Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
1.
FEBS Lett ; 597(12): 1638-1650, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37079003

RESUMO

Each tRNA is aminoacylated (charged) with a genetic codon-specific amino acid. It remains unclear what factors are associated with tRNA charging and how tRNA charging is maintained. By using the individual tRNA acylation PCR method, we found that the charging ratio of tRNAGln (CUG) reflects cellular glutamine level. When uncharged tRNAGln (CUG) increased under amino acid starvation, the kinase GCN2, which is a key stimulator of the integrated stress response, was activated. Activation of GCN2 led to the upregulation of ubiquitin C (UBC) expression. Upregulated UBC, in turn, suppressed the further reduction in tRNAGln (CUG) charging levels. Thus, tRNA charging is sensitive to intracellular nutrient status and is an important initiator of intracellular signaling.


Assuntos
Aminoácidos , Proteínas de Saccharomyces cerevisiae , Aminoácidos/metabolismo , Glutamina/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , RNA de Transferência de Glutamina/metabolismo , Ubiquitina C/genética , Ubiquitina C/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Regulação para Cima
2.
Cell Biol Int ; 45(5): 1098-1110, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33501690

RESUMO

Accurate relative gene expression analysis by reverse transcription-quantitative polymerase chain reaction relies on the usage of suitable reference genes for data normalization. The RNA content of small extracellular vesicles including exosomes is growingly considered as cancer biomarkers. So, reliable relative quantification of exosomal messenger RNA (mRNA) is essential for cancer diagnosis and prognosis applications. However, suitable reference genes for accurate normalization of a target gene in exosomes derived from cancer cells are not depicted yet. Here, we analyzed the expression and stability of eight well-known reference genes namely GAPDH, B2M, HPRT1, ACTB, YWHAZ, UBC, RNA18S, and TBP in exosomes-isolated from the liver (Huh7, HepG2, PLC/PRF/5) and breast (SK-BR-3) cancer cell lines using five different algorithms including geNorm, BestKeeper, Delta Ct, NormFinder, and RefFinder. Our results showed that ACTB, TBP, and HPRT1 were not expressed in exosomes-isolated from studied liver and breast cancer cell lines. The geNorm and BestKeeper algorithms indicated GAPDH and UBC as the most stable candidates. Moreover, Delta Ct and NormFinder algorithms showed YWHAZ as the most stable reference genes. Comprehensive ranking calculated by the RefFinder algorithm also pointed out GAPDH, YWHAZ, and UBC as the first three stable reference genes. Taken together, this study validated the common reference genes stability in exosomal mRNA derived from liver and breast cancer cell lines for the first time. We believe that this study would be the first step in finding more stable reference genes in exosomes that triggers more accurate detection of exosomal biomarkers.


Assuntos
Perfilação da Expressão Gênica/métodos , Genes Essenciais/genética , Estabilidade de RNA/genética , Proteínas 14-3-3/genética , Algoritmos , Mama/patologia , Neoplasias da Mama/genética , Linhagem Celular , Exossomos/genética , Feminino , Expressão Gênica/genética , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/genética , Humanos , Fígado/patologia , Neoplasias Hepáticas/genética , Estabilidade de RNA/fisiologia , RNA Mensageiro/genética , RNA Mensageiro/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real/métodos , Padrões de Referência , Ubiquitina C/genética
3.
Curr Protein Pept Sci ; 21(12): 1193-1201, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32964822

RESUMO

The ubiquitin (Ub)-proteasome system (UPS) targets various cellular proteins for degradation. It has been found that defects in the UPS play a crucial role in the pathogenesis of Alzheimer's disease (AD), as the existence of Ub immunoreactivity in AD-linked neuronal inclusions, including neurofibrillary tangles, is observed in all types of AD cases. Current investigations have shown that components of the UPS can be connected with the early stage of AD, which is characterized by synaptic dysfunction, and to the late phases of the disease, marked by neurodegeneration. Although the significance of UPS in the pathogenesis of AD has been emphasized, targeted treatment at the main components of these pathways has a great perspective in advancing new therapeutic interventions for AD. In this review, we emphasize the relationship between UPS and AD pathology. We also represent the recent therapeutic advancements targeting UPS components in AD.


Assuntos
Doença de Alzheimer/genética , Peptídeos beta-Amiloides/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina C/genética , Ubiquitina Tiolesterase/genética , Ubiquitina-Proteína Ligases/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Regulação da Expressão Gênica , Humanos , Emaranhados Neurofibrilares/genética , Emaranhados Neurofibrilares/metabolismo , Emaranhados Neurofibrilares/patologia , Agregados Proteicos/genética , Proteólise , Transdução de Sinais , Ubiquitina C/metabolismo , Ubiquitina Tiolesterase/metabolismo , Enzimas de Conjugação de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
4.
Mol Biol Rep ; 47(4): 2735-2748, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32193769

RESUMO

Murine bone marrow-derived macrophages (M0) and M1- and M2-polarized macrophages are being widely used as a laboratory model for polarized macrophages related molecular mechanism analysis. Gene expression analysis based on reference gene normalization using RT-qPCR was a powerful way to explore the molecular mechanism. But little is known about reference genes in these cell models. So, the goal of this study was to identify reference genes in these types of macrophages. Candidate reference genes in murine bone marrow-derived and polarized macrophages were selected from microarray data using Limma linear model method and evaluated by determining the stability value using five algorithms: BestKeeper, NormFinder, GeNorm, Delta CT method, and RefFinder. Finally, the selected stable reference genes were validated by testing three important immune and inflammatory genes (NLRP1, IL-1ß, and TNF-α) in the cell lines. Our study has clearly shown that Ubc followed by Eef1a1 and B2m respectively were recognized as the three ideal reference genes for gene expression analysis in murine bone marrow-derived and polarized macrophages. When three reference genes with strong different stability were used for validation, a large variation of a gene expression level of IL-1ß, TNF-α and NLRP1 were obtained which provides clear evidence of the need for careful selection of reference genes for RT-qPCR analysis. Normalization of mRNA expression level with Ubc rather than Actb or Gusb by qPCR in macrophages and polarized macrophages is required to ensure the accuracy of the qPCR analysis.


Assuntos
Perfilação da Expressão Gênica/normas , Macrófagos/metabolismo , Reação em Cadeia da Polimerase em Tempo Real/normas , Algoritmos , Animais , Linhagem Celular , Expressão Gênica/genética , Perfilação da Expressão Gênica/métodos , Macrófagos/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Análise em Microsséries/métodos , Fator 1 de Elongação de Peptídeos/genética , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Padrões de Referência , Software , Ubiquitina C/genética
5.
J Immunol ; 204(7): 1982-1987, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32122998

RESUMO

GFP is frequently used as a marker for tracking donor cells adoptively transplanted into recipient animals. The human ubiquitin C promoter (UBC)-driven-GFP transgenic mouse is a commonly used source of donor cells for this purpose. This mouse was initially generated in the C57BL/6 inbred strain and has been backcrossed into the BALB/cBy strain for over 11 generations. Both the C57BL/6 inbred and BALB/cBy congenic UBC-GFP lines are commercially available and have been widely distributed. These UBC-GFP lines can be a convenient resource for tracking donor cells in both syngenic MHC-matched and in allogenic MHC-mismatched studies as C57BL/6 (H-2b) and BALB/cBy (H-2d) have disparate MHC haplotypes. In this report, we surprisingly discover that the UBC-GFP BALB/cBy congenic mice still retain the H-2b MHC haplotype of their original C57BL/6 founder, suggesting that the UBC-GFP transgene integration site is closely linked to the MHC locus on chromosome 17. Using linear amplification-mediated PCR, we successfully map the UBC-GFP transgene to the MHC locus. This study highlights the importance and urgency of mapping the transgene integration site of transgenic mouse strains used in biomedical research. Furthermore, this study raises the possibility of alternative interpretations of previous studies using congenic UBC-GFP mice and focuses attention on the necessity for rigor and reproducibility in scientific research.


Assuntos
Cromossomos/genética , Proteínas de Fluorescência Verde/genética , Complexo Principal de Histocompatibilidade/genética , Mutagênese Insercional/genética , Transgenes/genética , Ubiquitina C/genética , Animais , Haplótipos/genética , Camundongos , Camundongos Congênicos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Regiões Promotoras Genéticas/genética , Reprodutibilidade dos Testes
6.
Environ Microbiol ; 22(7): 2564-2580, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32056334

RESUMO

Ubi4 is a polyubiquitin precursor well characterized in yeasts but unexplored in insect mycopathogens. Here, we report that orthologous Ubi4 plays a core role in ubiquitin- and asexual lifestyle-required cellular events in Beauveria bassiana. Deletion of ubi4 led to abolished ubiquitin accumulation, blocked autophagic process, severe defects in conidiation and conidial quality, reduced cell tolerance to oxidative, osmotic, cell wall perturbing and heat-shock stresses, decreased transcript levels of development-activating and antioxidant genes, but light effect on radial growth under normal conditions. The deletion mutant lost insect pathogenicity via normal cuticle infection and was severely compromised in virulence via cuticle-bypassing infection due to a block of dimorphic transition critical for acceleration of host mummification. Proteomic and ubiquitylomic analyses revealed 1081 proteins differentially expressed and 639 lysine residues significantly hyper- or hypo-ubiquitylated in the deletion mutant, including dozens of ubiquitin-activating, conjugating and ligating enzymes, core histones, and many more involved in proteasomes, autophagy-lysosome process and protein degradation. Singular deletions of seven ubiquitin-conjugating enzyme genes exerted differential Ubi4-like effects on conidiation level and conidial traits. These findings uncover an essential role of Ubi4 in ubiquitin transfer cascade and its pleiotropic effects on the in vitro and in vivo asexual cycle of B. bassiana.


Assuntos
Beauveria/metabolismo , Beauveria/patogenicidade , Insetos/microbiologia , Ubiquitina C/genética , Ubiquitina C/metabolismo , Animais , Beauveria/genética , Parede Celular/metabolismo , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica/genética , Histonas/metabolismo , Controle de Pragas/métodos , Poliubiquitina/genética , Poliubiquitina/metabolismo , Proteômica , Esporos Fúngicos/metabolismo , Estresse Fisiológico/genética , Virulência/genética
7.
Sci Rep ; 9(1): 18556, 2019 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-31811203

RESUMO

UBC gene plays a critical role in maintaining ubiquitin (Ub) homeostasis. It is upregulated under stress conditions, and herein we report that it is downregulated upon Ub overexpression. Downregulation occurs in a dose-dependent manner, suggesting the existence of a fine-tuned Ub sensing mechanism. This "sensor" requires a conjugation competent ubiquitin to detect Ub levels. Searching the sensor among the transcription factors involved in basal and stress-induced UBC gene expression was unsuccessful. Neither HSF1 and HSF2, nor Sp1 and YY1 are affected by the increased Ub levels. Moreover, mutagenesis of their binding sites in the UBC promoter-driven reporter constructs does not impair the downmodulation effect. Epigenetic studies show that H2A and H2B ubiquitination within the UBC promoter region is unchanged upon ubiquitin overexpression. Noteworthy, quantification of nascent RNA molecules excludes that the downmodulation arises in the transcription initiation step, rather pointing towards a post-transcriptional mechanism. Indeed, a significantly higher fraction of unspliced UBC mRNA is detected in ubiquitin overexpressing cells, compared to empty vector transfected cells. Our findings suggest how increasing cellular ubiquitin levels may control the expression of UBC gene by negatively affecting the splicing of its pre-mRNA, providing a straightforward feedback strategy for the homeostatic control of ubiquitin pools.


Assuntos
Retroalimentação Fisiológica , Precursores de RNA/metabolismo , Splicing de RNA , Ubiquitina C/genética , Sítios de Ligação , Regulação da Expressão Gênica , Células HeLa , Humanos , Regiões Promotoras Genéticas/genética , RNA Mensageiro/análise , RNA Mensageiro/genética , Transcrição Gênica , Ubiquitina C/análise , Ubiquitina C/metabolismo
8.
Mol Microbiol ; 112(5): 1499-1518, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31442344

RESUMO

Assimilation of heme is mediated by the cell surface protein Shu1 in Schizosaccharomyces pombe. Shu1 undergoes internalization from the cell surface to the vacuole in response to high concentrations of hemin. Here, we have identified cellular components that are involved in mediating vacuolar targeting of Shu1. Cells deficient in heme biosynthesis and lacking the polyubiquitin gene ubi4+ exhibit poor growth in the presence of exogenous hemin as a sole source of heme. Microscopic analyses of hem1Δ shu1Δ ubi4Δ cells expressing a functional HA4 -tagged Shu1 show that Shu1 localizes to the cell surface. Ubiquitinated Nbr1 functions as a receptor for the endosomal sorting complexes required for transport (ESCRT) that delivers cargos to the vacuole. Inactivation of nbr1+ , ESCRT-0 hse1+ or ESCRT-I sst6+ results in hem1Δ cells being unable to use exogenous hemin for the growth. Using lysate preparations from hemin-treated cells, Shu1-Nbr1 and Shu1-Hse1 complexes are detected by coimmunoprecipitation experiments. Further analysis by immunofluorescence microscopy shows that Shu1 is unable to reach vacuoles of hemin-treated cells harboring a deletion for one of the following genes: ubi4+ , nbr1+ , hse1+ and sst6+ . Together, these results reveal that hemin-mediated vacuolar targeting of Shu1 requires Ubi4-dependent ubiquitination, the receptor Nbr1 and the ESCRT proteins Hse1 and Sst6.


Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Heme/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/crescimento & desenvolvimento , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Proteínas de Membrana/genética , Transporte Proteico/genética , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Ubiquitina C/genética , Ubiquitina C/metabolismo , Ubiquitinação
9.
Genes (Basel) ; 10(6)2019 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-31146457

RESUMO

The polyubiquitin gene is a highly conserved open reading frame that encodes different numbers of tandem ubiquitin repeats from different species, which play important roles in different biological processes. Metarhizium robertsii is a fungal entomopathogen that is widely applied in the biological control of pest insects. However, it is unclear whether the polyubiquitin gene is required for fungal development, stress tolerance, and virulence in the entomopathogenic fungus. In the present study, the polyubiquitin gene (MrUBI4, MAA_02160) was functionally characterized via gene deletion in M. robertsii.Compared to the control strains, the MrUBI4 deletion mutant showed delayed conidial germination and significantly decreased conidial yields (39% of the wild-type 14 days post-incubation). Correspondingly, the transcript levels of several genes from the central regulatory pathways associated with conidiation, including brlA, abaA, and wetA, were significantly downregulated, which indicated that MrUBI4 played an important role in asexual sporulation. Deletion of MrUBI4 especially resulted in increased sensitivity to ultraviolet (UV) and heat-shock stress based on conidial germination analysis between mutant and control strains. The significant increase in sensitivity to heat-shock was accompanied with reduced transcript levels of genes related to heat-shock protein (hsp), trehalose, and mannitol accumulation (tps, tpp, nth, and mpd) in the MrUBI4 deletion mutant. Deletion of MrUBI4 has no effect on fungal virulence. Altogether, MrUBI4 is involved in the regulation of conidiation, conidial germination, UV stress, and heat-shock response in M. robertsii.


Assuntos
Germinação/genética , Metarhizium/genética , Estresse Fisiológico/genética , Ubiquitina C/genética , Animais , Proteínas Fúngicas/genética , Deleção de Genes , Regulação Fúngica da Expressão Gênica , Insetos/genética , Esporos Fúngicos/genética , Esporos Fúngicos/crescimento & desenvolvimento
10.
World J Gastroenterol ; 25(17): 2086-2098, 2019 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-31114135

RESUMO

BACKGROUND: Pancreatic cancer is a highly invasive malignant tumor. Expression levels of the autophagy-related protein microtubule-associated protein 1A/1B-light chain 3 (LC3) and perineural invasion (PNI) are closely related to its occurrence and development. Our previous results showed that the high expression of LC3 was positively correlated with PNI in the patients with pancreatic cancer. In this study, we further searched for differential genes involved in autophagy of pancreatic cancer by gene expression profiling and analyzed their biological functions in pancreatic cancer, which provides a theoretical basis for elucidating the pathophysiological mechanism of autophagy in pancreatic cancer and PNI. AIM: To identify differentially expressed genes involved in pancreatic cancer autophagy and explore the pathogenesis at the molecular level. METHODS: Two sets of gene expression profiles of pancreatic cancer/normal tissue (GSE16515 and GSE15471) were collected from the Gene Expression Omnibus. Significance analysis of microarrays algorithm was used to screen differentially expressed genes related to pancreatic cancer. Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were used to analyze the functional enrichment of the differentially expressed genes. Protein interaction data containing only differentially expressed genes was downloaded from String database and screened. Module mining was carried out by Cytoscape software and ClusterOne plug-in. The interaction relationship between the modules was analyzed and the pivot nodes between the functional modules were determined according to the information of the functional modules and the data of reliable protein interaction network. RESULTS: Based on the above two data sets of pancreatic tissue total gene expression, 6098 and 12928 differentially expressed genes were obtained by analysis of genes with higher phenotypic correlation. After extracting the intersection of the two differential gene sets, 4870 genes were determined. GO analysis showed that 14 significant functional items including negative regulation of protein ubiquitination were closely related to autophagy. A total of 986 differentially expressed genes were enriched in these functional items. After eliminating the autophagy related genes of human cancer cells which had been defined, 347 differentially expressed genes were obtained. KEGG pathway analysis showed that the pathways hsa04144 and hsa04020 were related to autophagy. In addition, 65 clustering modules were screened after the protein interaction network was constructed based on String database, and module 32 contains the LC3 gene, which interacts with multiple autophagy-related genes. Moreover, ubiquitin C acts as a pivot node in functional modules to connect multiple modules related to pancreatic cancer and autophagy. CONCLUSION: Three hundred and forty-seven genes associated with autophagy in human pancreatic cancer were concentrated, and a key gene ubiquitin C which is closely related to the occurrence of PNI was determined, suggesting that LC3 may influence the PNI and prognosis of pancreatic cancer through ubiquitin C.


Assuntos
Autofagia , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Neoplasias Pancreáticas/metabolismo , Ubiquitina C/genética , Análise por Conglomerados , Biologia Computacional , Redes Reguladoras de Genes , Humanos , Análise em Microsséries , Proteínas Associadas aos Microtúbulos/genética , Invasividade Neoplásica , Mapeamento de Interação de Proteínas , Mapas de Interação de Proteínas , Software , Transcriptoma
11.
Int J Parasitol ; 49(5): 355-364, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30797771

RESUMO

Schistosomiasis, caused by trematodes of the genus Schistosoma, remains an important public health issue. Adult schistosomes can survive in the definitive host for several decades, although they are subject to the host immune response. Consequently, understanding the mechanism underlying worm survival in the definitive hosts could aid in developing novel strategies against schistosomiasis. We previously found that an inhibitor of apoptosis in Schistosoma japonicum (SjIAP) could negatively regulate apoptosis by inhibiting caspase activity, which plays a critical role in maintaining tegument integrity. The current study aimed to further analyze the mechanism related to SjIAP governing worm tegument integrity; therefore, we used a yeast two-hybrid screen and identified a series of putative interacting partners of SjIAP, including 14-3-3 (Sj14-3-3) and ubiquitin C (SjUBC). Quantitative real time PCR (qRT-PCR) analysis indicated that transcript profiles of Sj14-3-3 and SjUBC increased together with worm development in definitive hosts, which corresponds to those of SjIAP in S. japonicum. Immunohistochemical analysis showed Sj14-3-3 and SjUBC were located in the tegument of adult parasites while they were also ubiquitously distributed in the bodies of worms. Silencing of Sj14-3-3/SjUBC expression led to increased caspase activity and induced worm death. Inhibition of Sj14-3-3 or SjUBC resulted in significant morphological alterations in the schistosome tegument. Overall, our findings indicated that Sj14-3-3 and SjUBC interacting with SjIAP may belong to another strategy of S. japonicum to maintain the tegument integrity.


Assuntos
Proteínas 14-3-3/metabolismo , Proteínas de Helminto/metabolismo , Proteínas Inibidoras de Apoptose/metabolismo , Schistosoma japonicum/metabolismo , Ubiquitina C/metabolismo , Proteínas 14-3-3/genética , Animais , Apoptose , Caspases/genética , Caspases/metabolismo , Feminino , Proteínas de Helminto/genética , Humanos , Proteínas Inibidoras de Apoptose/genética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Ligação Proteica , Schistosoma japonicum/genética , Esquistossomose Japônica/parasitologia , Ubiquitina C/genética
12.
Bull Exp Biol Med ; 166(2): 264-267, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30488202

RESUMO

We studied the influence of magnetite nanoparticles (FeO•Fe2O3) and quantum dots (CdSe/ZnS coated with mercaptopropionic acid) on the expression of 5 common reference genes (BA, B2M, PPIA, UBC, and YWHAZ) in peripheral blood cells from 20 volunteers by reverse transcription PCR method. The stability of the expression of reference genes varied depending of the cells type and chemical structure of nanoparticles. The level of YWHAZ mRNA after exposure by nanoparticles demonstrated highest stability in lymphocytes, neutrophils, and monocytes. Stability of YWHAZ expression was confirmed by Western blotting. Our findings suggest that YWHAZ is the most suitable as the reference gene.


Assuntos
Proteínas 14-3-3/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Leucócitos Mononucleares/efeitos dos fármacos , Nanopartículas de Magnetita/química , Reação em Cadeia da Polimerase/normas , Pontos Quânticos/química , Proteínas 14-3-3/metabolismo , Ácido 3-Mercaptopropiônico/química , Actinas/genética , Actinas/metabolismo , Compostos de Cádmio/farmacologia , Compostos Férricos/farmacologia , Humanos , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/metabolismo , Peptidilprolil Isomerase/genética , Peptidilprolil Isomerase/metabolismo , Cultura Primária de Células , Padrões de Referência , Compostos de Selênio/farmacologia , Sulfetos/farmacologia , Ubiquitina C/genética , Ubiquitina C/metabolismo , Compostos de Zinco/farmacologia , Microglobulina beta-2/genética , Microglobulina beta-2/metabolismo
13.
J Neuromuscul Dis ; 5(2): 177-191, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29614692

RESUMO

BACKGROUND: Dogs with dystrophin-deficient muscular dystrophy are valuable models of the equivalent human disease, Duchenne Muscular Dystrophy (DMD): unlike the mdx mouse, these animals present a disease severity and progression that closely matches that found in human patients. Canine models are however less thoroughly characterised than the established mdx mouse in many aspects, including gene expression. Analysis of expression in muscle plays a key role in the study of DMD, allowing monitoring and assessment of disease progression, evaluation of novel biomarkers and gauging of therapeutic intervention efficacy. Appropriate normalization of expression data via carefully selected reference genes is consequently essential for accurate quantitative assessment. Unlike the expression profile of healthy skeletal muscle, the dystrophic muscle environment is highly dynamic: transcriptional profiles of dystrophic muscle might alter with age, disease progression, disease severity, genetic background and between muscle groups. OBJECTIVES: The aim of this work was to identify reference genes suitable for normalizing gene expression in healthy and dystrophic dogs under various comparative scenarios. METHODS: Using the delta-E50 MD canine model of DMD, we assessed a panel of candidate reference genes for stability of expression across healthy and dystrophic animals, at different ages and in different muscle groups. RESULTS: We show that the genes HPRT1, SDHA and RPL13a appear universally suitable for normalizing gene expression in healthy and dystrophic canine muscle, while other putative reference genes are exceptionally poor, and in the case of B2M, actively disease-correlated. CONCLUSIONS: Our findings suggest consistent cross-sample normalization is possible even throughout the dynamic progression of dystrophic pathology, and furthermore highlight the importance of empirical determination of suitable reference genes for neuromuscular diseases.


Assuntos
Distrofina/genética , Expressão Gênica/genética , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/genética , RNA Mensageiro/metabolismo , Microglobulina beta-2/genética , Proteínas 14-3-3/genética , Animais , Modelos Animais de Doenças , Cães , Hipoxantina Fosforribosiltransferase/genética , Camundongos , Camundongos Endogâmicos mdx , Distrofia Muscular de Duchenne/metabolismo , RNA Ribossômico 18S/genética , Reação em Cadeia da Polimerase em Tempo Real , Valores de Referência , Proteínas Ribossômicas/genética , Succinato Desidrogenase/genética , Ubiquitina C/genética
14.
Cell Death Dis ; 9(2): 139, 2018 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-29382826

RESUMO

Human bone marrow-mesenchymal stromal cells (hBM-MSCs) undergo cellular senescence during in vitro culture. In this study, we defined this replicative senescence as impaired proliferation, deterioration in representative cell characteristics, accumulated DNA damage, and decreased telomere length and telomerase activity with or without genomic abnormalities. The UBC gene expression gradually decreased during passaging along with the reduction in series of molecules including hub genes; CDK1, CCNA2, MCM10, E2F1, BRCA1, HIST1H1A and HIST1H3B. UBC knockdown in hBM-MSCs induced impaired proliferation in dose-dependent manner and showed replicative senescence-like phenomenon. Gene expression changes after UBC knockdown were similar to late passage hBM-MSCs. Additionally, UBC overexpession improved the proliferation activity of hBM-MSCs accompanied by increased expression of the hub genes. Consequently, UBC worked in higher-order through regulation of the hub genes controlling cell cycle and proliferation. These results indicate that the decrement of UBC expression plays a pivotal role in replicative senescence of hBM-MSCs.


Assuntos
Senescência Celular , Células-Tronco Mesenquimais/metabolismo , Ubiquitina C/metabolismo , Proliferação de Células , Células Cultivadas , Dano ao DNA , Regulação da Expressão Gênica , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Reprodutibilidade dos Testes , Transdução de Sinais , Telomerase/metabolismo , Ubiquitina C/genética
15.
Cell Stress Chaperones ; 23(4): 527-537, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29116578

RESUMO

Ubiquitin is a 76-amino acid protein that is highly conserved among higher and lower eukaryotes. The polyubiquitin gene UBI4 encodes a unique precursor protein that contains five ubiquitin repeats organized in a head-to-tail arrangement. Although the involvement of the yeast polyubiquitin gene UBI4 in the stress response was reported long ago, there are no reports regarding the underlying mechanism of this involvement. In this study, we used UBI4-deletion and UBI4-overexpressing yeast strains as models to explore the potential mechanism by which UBI4 protects yeast cells against paraquat-induced oxidative stress. Here, we show that ubi4Δ cells exhibit oxidative stress, an apoptotic phenotype, and a decreased replicative lifespan. Additionally, the reduced resistance of ubi4Δ cells to paraquat that was observed in this study was rescued by overexpression of either the catalase or the mitochondrial superoxide dismutase SOD2. We also demonstrated that only SOD2 overexpression restored the replicative lifespan of ubi4Δ cells. In contrast to the case of ubi4Δ cells, UBI4 overexpression in wild-type yeast increases the yeast's resistance to paraquat, and this overexpression is associated with large pools of expressed ubiquitin and increased levels of ubiquitinated proteins. Collectively, these findings highlight the role of the polyubiquitin gene UBI4 in apoptosis and implicate UBI4 as a modulator of the replicative lifespan.


Assuntos
Apoptose/genética , Replicação do DNA/genética , Poliubiquitina/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Ubiquitina C/deficiência , Ubiquitina C/genética , Apoptose/efeitos dos fármacos , Catalase/metabolismo , Replicação do DNA/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mutação/genética , Paraquat/toxicidade , Fenótipo , Espécies Reativas de Oxigênio/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Ubiquitina C/metabolismo , Ubiquitinação/efeitos dos fármacos
16.
J Clin Invest ; 127(12): 4554-4568, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29130934

RESUMO

Transcriptional repression of ubiquitin B (UBB) is a cancer-subtype-specific alteration that occurs in a substantial population of patients with cancers of the female reproductive tract. UBB is 1 of 2 genes encoding for ubiquitin as a polyprotein consisting of multiple copies of ubiquitin monomers. Silencing of UBB reduces cellular UBB levels and results in an exquisite dependence on ubiquitin C (UBC), the second polyubiquitin gene. UBB is repressed in approximately 30% of high-grade serous ovarian cancer (HGSOC) patients and is a recurrent lesion in uterine carcinosarcoma and endometrial carcinoma. We identified ovarian tumor cell lines that retain UBB in a repressed state, used these cell lines to establish orthotopic ovarian tumors, and found that inducible expression of a UBC-targeting shRNA led to tumor regression, and substantial long-term survival benefit. Thus, we describe a recurrent cancer-specific lesion at the level of ubiquitin production. Moreover, these observations reveal the prognostic value of UBB repression and establish UBC as a promising therapeutic target for ovarian cancer patients with recurrent UBB silencing.


Assuntos
Inativação Gênica , Proteínas de Neoplasias/biossíntese , Neoplasias Ovarianas/metabolismo , Ubiquitina C/biossíntese , Ubiquitina/biossíntese , Linhagem Celular Tumoral , Feminino , Humanos , Proteínas de Neoplasias/genética , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/terapia , Ubiquitina/genética , Ubiquitina C/genética
17.
J Clin Invest ; 127(12): 4228-4230, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29130938

RESUMO

Ubiquitylation is a tightly regulated process that is essential for appropriate cell survival and function, and the ubiquitin pathway has shown promise as a therapeutic target for several forms of cancer. In this issue of the JCI, Kedves and colleagues report the identification of a subset of gynecological cancers with repressed expression of the polyubiquitin gene UBB, which renders these cancer cells sensitive to further decreases in ubiquitin production by inhibition of the polyubiquitin gene UBC. Moreover, inducible depletion of UBC in mice harboring tumors with low UBB levels dramatically decreased tumor burden and prolonged survival. Together, the results of this study indicate that there is a synthetic lethal relationship between UBB and UBC that has potential to be exploited as a therapeutic strategy to fight these devastating cancers.


Assuntos
Neoplasias , Ubiquitina C/genética , Animais , Sobrevivência Celular , Camundongos , Poliubiquitina/genética , Ubiquitinação
18.
Nat Commun ; 8(1): 397, 2017 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-28855501

RESUMO

Ubiquitin conjugation signals for selective protein degradation by the proteasome. In eukaryotes, ubiquitin is encoded both as a monomeric ubiquitin unit fused to a ribosomal gene and as multiple ubiquitin units in tandem. The polyubiquitin gene is a unique, highly conserved open reading frame composed solely of tandem repeats, yet it is still unclear why cells utilize this unusual gene structure. Using the Saccharomyces cerevisiae UBI4 gene, we show that this multi-unit structure allows cells to rapidly produce large amounts of ubiquitin needed to respond to sudden stress. The number of ubiquitin units encoded by UBI4 influences cellular survival and the rate of ubiquitin-proteasome system (UPS)-mediated proteolysis following heat stress. Interestingly, the optimal number of repeats varies under different types of stress indicating that natural variation in repeat numbers may optimize the chance for survival. Our results demonstrate how a variable polycistronic transcript provides an evolutionary alternative for gene copy number variation.Eukaryotic cells rely on the ubiquitin-proteasome system for selective degradation of proteins, a process vital to organismal fitness. Here the authors show that the number of repeats in the polyubiquitin gene is evolutionarily unstable within and between yeast species, and that this variability may tune the cell's capacity to respond to sudden environmental perturbations.


Assuntos
Poliubiquitina/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Ubiquitina C/genética , Evolução Biológica , Clonagem Molecular , Variações do Número de Cópias de DNA , Dosagem de Genes , Genes Fúngicos , Proteínas de Fluorescência Verde/metabolismo , Temperatura Alta , Poliubiquitina/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteostase , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina C/metabolismo
19.
Biochem Biophys Res Commun ; 485(2): 234-240, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28237703

RESUMO

The polyubiquitin genes Ubb and Ubc are upregulated under oxidative stress induced by arsenite [As(III)]. However, the role of ubiquitin (Ub) under As(III) exposure is not known in detail. In a previous study, we showed that the reduced viability observed in Ubc-/- mouse embryonic fibroblasts under As(III) exposure was not due to dysregulation of the Nrf2-Keap1 pathway, which prompted us to investigate another NFE2 family protein, nuclear factor erythroid 2-related factor 1 (Nrf1). In this study, we found that Ub deficiency due to Ubc knockdown in N2a cells reduced cell viability and proteasome activity under As(III) exposure. Furthermore, mRNA levels of the proteasome subunit Psma1 were also reduced. In addition, Ub deficiency led to the nuclear accumulation of the p65 isoform of Nrf1 under As(III) exposure. Interestingly, the overexpression of p65-Nrf1 recapitulated the phenotypes of Ub-deficient N2a cells under As(III) exposure. On the other hand, Nrf1 knockdown suppressed the death of Ub-deficient N2a cells upon exposure to As(III). Therefore, the levels of p65-Nrf1 may play an important role in the maintenance of cell viability under oxidative stress induced by As(III).


Assuntos
Arsenitos/toxicidade , Fator 1 Nuclear Respiratório/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/metabolismo , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Camundongos , Células NIH 3T3 , Fator 1 Nuclear Respiratório/genética , Complexo de Endopeptidases do Proteassoma/genética , Ubiquitina/genética , Ubiquitina C/genética , Ubiquitina C/metabolismo
20.
PLoS One ; 11(10): e0164329, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27727313

RESUMO

Bicuspid aortic valve (BAV) disease is the most common congenital cardiac abnormality and predisposes patients to life-threatening aortic complications including aortic aneurysm. Quantitative real-time reverse transcription PCR (qRT-PCR) is one of the most commonly used methods to investigate underlying molecular mechanisms involved in aortopathy. The accuracy of the gene expression data is dependent on normalization by appropriate housekeeping (HK) genes, whose expression should remain constant regardless of aortic valve morphology, aortic diameter and other factors associated with aortopathy. Here, we identified an appropriate set of HK genes to be used as endogenous reference for quantifying gene expression in ascending aortic tissue using a spin column-based RNA extraction method. Ascending aortic biopsies were collected intra-operatively from patients undergoing aortic valve and/or ascending aortic surgery. These patients had BAV or tricuspid aortic valve (TAV), and the aortas were either dilated (≥4.5cm) or undilated. The cohort had an even distribution of gender, valve disease and hypertension. The expression stability of 12 reference genes were investigated (ATP5B, ACTB, B2M, CYC1, EIF4A2, GAPDH, SDHA, RPL13A, TOP1, UBC, YWHAZ, and 18S) using geNorm software. The most stable HK genes were found to be GAPDH, UBC and ACTB. Both GAPDH and UBC demonstrated relative stability regardless of valve morphology, aortic diameter, gender and age. The expression of B2M and SDHA were found to be the least stable HK genes. We propose the use of GAPDH, UBC and ACTB as reference genes for gene expression studies of BAV aortopathy using ascending aortic tissue.


Assuntos
Valva Aórtica/anormalidades , Perfilação da Expressão Gênica/métodos , Genes Essenciais , Doenças das Valvas Cardíacas/genética , Actinas/genética , Actinas/metabolismo , Adulto , Fatores Etários , Idoso , Algoritmos , Aorta/fisiologia , Valva Aórtica/metabolismo , Doença da Válvula Aórtica Bicúspide , Feminino , Expressão Gênica , Gliceraldeído-3-Fosfato Desidrogenases/genética , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Doenças das Valvas Cardíacas/diagnóstico , Doenças das Valvas Cardíacas/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , RNA/isolamento & purificação , RNA/metabolismo , Fatores Sexuais , Ubiquitina C/genética , Ubiquitina C/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA