pour l'homme ; huit espèces de Leishmania (L. aethiopica, L. braziliensis, L. donovani, L. infantum, L. major, L. mexicana, L. panamensis, L. tropica), Trypanosoma cruzi et trois sous-espèces de Trypanosoma brucei (Trypanosoma brucei brucei TREU927, Trypanosoma brucei Lister souche 427, Trypanosoma brucei gambiense DAL972). Le complément ATPase de type P dans ces trypanosomatidés comprend les sous-familles P1B (pompes métalliques), P2A (SERCA, ATPases calciques du réticulum sarcoplasmo-endoplasmique), P2B (PMCA, ATPases calciques de la membrane plasmique), P2D (pompes Na+), P3A (pompes H+), P4 (translocateurs des aminophospholipides) et P5B (sans spécificité attribuée). Ces sous-familles représentent les fonctions de transport des ATPases de type P nécessaires à la survie des trypanosomatidés, car les ATPases de type P de chacune de ces sept sous-familles sont présentes chez toutes les espèces de Leishmania et de Trypanosoma incluses dans cette analyse. Ces sous-familles d'ATPases de type P sont corrélées aux connaissances moléculaires et biochimiques actuelles sur leur fonction dans la croissance, l'adaptation, l'infectivité et la survie des trypanosomatidés.


Assuntos
Leishmania/enzimologia , Leishmania/genética , ATPases do Tipo-P/genética , Trypanosoma/enzimologia , Trypanosoma/genética , Genoma de Protozoário , ATPases do Tipo-P/classificação
18.
Chembiochem ; 20(2): 134-139, 2019 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-30129686

RESUMO

Protein myristoylation plays key roles in biological processes, for instance, in membrane attachment and activation of proteins and in mediating protein-protein and protein-lipid interactions. Furthermore, myristoylated proteins are involved in disorders, including cancer and viral infections. Therefore, new tools to study protein myristoylation are in high demand. Herein, we report the development of photoactivatable probes, based on a diazirine-substituted analogue of myristic acid. The probes bind to and, upon irradiation, covalently label the lipid-binding chaperone protein uncoordinated 119 (UNC119). UNC119 increases overall solubility and regulates specifically the transport of myristoylated proteins between intercellular membranes. The binding mode of the probes is similar to that of the myristate moiety, and the residues inside the hydrophobic pocket of UNC119 proteins that are critical for covalent binding have been identified. The interaction with UNC119 was also demonstrated in cell lysate by means of affinity enrichment. Moreover, it is shown that the myristate analogue can be incorporated into peptide substrates by N-myristoyl transferases of Leishmania and Trypanosoma protozoan parasites.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/química , Corantes Fluorescentes/química , Ácido Mirístico/química , Aciltransferases/química , Aciltransferases/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Humanos , Leishmania/enzimologia , Processos Fotoquímicos , Trypanosoma/enzimologia
19.
Biochem J ; 476(2): 179-191, 2019 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-30404924

RESUMO

Eukaryotic ATP-dependent phosphofructokinases (PFKs) are often considered unidirectional enzymes catalysing the transfer of a phospho moiety from ATP to fructose 6-phosphate to produce ADP and fructose 1,6-bisphosphate. The reverse reaction is not generally considered to occur under normal conditions and has never been demonstrated for any eukaryotic ATP-dependent PFKs, though it does occur in inorganic pyrophosphate-dependent PFKs and has been experimentally shown for bacterial ATP-dependent PFKs. The evidence is provided via two orthogonal assays that all three human PFK isoforms can catalyse the reverse reaction in vitro, allowing determination of kinetic properties. Additionally, the reverse reaction was shown possible for PFKs from three clinically important trypanosomatids; these enzymes are contained within glycosomes in vivo This compartmentalisation may facilitate reversal, given the potential for trypanosomatids to have an altered ATP/ADP ratio in glycosomes compared with the cytosol. The kinetic properties of each trypanosomatid PFK were determined, including the response to natural and artificial modulators of enzyme activity. The possible physiological relevance of the reverse reaction in trypanosomatid and human PFKs is discussed.


Assuntos
Fosfofrutoquinases/química , Proteínas de Protozoários/química , Trypanosoma/enzimologia , Humanos , Isoenzimas , Cinética , Fosfotransferases/química
20.
Protist ; 170(1): 21-37, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30553126

RESUMO

Plants, fungi, and some protists possess a more branched electron transport chain in their mitochondria compared to canonical one. In these organisms, the electron transport chain contains several rotenone-insensitive NAD(P)H dehydrogenases. Some are located on the outer surface, and others are located on the inner surface of the inner mitochondrial membrane. The putative role of these enzymes still remains elusive, but they may prevent the overreduction of the electron transport chain components and decrease the production of reaction oxygen species as a consequence. The last two decades resulted in the discovery of alternative rotenone-insensitive NAD(P)H dehydrogenases present in representatives of fungi and protozoa. The aim of this review is to gather and focus on current information concerning molecular and functional properties, regulation, and the physiological role of fungal and protozoan alternative NAD(P)H dehydrogenases.


Assuntos
Proteínas Fúngicas/genética , Proteínas Mitocondriais/genética , NADPH Desidrogenase/genética , Proteínas de Protozoários/genética , Amebozoários/enzimologia , Amebozoários/genética , Apicomplexa/enzimologia , Apicomplexa/genética , Proteínas Fúngicas/metabolismo , Fungos/enzimologia , Fungos/genética , Proteínas Mitocondriais/metabolismo , NADPH Desidrogenase/metabolismo , Proteínas de Protozoários/metabolismo , Trypanosoma/enzimologia , Trypanosoma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...