Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
1.
Int J Mol Sci ; 25(8)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38673861

RESUMO

Plant-parasitic nematodes (PPNs) are among the most serious phytopathogens and cause widespread and serious damage in major crops. In this study, using a genome mining method, we identified nonribosomal peptide synthetase (NRPS)-like enzymes in genomes of plant-parasitic nematodes, which are conserved with two consecutive reducing domains at the N-terminus (A-T-R1-R2) and homologous to fungal NRPS-like ATRR. We experimentally investigated the roles of the NRPS-like enzyme (MiATRR) in nematode (Meloidogyne incognita) parasitism. Heterologous expression of Miatrr in Saccharomyces cerevisiae can overcome the growth inhibition caused by high concentrations of glycine betaine. RT-qPCR detection shows that Miatrr is significantly upregulated at the early parasitic life stage (J2s in plants) of M. incognita. Host-derived Miatrr RNA interference (RNAi) in Arabidopsis thaliana can significantly decrease the number of galls and egg masses of M. incognita, as well as retard development and reduce the body size of the nematode. Although exogenous glycine betaine and choline have no obvious impact on the survival of free-living M. incognita J2s (pre-parasitic J2s), they impact the performance of the nematode in planta, especially in Miatrr-RNAi plants. Following application of exogenous glycine betaine and choline in the rhizosphere soil of A. thaliana, the numbers of galls and egg masses were obviously reduced by glycine betaine but increased by choline. Based on the knowledge about the function of fungal NRPS-like ATRR and the roles of glycine betaine in host plants and nematodes, we suggest that MiATRR is involved in nematode-plant interaction by acting as a glycine betaine reductase, converting glycine betaine to choline. This may be a universal strategy in plant-parasitic nematodes utilizing NRPS-like ATRR to promote their parasitism on host plants.


Assuntos
Arabidopsis , Betaína , Peptídeo Sintases , Tylenchoidea , Betaína/metabolismo , Animais , Tylenchoidea/metabolismo , Tylenchoidea/genética , Arabidopsis/parasitologia , Arabidopsis/metabolismo , Arabidopsis/genética , Peptídeo Sintases/metabolismo , Peptídeo Sintases/genética , Interações Hospedeiro-Parasita , Doenças das Plantas/parasitologia , Proteínas de Helminto/metabolismo , Proteínas de Helminto/genética , Nematoides/metabolismo , Nematoides/genética
2.
PLoS One ; 19(2): e0297925, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38358978

RESUMO

Nematophagous fungi are the best alternatives to chemical nematicides for managing nematodes considering environmental health. In the current study, activity of metabolites from ten isolates of Purpureocillium lilacinum (Thom) Luangsa-ard (Hypocreales: Ophiocordycipitaceae) and two isolates of Paecilomyces variotii Bainier (Eurotiales: Trichocomaceae), were examined to inhibit the hatching of Meloidogyne incognita (Kofoid & White) Chitwood (Tylenchida: Heteroderidae) eggs. At 100%, 50%, and 25% concentrations, respectively, the culture filtrate of the isolate P. lilacinum 6887 prevented 97.55%, 90.52%, and 62.97% of egg hatching. Out of all the isolates, Pl 6887, Pl 6553, and Pl 2362 showed the greatest results in the hatching inhibition experiment.Gas chromatography-mass spectrometry (GC-MS) analysis revealed a variety of nematicidal compounds from different isolates. A total of seven nematicidal compounds, including four very potent nematicidal fatty acids were found in the isolate Pl 6553. Secondary metabolites of the same isolate possess the highest M. incognita juvenile mortality, i.e., 43.33% and 92% after 48 hrs of treatment at 100 and 200 ppm concentrations, respectively. Significant difference was observed in juvenile mortality percentage among the isolate having highest and lowest nematicidal compounds. Nematicidal fatty acids like myristic and lauric acid were found for the first time in P. lilacinum. Multiple vacuole-like droplets were found inside the unhatched eggs inoculated with the culture filtrate of isolate Pl 6887, and also in the juveniles that perished in the ethyl acetate extract of isolate Pl 6553.


Assuntos
Byssochlamys , Hypocreales , Tylenchoidea , Animais , Cromatografia Gasosa-Espectrometria de Massas , Hypocreales/metabolismo , Antinematódeos/farmacologia , Antinematódeos/metabolismo , Tylenchoidea/metabolismo , Ácidos Graxos
3.
Environ Res ; 244: 117930, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38103771

RESUMO

Root-knot nematodes (RKNs) are distributed globally, including in agricultural fields contaminated by heavy metals (HM), and can cause serious crop damages. Having a method that could control RKNs in HM-contaminated soil while limit HM accumulation in crops could provide significant benefits to both farmers and consumers. In this study, we showed that the nematophagous fungus Purpureocillium lavendulum YMF1.683 exhibited a high nematocidal activity against the RKN Meloidogyne incognita and a high tolerance to CdCl2. Comparing to the P. lavendulum YMF1.838 which showed low tolerance to Cd2+, strain YMF1.683 effectively suppressed M. incognita infection and significantly reduced the Cd2+ uptake in tomato root and fruit in soils contaminated by 100 mg/kg Cd2+. Transcriptome analyses and validation of gene expression by RT-PCR revealed that the mechanisms contributed to high Cd-resistance in YMF1.683 mainly included activating autophagy pathway, increasing exosome secretion of Cd2+, and activating antioxidation systems. The exosomal secretory inhibitor GW4869 reduced the tolerance of YMF1.683 to Cd2+, which firstly demonstrated that fungal exosome was involved in HM tolerance. The up-regulation of glutathione synthesis pathway, increasing enzyme activities of both catalase and superoxide dismutase also played important roles in Cd2+ tolerance of YMF1.683. In Cd2+-contaminated soil, YMF1.683 limited Cd2+-uptake in tomato by up-regulating the genes of ABCC family in favor of HM sequestration in plant, and down-regulating the genes of ZIP, HMA, NRAMP, YSL families associated with HM absorption, transport, and uptake in plant. Our results demonstrated that YMF1.683 could be a promising bio-agent in eco-friendly management of M. incognita in Cd2+ contaminated soils.


Assuntos
Hypocreales , Metais Pesados , Tylenchoidea , Humanos , Animais , Cádmio/análise , Tylenchoidea/metabolismo , Tylenchoidea/microbiologia , Metais Pesados/análise , Hypocreales/metabolismo , Solo
4.
An Acad Bras Cienc ; 95(2): e20201328, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37436197

RESUMO

The present study aimed to investigate the response of soybean cultivars with different susceptibility levels to the root-knot nematode Meloidogyne javanica at varied time intervals by analyzing the initial plant-nematode interaction using antioxidant enzymes as oxidative stress markers. A 4 × 4 × 2 factorial method with 5 repetitions was used to analyze 4 soybean cultivars at 4 different collection times-6, 12, 24, and 48 h-with and without M. javanica inoculation. The parameters evaluated were the activities of antioxidant enzymes phenol peroxidase (POX) and ascorbate peroxidase (APX); the concentrations of hydrogen peroxide (H2O2) and malondialdehyde (MDA); and the number of M. javanica juveniles penetrated into each plant. H2O2 concentration varied among the cultivars with and without inoculation and at different collection times as indicated by MDA concentration and POX and APX activities, demonstrating a rapid response of the host to an infection by M. javanica. Oxidative stress caused by M. javanica did not vary among the soybean cultivars regardless of their susceptibility level; however, the antioxidant enzymes POX and APX responded according to the susceptibility level of the cultivars.


Assuntos
Antioxidantes , Tylenchoidea , Animais , Antioxidantes/metabolismo , Glycine max/fisiologia , Tylenchoidea/metabolismo , Peróxido de Hidrogênio , Estresse Oxidativo , Peroxidases/metabolismo , Peroxidase , Ascorbato Peroxidases
5.
BMC Genomics ; 24(1): 296, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37264326

RESUMO

BACKGROUND: Plant-parasitic nematodes (PPNs) that cause most damage include root-knot nematodes (RKNs) which are a major impediment to crop production. Root-knot nematodes, like other parasites, secrete proteins which are required for parasite proliferation and survival within the host during the infection process. RESULTS: Here, we used various computational tools to predict and identify classically and non-classically secreted proteins encoded in the Meloidogyne javanica genome. Furthermore, functional annotation analysis was performed using various integrated bioinformatic tools to determine the biological significance of the predicted secretome. In total, 7,458 proteins were identified as secreted ones. A large percentage of this secretome is comprised of small proteins of ≤ 300 aa sequence length. Functional analyses showed that M. javanica secretome comprises cell wall degrading enzymes for facilitating nematode invasion, and migration by disintegrating the complex plant cell wall components. In addition, peptidases and peptidase inhibitors are an important category of M. javanica secretome involved in compatible host-nematode interactions. CONCLUSION: This study identifies the putative secretome encoded in the M. javanica genome. Future experimental validation analyses can greatly benefit from this global analysis of M. javanica secretome. Equally, our analyses will advance knowledge of the interaction between plants and nematodes.


Assuntos
Tylenchida , Tylenchoidea , Animais , Tylenchoidea/genética , Tylenchoidea/metabolismo , Secretoma , Doenças das Plantas/genética , Tylenchida/metabolismo , Proteínas de Helminto/genética , Proteínas de Helminto/metabolismo
6.
Nature ; 618(7963): 102-109, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37225985

RESUMO

Parasitic nematodes are a major threat to global food security, particularly as the world amasses 10 billion people amid limited arable land1-4. Most traditional nematicides have been banned owing to poor nematode selectivity, leaving farmers with inadequate means of pest control4-12. Here we use the model nematode Caenorhabditis elegans to identify a family of selective imidazothiazole nematicides, called selectivins, that undergo cytochrome-p450-mediated bioactivation in nematodes. At low parts-per-million concentrations, selectivins perform comparably well with commercial nematicides to control root infection by Meloidogyne incognita, a highly destructive plant-parasitic nematode. Tests against numerous phylogenetically diverse non-target systems demonstrate that selectivins are more nematode-selective than most marketed nematicides. Selectivins are first-in-class bioactivated nematode controls that provide efficacy and nematode selectivity.


Assuntos
Antinematódeos , Tylenchoidea , Animais , Humanos , Antinematódeos/química , Antinematódeos/metabolismo , Antinematódeos/farmacologia , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/metabolismo , Tylenchoidea/efeitos dos fármacos , Tylenchoidea/metabolismo , Tiazóis/química , Tiazóis/metabolismo , Tiazóis/farmacologia , Sistema Enzimático do Citocromo P-450/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/parasitologia , Doenças das Plantas , Especificidade da Espécie , Especificidade por Substrato
7.
Int J Mol Sci ; 23(20)2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36293146

RESUMO

Fatty acid and retinol binding proteins (FAR) are unique proteins found in nematodes and are considered potential targets for controlling these parasites. However, their functions in nematode parasitism and pathogenicity and interaction with hosts are still unclear. In this study, we investigated the specific roles of rice white tip nematodes (RWTNs), Aphelenchoides besseyi, and a protein, Ab-FAR-1, to elucidate the parasitic and pathogenic processes of nematodes. The results showed that the expression level of Ab-far-1 was significantly up-regulated after A. besseyi infection of the plant. The immunofluorescence and subcellular localisation showed that Ab-FAR-1 was secreted into plant tissues mainly through the body wall of nematodes and might act in the nucleus and cytoplasm of plant cells. The pathogenicity of RWTNs was enhanced in Arabidopsis thaliana overexpressing Ab-FAR-1 and inhibited in Ab-far-1 RNAi A. thaliana. Yeast two-hybrid, Co-IP, BiFC, and nematode inoculation experiments showed that Ab-FAR-1 could interact with the A. thaliana actin-depolymerizing factor protein AtADF3, and the A. thaliana adf3 mutant was more susceptible to nematodes. An in vitro actin filament depolymerisation assay demonstrated that Ab-FAR-1 could inhibit AtADF3-mediated depolymerisation of actin filaments, and the turnover process of cellular actin filaments was also affected in A. thaliana overexpressing Ab-FAR-1. In addition, flg22-mediated host defence responses were suppressed in A. thaliana overexpressing Ab-FAR-1 and adf3 mutants. Therefore, this study confirmed that RWTNs can affect the turnover of actin filament remodelling mediated by AtADF3 through Ab-FAR-1 secretion and thus inhibit plant PAMP-triggered immunity (PTI), promoting the parasitism and pathogenicity of nematodes.


Assuntos
Arabidopsis , Rabditídios , Tylenchida , Tylenchoidea , Animais , Arabidopsis/metabolismo , Virulência , Moléculas com Motivos Associados a Patógenos , Actinas/metabolismo , Proteínas de Helminto/metabolismo , Tylenchida/fisiologia , Rabditídios/metabolismo , Proteínas de Ligação ao Retinol/metabolismo , Ácidos Graxos , Citoesqueleto de Actina/metabolismo , Doenças das Plantas/parasitologia , Tylenchoidea/metabolismo
8.
Sci Rep ; 12(1): 15214, 2022 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-36076057

RESUMO

The current study assessed the nematicidal and plant growth promoting potential of metabolites produced by Streptomyces hydrogenans strain DH-16 on morphological and physiological activities in 60 days old Solanum lycopersicum plants grown under Meloidogyne incognita stress. M. incognita infestation altered the levels of various photosynthetic pigments, various stress markers, enzymatic and non-enzymatic antioxidants in S. lycopersicum plants grown under in-vivo conditions. However, treatment with culture cells, supernatant and extract produced by S. hydrogenans strain DH-16 significantly reduced the number of galls in M. incognita infested plants when compared with untreated M. incognita infected plants. Moreover, the culture cells/ supernatant/ extract remarkably lowered the levels of stress markers (Hydrogen peroxide and Malondialdehyde) in infected plants and enhanced the activities of non-enzymatic antioxidants (glutathione, tocopherol) and enzymatic antioxidants (Catalase, Superoxide dismutase, Ascorbate peroxidase, Guaiacol peroxidase, Gluatathione-S-transferase and Polyphenol oxidase) in metabolites treated M. incognita infected plants. The enhanced level of different photosynthetic attributes were also evaluated by studying gas exchange parameters and different plant pigments. Moreover, an increment in the content of phenolic compounds such as total phenols, anthocyanin and flavonoids were also reflected in treated and nematode infested plants. The present study also evaluated the microscopic analysis depicting cell viability, nuclear damage and hydrogen peroxide localization in differently treated plants. The outcome of the present study therefore endorses the efficacy of DH-16 as a potential biocontrol agent that help plants in mitigating M. incognita stress.


Assuntos
Solanum lycopersicum , Tylenchoidea , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Peróxido de Hidrogênio/metabolismo , Solanum lycopersicum/metabolismo , Fenóis/metabolismo , Extratos Vegetais/metabolismo , Streptomyces , Tylenchoidea/metabolismo
9.
Mol Plant Pathol ; 23(12): 1765-1782, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36069343

RESUMO

Plant-parasitic cyst nematodes use a stylet to deliver effector proteins produced in oesophageal gland cells into root cells to cause disease in plants. These effectors are deployed to modulate plant defence responses and developmental programmes for the formation of a specialized feeding site called a syncytium. The Hg2D01 effector gene, coding for a novel 185-amino-acid secreted protein, was previously shown to be up-regulated in the dorsal gland of parasitic juveniles of the soybean cyst nematode Heterodera glycines, but its function has remained unknown. Genome analyses revealed that Hg2D01 belongs to a highly diversified effector gene family in the genomes of H. glycines and the sugar beet cyst nematode Heterodera schachtii. For functional studies using the model Arabidopsis thaliana-H. schachtii pathosystem, we cloned the orthologous Hs2D01 sequence from H. schachtii. We demonstrate that Hs2D01 is a cytoplasmic effector that interacts with the intracellular kinase domain of HAESA (HAE), a cell surface-associated leucine-rich repeat (LRR) receptor-like kinase (RLK) involved in signalling the activation of cell wall-remodelling enzymes important for cell separation during abscission and lateral root emergence. Furthermore, we show that AtHAE is expressed in the syncytium and, therefore, could serve as a viable host target for Hs2D01. Infective juveniles effectively penetrated the roots of HAE and HAESA-LIKE2 (HSL2) double mutant plants; however, fewer nematodes developed on the roots, consistent with a role for this receptor family in nematode infection. Taken together, our results suggest that the Hs2D01-AtHAE interaction may play an important role in sugar beet cyst nematode parasitism.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Beta vulgaris , Cistos , Tylenchoidea , Animais , Arabidopsis/metabolismo , Beta vulgaris/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Tylenchoidea/genética , Tylenchoidea/metabolismo , Açúcares/metabolismo , Raízes de Plantas/parasitologia , Doenças das Plantas/genética , Regulação da Expressão Gênica de Plantas , Proteínas Serina-Treonina Quinases
10.
Arch Microbiol ; 204(8): 521, 2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35879581

RESUMO

The application of nematicidal microorganisms and their virulence factors provides more opportunities to control root-knot nematodes. Bacillus altitudinis AMCC 1040, previously isolated from suppressive soils, showed significant nematicidal activity, and in this study, nematicidal substances produced by Bacillus altitudinis AMCC 1040 were investigated. The results of the basic properties of active substances showed that these compounds have good thermal stability and passage, are resistant to acidic environment and sensitive to alkaline conditions. Further analysis showed that it is a volatile component. Using HS-SPME-GC/MS, the volatile compounds produced by Bacillus altitudinis AMCC 1040 were identified and grouped into four major categories: ethers, alcohols, ketone, and organic acids, comprising a total of eight molecules. Six of them possess nematicidal activities, including 2,3-butanedione, acetic acid, 2-isopropoxy ethylamine, 3-methylbutyric acid, 2-methylbutyric acid and octanoic acid. Our results further our understanding of the effects of Bacillus altitudinis and its nematicidal metabolites on the management of Meloidogyne incognita and may help in finding less toxic nematicides to control root knot nematodes.


Assuntos
Bacillus , Tylenchoidea , Compostos Orgânicos Voláteis , Animais , Antinematódeos/metabolismo , Antinematódeos/farmacologia , Bacillus/metabolismo , Tylenchoidea/metabolismo , Compostos Orgânicos Voláteis/farmacologia
11.
Mol Biochem Parasitol ; 250: 111489, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35640846

RESUMO

Despite their economic significance in agricultural cropping systems, a lack of suitable molecular tools for manipulating gene expression has hindered progress in the functional genomics of plant parasitic nematodes (PPN). Obligate sexual reproduction and the obligate nature of PPN-host interactions further complicate the development of in vivo gene delivery and expression systems in these pests. Methods such as microinjection and microprojectile bombardment have been developed for introducing gene constructs into the free-living nematode, Caenorhabditis elegans. However, these procedures can be laborious and inefficient. Electroporation has been used extensively to introduce macromolecules, including single-stranded RNAs, into eukaryotic and prokaryotic cells. The technique has also been used for the delivery of DNA and double-stranded RNA constructs into nematodes by whole-animal electroporation. Here, we describe methods for the expression of a nematode-optimized NanoLuc luciferase mRNA in the form of in vitro transcripts following whole-animal electroporation of Heterodera glycines, Meloidogyne incognita, and C. elegans. The ability to transiently express single-stranded RNA constructs in economically important PPN provides a rapid means to evaluate nematode and/or foreign genes for their biological significance and potential role in nematode management.


Assuntos
Parasitos , Tylenchoidea , Animais , Caenorhabditis elegans/genética , Eletroporação , Luciferases/genética , Luciferases/metabolismo , Parasitos/genética , Plantas/genética , RNA/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Tylenchoidea/genética , Tylenchoidea/metabolismo
12.
Pest Manag Sci ; 78(6): 2571-2580, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35338557

RESUMO

BACKGROUND: While searching for novel small molecules for new organic pesticide agents against plant-parasitic nematodes, we found that the hexane extract from the roots of Senecio sinuatos and its main secondary metabolite, 3ß-angeloyloxy-6ß-hydroxyfuranoeremophil-1(10)-ene (1), possess nematicidal activity against the second stage juvenile (J2) of Meloidogyne incognita and Nacobbus aberrans. Both species reduce yield of various vegetable crops. These results encouraged us to synthesize esters 3-9 formed by diol 2, obtained by alkaline hydrolysis of 1 and acetic anhydride, benzoic acid, 2-nitrobenzoic acid, 2-bromobenzoic acid, 4-nitrobenzoic acid, 4-bromobenzoic acid, and 4-methoxybenzoic acid, respectively. The nematicidal activity of these esters was evaluated and compared with that of the free benzoic acids. RESULTS: Natural product 1 and derivatives 2-9 were obtained and characterized by their physical and spectroscopic properties, including one-dimensional (1D) and two-dimensional (2D) nuclear magnetic resonance (NMR) experiments; X-ray diffraction analysis established their absolute configuration. The nematicidal activity of compounds 1-9 was assessed in vitro against M. incognita and N. aberrans J2 and was compared to activity shown by benzoic acid, 2-nitrobenzoic acid, 2-bromobenzoic acid, 4-nitrobenzoic acid, 4-bromobenzoic acid, and 4-methoxybenzoic acid. The esters suppressed nematodes more than free benzoic acid. Nacobbus aberrans J2 were suppressed, with compounds 5, 6, and 8 being the most active. CONCLUSION: Esters formed by 3ß,6ß-dihydroxyfuranoeremophil-1(10)-ene and ortho- or para-substituted benzoic acids containing electron acceptor groups had nematicidal activity against N. aberrans. These compound can potentially serve as a model for the development of new organic nematicidal agents. © 2022 Society of Chemical Industry.


Assuntos
Tylenchida , Tylenchoidea , Animais , Antinematódeos/química , Benzoatos/farmacologia , Ácido Benzoico , Ésteres , Nitrobenzoatos , Tylenchida/metabolismo , Tylenchoidea/metabolismo
13.
Int J Mol Sci ; 23(3)2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35163425

RESUMO

Root-knot nematodes (RKNs) are devastating parasites that invade thousands of plants. In this study, five RKN effectors, which might interact with Prunussogdiana resistance protein PsoRPM3, were screened and identified. In situ hybridisation results showed that MiCal, MiGST_N_4, MiEFh and MiACPS are expressed in the subventral oesophageal glands (SvG), and MiTSPc hybridization signals are found in the dorsal esophageal gland (DG) of Meloidogyne incognita in the pre-J2. RT-qPCR data indicated that the expression of MiCal, MiGST_N_4, MiEFh, and MiACPS genes are highly expressed in M. incognita of pra-J2 and J3/J4 stages. The expression of MiTSPc increased significantly in the female stage of M. incognita. Moreover, all effectors found in this study localize in the cytoplasm and nucleus when transiently expressed in plant cells. In addition, MiGST_N_4, MiEFh, MiACPS and MiTSPc can elicit the ROS burst and strong hypersensitive response (HR), as well as significant ion leakage. Our data suggest that MiGST_N_4, MiEFh, MiACPS and MiTSPc effectors may be involved in triggering the immune response of the host plant.


Assuntos
Proteínas de Helminto/genética , Proteínas de Helminto/metabolismo , Prunus/crescimento & desenvolvimento , Tylenchoidea/patogenicidade , Animais , Resistência à Doença , Interações Hospedeiro-Parasita , Estágios do Ciclo de Vida , Proteínas de Plantas/metabolismo , Prunus/metabolismo , Prunus/parasitologia , Análise de Sequência de DNA , Distribuição Tecidual , Tylenchoidea/genética , Tylenchoidea/crescimento & desenvolvimento , Tylenchoidea/metabolismo , Regulação para Cima
14.
J Biol Chem ; 298(3): 101637, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35085555

RESUMO

Adaptation to nutrient deprivation depends on the activation of metabolic programs to use reserves of energy. When outside a host plant, second-stage juveniles (J2) of the root-knot nematode (Meloidogyne spp.), an important group of pests responsible for severe losses in the production of crops (e.g., rice, wheat, and tomato), are unable to acquire food. Although lipid hydrolysis has been observed in J2 nematodes, its role in fitness and the underlying mechanisms remain unknown. Using RNA-seq analysis, here, we demonstrated that in the absence of host plants, the pathway for the biosynthesis of polyunsaturated fatty acids was upregulated, thereby increasing the production of arachidonic acid in middle-stage J2 Meloidogyne incognita worms. We also found that arachidonic acid upregulated the expression of the transcription factor hlh-30b, which in turn induced lysosomal biogenesis. Lysosomes promoted lipid hydrolysis via a lysosomal lipase, LIPL-1. Furthermore, our data demonstrated that blockage of lysosomal lipolysis reduced both lifespan and locomotion of J2 worms. Strikingly, disturbance of lysosomal lipolysis resulted in a decline in infectivity of these juveniles on tomato roots. Our findings not only reveal the molecular mechanism of lipolysis in J2 worms but also suggest potential novel strategies for the management of root-knot nematode pests.


Assuntos
Solanum lycopersicum , Tylenchoidea , Animais , Ácidos Araquidônicos/metabolismo , Metabolismo dos Lipídeos , Lipólise , Solanum lycopersicum/parasitologia , Lisossomos , Tylenchoidea/metabolismo , Tylenchoidea/fisiologia
15.
Plant Genome ; 15(1): e20152, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34716668

RESUMO

This study pursued the hypothesis that wild plant germplasm accessions carrying alleles of interest can be identified using available single nucleotide polymorphism (SNP) genotypes for particular alleles of other (unlinked) genes that contribute to the trait of interest. The soybean cyst nematode (SCN, Heterodera glycines [HG]) resistance locus Rhg1 is widely used in farmed soybean [Glycine max (L.) Merr.]. The two known resistance-conferring haplotypes, rhg1-a and rhg1-b, typically contain three or seven to 10 tandemly duplicated Rhg1 segments, respectively. Each Rhg1 repeat carries four genes, including Glyma.18G022500, which encodes unusual isoforms of the vesicle-trafficking chaperone α-SNAP. Using SoySNP50K data for NSFRAN07 allele presence, we discovered a new Rhg1 haplotype, rhg1-ds, in six accessions of wild soybean, Glycine soja Siebold & Zucc. (0.5% of the ∼1,100 G. soja accessions in the USDA collection). The α-SNAP encoded by rhg1-ds is unique at an important site of amino acid variation and shares with the rhg1-a and rhg1-b α-SNAP proteins the traits of cytotoxicity and altered N-ethylmaleimide sensitive factor (NSF) protein interaction. Copy number assays indicate three repeats of rhg1-ds. G. soja PI 507613 and PI 507623 exhibit resistance to HG type 2.5.7 SCN populations, in part because of contributions from other loci. In a segregating F2 population, rhg1-b and rhg1-ds made statistically indistinguishable contributions to resistance to a partially virulent HG type 2.5.7 SCN population. Hence, the unusual multigene copy number variation Rhg1 haplotype was present but rare in ancestral G. soja and was present in accessions that offer multiple traits for SCN resistance breeding. The accessions were initially identified for study based on an unlinked SNP.


Assuntos
Resistência à Doença , Tylenchoidea , Animais , Variações do Número de Cópias de DNA , Resistência à Doença/genética , Glicina , Haplótipos , Melhoramento Vegetal , Doenças das Plantas/genética , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/genética , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/metabolismo , Glycine max/genética , Tylenchoidea/metabolismo
16.
Sci Rep ; 11(1): 11156, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-34045504

RESUMO

Dicers and dicer-like enzymes play an essential role in small RNA processing in eukaryotes. Nematodes are thought to encode one dicer, DCR-1; only that for Caenorhabditis spp. is well-characterised. Using genomic sequences of eight root-knot nematodes (Meloidogyne spp.), we identified putative coding sequences typical of eukaryotic DICERS. We noted that the primary and secondary structures of DICERS they encode were different for different Meloidogyne species and even for isolates of the same species, suggesting paralogy for the gene. One of the genes for M. incognita (Midcr-1.1) expressed in eggs, juvenile stage 2 and adults, with the highest expression in the adult females. All the Meloidogyne DICERS had seven major domains typical of those for Caenorhabditis spp. and humans with very similar protein folding. RNAi of Midcr-1.1 in J2s using seven dsRNAs, each based on sequences encoding the domains, induced mild paralysis but measurable knockdown was detected in J2s treated with five of the dsRNAs. For four of the dsRNAs, the RNAi effect lasted and reduced the nematode's infectivity. Also, host plant delivery of dsRNAs complementary to coding sequences of the Dicer Dimerisation domain impaired development, reducing nematode infection by 71%. These results confirm the importance of the gene to nematode health.


Assuntos
Proteínas de Helminto/genética , Ribonuclease III/genética , Tylenchoidea/crescimento & desenvolvimento , Tylenchoidea/genética , Animais , Proteínas de Helminto/metabolismo , Interferência de RNA , Ribonuclease III/metabolismo , Tylenchoidea/metabolismo
17.
Genes Genomics ; 43(5): 533-541, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33725279

RESUMO

BACKGROUND: Egg hatching in Meloidogyne incognita is a highly regulated developmental event and is strictly correlated with temperature. It has been demonstrated that exposure of M. incognita eggs to low temperature seriously affects their embryonic development. On the other hand, clear evidence has shown that M. incognita is able to overwinter at subzero soil temperatures in certain open fields. Therefore, subtle physiological and genetic adaptations may occur in M. incognita to minimize freezing injuries. OBJECTIVE: A growing body of evidence indicates that cold acclimation plays a large role in an individual organism's ability to cope with freezing-induced cellular damage. Given the decreasing temperatures in late autumn or early winter, we hypothesize that natural cold acclimation occurring during these periods may assist M. incognita in overwintering. METHODS: Transcriptomic analysis and functional enrichment analyses were used to identify and annotate differentially expressed genes (DEGs) in acclimated eggs. The expression of DEGs involved in signal transduction and protein assembly was subsequently validated by reverse transcription quantitative PCR (RT-qPCR). RESULTS: Relatively long-term preacclimation at 4 °C significantly accelerated the hatching of M. incognita eggs that were subjected to freezing at - 1 °C. Using a transcriptomic approach, we further identified 686 and 460 up- and downregulated transcripts, respectively, in pre-cold-acclimated eggs. Additionally, we used Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and Gene Ontology annotations for functional enrichment analyses of the differentially expressed genes (DEGs). CONCLUSION: The phenomenon in which M. incognita safely overwinters at subzero soil temperatures in certain areas may be attributed to the natural cold acclimation occurring in late autumn. Here, the identification of DEGs between acclimated and nonacclimated eggs will provide us with promising directions for future studies on the mechanisms of M. incognita freezing tolerance.


Assuntos
Aclimatação , Resposta ao Choque Frio , Transcriptoma , Tylenchoidea/genética , Animais , Proteínas de Helminto/genética , Proteínas de Helminto/metabolismo , Óvulo/metabolismo , Tylenchoidea/embriologia , Tylenchoidea/metabolismo
18.
Sci Rep ; 10(1): 12710, 2020 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-32728104

RESUMO

Plant-parasitic nematodes pose a significant threat to agriculture causing annual yield losses worth more than 100 billion US$. Nematode control often involves the use of nematicides, but many of them including non-selective fumigants have been phased out, particularly due to ecotoxicological concerns. Thus new control strategies are urgently needed. Spirotetramat (SPT) is used as phloem-mobile systemic insecticide targeting acetyl-CoA carboxylase (ACC) of pest insects and mites upon foliar application. However, in nematodes the mode of action of SPT and its effect on their development have not been studied so far. Our studies revealed that SPT known to be activated in planta to SPT-enol acts as a developmental inhibitor of the free-living nematode Caenorhabditis elegans and the plant-parasitic nematode Heterodera schachtii. Exposure to SPT-enol leads to larval arrest and disruption of the life cycle. Furthermore, SPT-enol inhibits nematode ACC activity, affects storage lipids and fatty acid composition. Silencing of H. schachtii ACC by RNAi induced similar phenotypes and thus mimics the effects of SPT-enol, supporting the conclusion that SPT-enol acts on nematodes by inhibiting ACC. Our studies demonstrated that the inhibition of de novo lipid biosynthesis by interfering with nematode ACC is a new nematicidal mode of action addressed by SPT, a well-known systemic insecticide for sucking pest control.


Assuntos
Acetil-CoA Carboxilase/genética , Antinematódeos/farmacologia , Compostos Aza/farmacologia , Cromadoria/crescimento & desenvolvimento , Compostos de Espiro/farmacologia , Acetil-CoA Carboxilase/antagonistas & inibidores , Animais , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/metabolismo , Cromadoria/efeitos dos fármacos , Cromadoria/metabolismo , Ácidos Graxos/metabolismo , Proteínas de Helminto/antagonistas & inibidores , Proteínas de Helminto/genética , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Larva/metabolismo , Estágios do Ciclo de Vida/efeitos dos fármacos , Tylenchoidea/efeitos dos fármacos , Tylenchoidea/crescimento & desenvolvimento , Tylenchoidea/metabolismo
19.
Plant J ; 103(4): 1263-1274, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32623778

RESUMO

Interactions between plant-parasitic nematodes and their hosts are mediated by effectors, i.e. secreted proteins that manipulate the plant to the benefit of the pathogen. To understand the role of effectors in host adaptation in nematodes, we analysed the transcriptome of Heterodera sacchari, a cyst nematode parasite of rice (Oryza sativa) and sugarcane (Saccharum officinarum). A multi-gene phylogenetic analysis showed that H. sacchari and the cereal cyst nematode Heterodera avenae share a common evolutionary origin and that they evolved to parasitise monocot plants from a common dicot-parasitic ancestor. We compared the effector repertoires of H. sacchari with those of the dicot parasites Heterodera glycines and Globodera rostochiensis to understand the consequences of this transition. While, in general, effector repertoires are similar between the species, comparing effectors and non-effectors of H. sacchari and G. rostochiensis shows that effectors have accumulated more mutations than non-effectors. Although most effectors show conserved spatiotemporal expression profiles and likely function, some H. sacchari effectors are adapted to monocots. This is exemplified by the plant-peptide hormone mimics, the CLAVATA3/EMBRYO SURROUNDING REGION-like (CLE) effectors. Peptide hormones encoded by H. sacchari CLE effectors are more similar to those from rice than those from other plants, or those from other plant-parasitic nematodes. We experimentally validated the functional significance of these observations by demonstrating that CLE peptides encoded by H. sacchari induce a short root phenotype in rice, whereas those from a related dicot parasite do not. These data provide a functional example of effector evolution that co-occurred with the transition from a dicot-parasitic to a monocot-parasitic lifestyle.


Assuntos
Doenças das Plantas/parasitologia , Tylenchoidea/metabolismo , Tylenchoidea/patogenicidade , Animais , Proteínas de Helminto/genética , Proteínas de Helminto/metabolismo , Interações Hospedeiro-Parasita , Hormônios Peptídicos/genética , Hormônios Peptídicos/metabolismo , Transcriptoma/genética , Tylenchoidea/genética
20.
Sci Rep ; 10(1): 6991, 2020 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-32332904

RESUMO

Meloidogyne incognita is a plant-parasitic root-knot nematode (RKN, PPN) responsible for causing damage to several crops worldwide. In Caenorhabditis elegans, the DAF-16 and SKN-1 transcription factors (TFs) orchestrate aging, longevity, and defense responses to several stresses. Here, we report that MiDaf16-like1 and MiSkn1-like1, which are orthologous to DAF-16 and SKN-1 in C. elegans, and some of their targets, are modulated in M. incognita J2 during oxidative stress or plant parasitism. We used RNAi technology for the stable production of siRNAs in planta to downregulate the MiDaf16-like1 and MiSkn1-like1 genes of M. incognita during host plant parasitism. Arabidopsis thaliana and Nicotiana tabacum overexpressing a hairpin-derived dsRNA targeting these genes individually (single-gene silencing) or simultaneously (double-gene silencing) were generated. T2 plants were challenged with M. incognita and the number of eggs, galls, and J2, and the nematode reproduction factor (NRF) were evaluated. Our data indicate that MiDaf16-like1, MiSkn1-like1 and some genes from their networks are modulated in M. incognita J2 during oxidative stress or plant parasitism. Transgenic A. thaliana and N. tabacum plants with single- or double-gene silencing showed significant reductions in the numbers of eggs, J2, and galls, and in NRF. Additionally, the double-gene silencing plants had the highest resistance level. Gene expression assays confirmed the downregulation of the MiDaf16-like1 and MiSkn1-like1 TFs and defense genes in their networks during nematode parasitism in the transgenic plants. All these findings demonstrate that these two TFs are potential targets for the development of biotechnological tools for nematode control and management in economically important crops.


Assuntos
Biotecnologia/métodos , Tylenchoidea/metabolismo , Tylenchoidea/patogenicidade , Animais , Arabidopsis/parasitologia , Doenças das Plantas/parasitologia , Plantas Geneticamente Modificadas/parasitologia , Interferência de RNA/fisiologia , RNA de Cadeia Dupla/genética , Nicotiana/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...