Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.252
Filtrar
1.
J Extracell Vesicles ; 13(5): e12454, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38760878

RESUMO

Extracellular vesicles (EVs) are emerging as a promising drug delivery vehicle as they are biocompatible and capable of targeted delivery. However, clinical translation of EVs remains challenging due to the lack of standardized and scalable manufacturing protocols to consistently isolate small EVs (sEVs) with both high yield and high purity. The heterogenous nature of sEVs leading to unknown composition of biocargos causes further pushback due to safety concerns. In order to address these issues, we developed a robust quality-controlled multi-stage process to produce and isolate sEVs from human embryonic kidney HEK293F cells. We then compared different 2-step and 3-step workflows for eliminating protein impurities and cell-free nucleic acids to meet acceptable limits of regulatory authorities. Our results showed that sEV production was maximized when HEK293F cells were grown at high-density stationary phase in semi-continuous culture. The novel 3-step workflow combining tangential flow filtration, sucrose-cushion ultracentrifugation and bind-elute size-exclusion chromatography outperformed other methods in sEV purity while still preserved high yield and particle integrity. The purified HEK293F-derived sEVs were thoroughly characterized for identity including sub-population analysis, content profiling including proteomics and miRNA sequencing, and demonstrated excellent preclinical safety profile in both in-vitro and in-vivo testing. Our rigorous enrichment workflow and comprehensive characterization will help advance the development of EVs, particularly HEK293F-derived sEVs, to be safe and reliable drug carriers for therapeutic applications.


Assuntos
Vesículas Extracelulares , Humanos , Vesículas Extracelulares/metabolismo , Células HEK293 , Proteômica/métodos , Fluxo de Trabalho , Ultracentrifugação/métodos , MicroRNAs/metabolismo
2.
J Vis Exp ; (207)2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38767363

RESUMO

Human adipose-derived mesenchymal stem cells (ADSCs) can promote the regeneration and reconstruction of various tissues and organs. Recent research suggests that their regenerative function may be attributed to cell-cell contact and cell paracrine effects. The paracrine effect is an important way for cells to interact and transfer information over short distances, in which extracellular vesicles (EVs) play a functional role as carriers. There is significant potential for ADSC EVs in regenerative medicine. Multiple studies have reported on the effectiveness of these methods. Various methods for extracting and isolating EVs are currently described based on principles such as centrifugation, precipitation, molecular size, affinity, and microfluidics. Ultracentrifugation is regarded as the gold standard for isolating EVs. Nevertheless, a meticulous protocol to highlight precautions during ultracentrifugation is still absent. This study presents the methodology and crucial steps involved in ADSC culture, supernatant collection, and EV ultracentrifugation. However, even though ultracentrifugation is cost-effective and requires no further treatment, there are still some inevitable drawbacks, such as a low recovery rate and EV aggregation.


Assuntos
Tecido Adiposo , Vesículas Extracelulares , Células-Tronco Mesenquimais , Ultracentrifugação , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/química , Vesículas Extracelulares/química , Vesículas Extracelulares/metabolismo , Ultracentrifugação/métodos , Tecido Adiposo/citologia , Técnicas Citológicas/métodos
3.
Bioprocess Biosyst Eng ; 47(6): 877-890, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38703202

RESUMO

Ultracentrifugation is an attractive method for separating full and empty capsids, exploiting their density difference. Changes of the serotype/capsid, density of loading material, or the genetic information contained in the adeno-associated viruses (AAVs) require the adaptation of the harvesting parameters and the density gradient loaded onto the centrifuge. To streamline these adaptations, a mathematical model could support the design and testing of operating conditions.Here, hybrid models, which combine empirical functions with artificial neural networks, are proposed to describe the separation of full and empty capsids as a function of material and operational parameters, i.e., the harvest model. In addition, critical quality attributes are estimated by a quality model which is operating on top of the harvest model. The performance of these models was evaluated using test data and two additional blind runs. Also, a "what-if" analysis was conducted to investigate whether the models' predictions align with expectations.It is concluded that the models are sufficiently accurate to support the design of operating conditions, though the accuracy and applicability of the models can further be increased by training them on more specific data with higher variability.


Assuntos
Dependovirus , Ultracentrifugação , Dependovirus/genética , Dependovirus/isolamento & purificação , Ultracentrifugação/métodos , Vírion/isolamento & purificação , Vírion/química , Redes Neurais de Computação
4.
Methods Mol Biol ; 2804: 77-89, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38753141

RESUMO

Extracellular vesicles (EVs) are secreted by cells and found in biological fluids such as blood, with concentration correlated with oncogenic signals, making them attractive biomarkers for liquid biopsy. The current gold-standard method for EVs isolation requires an ultracentrifugation (UC) step among others. The cost and complexity of this technique are forbiddingly high for many researchers, as well as for routine use in biological laboratories and hospitals. This chapter reports on a simple microfluidic method for EVs isolation, based on a microfluidic size sorting technique named Deterministic Lateral Displacement (DLD). With the design of micrometric DLD array, we demonstrated the potential of our DLD devices for the isolation of nano-biological objects such as EVs, with main population size distribution consistent with UC technique.


Assuntos
Vesículas Extracelulares , Dispositivos Lab-On-A-Chip , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/química , Humanos , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Técnicas de Cultura de Células/métodos , Ultracentrifugação/métodos
5.
Viruses ; 16(4)2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38675915

RESUMO

The enterovirus A71 (EV71) inactivated vaccine is an effective intervention to control the spread of the virus and prevent EV71-associated hand, foot, and mouth disease (HFMD). It is widely administered to infants and children in China. The empty particles (EPs) and full particles (FPs) generated during production have different antigenic and immunogenic properties. However, the antigen detection methods currently used were established without considering the differences in antigenicity between EPs and FPs. There is also a lack of other effective analytical methods for detecting the different particle forms, which hinders the consistency between batches of products. In this study, we analyzed the application of sedimentation velocity analytical ultracentrifugation (SV-AUC) in characterizing the EPs and FPs of EV71. Our results showed that the proportions of the two forms could be quantified simultaneously by SV-AUC. We also determined the repeatability and accuracy of this method and found that both parameters were satisfactory. We assessed SV-AUC for bulk vaccine quality control, and our findings indicated that SV-AUC can be used effectively to analyze the percentage of EPs and FPs and monitor the consistency of the process to ensure the quality of the vaccine.


Assuntos
Enterovirus Humano A , Ultracentrifugação , Enterovirus Humano A/imunologia , Enterovirus Humano A/isolamento & purificação , Ultracentrifugação/métodos , Humanos , Vacinas Virais/imunologia , Vacinas de Produtos Inativados/imunologia , Vírion/imunologia , Vírion/isolamento & purificação , Doença de Mão, Pé e Boca/virologia , Doença de Mão, Pé e Boca/prevenção & controle , China , Controle de Qualidade
6.
Adv Exp Med Biol ; 3234: 89-107, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38507202

RESUMO

Cellular machines formed by the interaction and assembly of macromolecules are essential in many processes of the living cell. These assemblies involve homo- and hetero-associations, including protein-protein, protein-DNA, protein-RNA, and protein-polysaccharide associations, most of which are reversible. This chapter describes the use of analytical ultracentrifugation, light scattering, and fluorescence-based methods, well-established biophysical techniques, to characterize interactions leading to the formation of macromolecular complexes and their modulation in response to specific or unspecific factors. We also illustrate, with several examples taken from studies on bacterial processes, the advantages of the combined use of subsets of these techniques as orthogonal analytical methods to analyze protein oligomerization and polymerization, interactions with ligands, hetero-associations involving membrane proteins, and protein-nucleic acid complexes.


Assuntos
Proteínas , RNA , Espectrometria de Fluorescência , Proteínas/química , Substâncias Macromoleculares , Ultracentrifugação/métodos
7.
Iran Biomed J ; 28(2&3): 131-8, 2024 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-38468372

RESUMO

Background: ExoRNAs offer valuable insights into their cellular origin. ExoRNA studies were faced with challenges in obtaining sufficient amounts of high-quality RNA. Herein, we aimed to compare three traditional exosome isolation methods to introduce an appropriate strategy to extract RNA from cancer-derived exosomes for further RNA analysis. Methods: Exosomes were isolated through ultracentrifugation, precipitation kit, and size exclusion column chromatography, and then characterized by DLS and TEM, followed by extracting total RNA. The quality and quantity of the extracted RNAs were assessed by a NanoDrop and 2.5% agarose gel electrophoresis. Results: Extracted exosomes displayed a similar range of size and morphology. We found that PEG-precipitation method resulted in a higher RNA yield with a 260/280 ratio of 1.9. The obtained exoRNA appeared as a smear in the agarose gel, indicative of small exoRNAs. Conclusion: We provide researchers a suitable approach to isolate exosomes based on yield and purity of exoRNA.


Assuntos
Exossomos , Polietilenoglicóis , RNA , Exossomos/metabolismo , Exossomos/química , Humanos , Polietilenoglicóis/química , RNA/isolamento & purificação , Ultracentrifugação/métodos , Linhagem Celular Tumoral
8.
ACS Sens ; 9(3): 1239-1251, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38436286

RESUMO

Extracellular vesicles (EVs) are nanometric lipid vesicles that shuttle cargo between cells. Their analysis could shed light on health and disease conditions, but EVs must first be preserved, extracted, and often preconcentrated. Here we first compare plasma preservation agents, and second, using both plasma and cell supernatant, four EV extraction methods, including (i) ultracentrifugation (UC), (ii) size-exclusion chromatography (SEC), (iii) centrifugal filtration (LoDF), and (iv) accousto-sorting (AcS). We benchmarked them by characterizing the integrity, size distribution, concentration, purity, and expression profiles for nine proteins of EVs, as well as the overall throughput, time-to-result, and cost. We found that the difference between ethylenediaminetetraacetic acid (EDTA) and citrate anticoagulants varies with the extraction method. In our hands, ultracentrifugation produced a high yield of EVs with low contamination; SEC is low-cost, fast, and easy to implement, but the purity of EVs is lower; LoDF and AcS are both compatible with process automation, small volume requirement, and rapid processing times. When using plasma, LoDF was susceptible to clogging and sample contamination, while AcS featured high purity but a lower yield of extraction. Analysis of protein profiles suggests that the extraction methods extract different subpopulations of EVs. Our study highlights the strengths and weaknesses of sample preprocessing methods, and the variability in concentration, purity, and EV expression profiles of the extracted EVs. Preanalytical parameters such as collection or preprocessing protocols must be considered as part of the entire process in order to address EV diversity and their use as clinically actionable indicators.


Assuntos
Vesículas Extracelulares , Vesículas Extracelulares/metabolismo , Cromatografia em Gel , Proteínas/análise , Ultracentrifugação/métodos
9.
Curr Protoc ; 4(2): e974, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38319042

RESUMO

Analytical ultracentrifugation experiments play an integral role in the solution-phase characterization of biological macromolecules and their interactions. This unit discusses the design of sedimentation velocity and sedimentation equilibrium experiments performed with a Beckman Proteomelab XL-A or XL-I analytical ultracentrifuge and with a Beckman Optima AUC. Instrument settings and experimental design considerations are explained, and strategies for the analysis of experimental data with the UltraScan data analysis software package are presented. Special attention is paid to the strengths and weaknesses of the available detectors, and guidance is provided on how to extract maximum information from analytical ultracentrifugation experiments. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC.


Assuntos
Projetos de Pesquisa , Ultracentrifugação/métodos
10.
Eur Biophys J ; 53(3): 111-121, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38329496

RESUMO

Sedimentation velocity analytical ultracentrifugation (SV-AUC) has long been an important method for characterization of antibody therapeutics. Recently, SV-AUC has experienced a wave of new interest and usage from the gene and cell therapy industry, where SV-AUC has proven itself to be the "gold standard" analytical approach for determining capsid loading ratios for adeno-associated virus (AAV) and other viral vectors. While other more common approaches have existed in the realm of cGMP-compliant techniques for years, SV-AUC has long been used strictly for characterization, but not for release testing. This manuscript describes the challenges faced in bringing SV-AUC to a cGMP environment and describes a new program, "BASIS", which allows for 21 CFR Part 11-compliant data handling and data analysis using the well-known and frequently cited SEDFIT analysis software.


Assuntos
Anticorpos , Software , Área Sob a Curva , Ultracentrifugação/métodos
11.
Anal Biochem ; 689: 115482, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38342199

RESUMO

Simulated SV-AUC data for an adeno-associated virus (AAV) sample consisting of four components having closely spaced sedimentation coefficients were used to develop a high-speed protocol that optimized the size distribution analysis resolution. The resulting high speed (45K rpm) SV-AUC (hs-SV-AUC) protocol poses several experimental challenges: 1) the need for rapid data acquisition, 2) increased potential for optical artifacts from steep and fast moving boundaries and 3) the increased potential for convection. To overcome these challenges the protocol uses interference detection at low temperatures and data that are confined to a limited radial-time window. In addition to providing higher resolution AAV SV-AUC data and very short run times (<20 min after temperature equilibration), the need to match the sample and reference solvent composition and meniscus positions is relaxed making interference detection as simple to employ as absorbance detection. Finally, experimental data comparing hs-SV-AUC (at 45K rpm) with standard low-speed (15K rpm) SV-AUC on the same AAV sample demonstrate the size distribution resolution improvement. These experiments also validate the use of a radial-time window and show how quickly data can be acquired using the hs-SV-AUC protocol.


Assuntos
Temperatura Baixa , Dependovirus , Dependovirus/genética , Área Sob a Curva , Ultracentrifugação/métodos , Temperatura
12.
Artigo em Inglês | MEDLINE | ID: mdl-38176095

RESUMO

Isolation of Extracellular Vesicles (EVs) has been done extensively in the past using ultracentrifugation, a recent shift has been observed towards precipitation, and exosome isolation kits. These methods often co-elute contaminants of similar size and density which makes their detection and downstream applications quite challenging. As well as the EV yield is also compromised in some methodologies due to aggregate formation. In recent reports, size-exclusion chromatography (SEC) is replacing density gradient-based ultracentrifugation as the gold standard of exosome isolation. It outperforms in yield, purity and does not account for any physical damage to the EVs. We have standardized the methodology for an efficient pure yield of homogenous exosomes of size even smaller than 75 nm in Caenorhabditis elegans homogenate. The paper entails the application and optimization of EV isolation by SEC based on previous studies by optimizing bed size and type of sepharose column employed. We propose that this method is economically feasible in comparison with currently available approaches. A comparative study was conducted to investigate the performance of CL-6B in relation to CL-2B and further, this was combined with ultracentrifugation for higher efficacy. The methodology could be introduced in a clinical setting due to its therapeutic potential and scope. The eluted EVs were studied by flow cytometry, nanotracking and characterized for size and morphology.


Assuntos
Exossomos , Vesículas Extracelulares , Animais , Caenorhabditis elegans , Vesículas Extracelulares/química , Ultracentrifugação/métodos , Cromatografia em Gel
13.
Anal Chem ; 96(2): 642-651, 2024 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-38165078

RESUMO

Adeno-associated virus (AAV) vectors are produced as a mixture of the desired particle (full particle, FP), which is filled with the designed DNA, product-related impurities such as particle without DNA (empty particle, EP), and aggregates. Cesium chloride or iodixanol equilibrium density gradient ultracentrifugation (DGE-UC) has been used for the purification of AAV vectors. DGE-UC can separate FP from impurities based on the difference in their buoyant densities. Here, we report the applications and limitations of equilibrium density gradient analytical ultracentrifugation (DGE-AUC) using a modern AUC instrument that employs DGE-UC principles for the characterization and quantitation of AAV vectors. We evaluated the quantitative ability of DGE-AUC in comparison with sedimentation velocity AUC (SV-AUC) or band sedimentation AUC (BS-AUC) using AAVs with different DNA lengths and different serotypes. DGE-AUC enabled the accurate quantification of the ratio of FP to EP when the AAV vector primarily contains these particles. Furthermore, we developed a new workflow to identify the components of separated peaks in addition to FP and EP. Ultraviolet absorption spectra obtained by multiwavelength detection can also support peak assignment following component identification. DGE-AUC experiments for AAV vectors have limitations with regard to minor components with low absorption at the detected wavelength or those with a density similar to that of major components of AAV vectors. DGE-AUC is the only analytical method that can evaluate particle density heterogeneity; therefore, SV-AUC or BS-AUC and DGE-AUC are complementary methods for reliable assessment of the purity of AAV vectors.


Assuntos
Dependovirus , Vetores Genéticos , Dependovirus/genética , Ultracentrifugação/métodos , DNA
14.
STAR Protoc ; 4(4): 102740, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38048217

RESUMO

Circulating extracellular vesicles (EVs) could serve for the surveillance of diverse pathological conditions. We present a protocol for enriching and isolating plasma EVs from mouse blood. We describe steps for employing ultracentrifugation, size-exclusion chromatography, and density gradients, required for further quantitative and qualitative analysis. We detail the procedure for retrieving optimal volume of blood while preserving its integrity and avoiding hemolysis. We also describe the preparation of EVs from this complex fluid containing soluble proteins, aggregates, and lipoprotein particles. For complete details on the use and execution of this protocol, please refer to André-Grégoire et al. (2022).1.


Assuntos
Vesículas Extracelulares , Animais , Camundongos , Ultracentrifugação/métodos , Vesículas Extracelulares/química , Cromatografia em Gel
15.
Nanomedicine (Lond) ; 18(22): 1519-1534, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37877696

RESUMO

Aim: We present multi-wavelength (MW) analytical ultracentrifugation (AUC) methods offering superior accuracy for adeno-associated virus characterization and quantification. Methods: Experimental design guidelines are presented for MW sedimentation velocity and analytical buoyant density equilibrium AUC. Results: Our results were compared with dual-wavelength AUC, transmission electron microscopy and mass photometry. In contrast to dual-wavelength AUC, MW-AUC correctly quantifies adeno-associated virus capsid ratios and identifies contaminants. In contrast to transmission electron microscopy, partially filled capsids can also be detected and quantified. In contrast to mass photometry, first-principle results are obtained. Conclusion: Our study demonstrates the improved information provided by MW-AUC, highlighting the utility of several recently integrated UltraScan programs, and reinforces AUC as the gold-standard analysis for viral vectors.


Assuntos
Capsídeo , Dependovirus , Dependovirus/genética , Ultracentrifugação/métodos , Vetores Genéticos , Microscopia Eletrônica de Transmissão
16.
Medicine (Baltimore) ; 102(31): e34552, 2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37543776

RESUMO

BACKGROUND: The comparative analysis of ultracentrifugation (UC) and polyethylene glycol (PEG)-based precipitation for the isolation of exosomes in gouty arthritis synovial fluid (GASF) is rarely reported, and it is not known whether different isolation methods can influence subsequent cytokine analysis. METHODS: GA patients were enrolled during a 1-year period from May 2021 to May 2022. Morphology, particle number, size, purity, protein concentration, and biomarker proteins of GASF-derived exosomes in both extraction methods were observed using transmission electron microscopy, nanoparticle tracer analysis, bicinchoninic acid assay, and Western blotting. An ELISA-based assay platform was used to detect the cytokines in exosomes using Meso Scale Discovery. RESULTS: Thirty-two cases of fresh GASF were taken and randomly divided between the UC group (n = 16) and the PEG group (n = 16). Transmission electron microscopy images and nanoparticle tracer analysis results showed round vesicles measuring 100 nm on average. The protein expressions of TSG101, CD63, and CD81 in exosomes of the 2 groups were measured via Western blotting. The number and protein concentration of GASF-derived exosome particles from the PEG group were significantly higher than that of the UC group (P < .001). However, in the purity estimation, the UC group reflected significantly higher exosomes extractability (P < .01). Expression of IL-6 and IL-8 in the GASF-derived exosomes were higher in the UC group (P < .05), showing a median of 3.31 (interquartile range, IQR: 0.84-13.16) pg/mL, and a median of 2.87 (IQR: 0.56-13.17) pg/mL, respectively; moreover, IL-1ß was mostly undetectable in the PEG group. CONCLUSION: The UC method was found to yield exosomes of a higher purity, albeit at a lower quantity but with more abundant inflammatory cytokines; whereas the opposite was the case for the PEG group. The chemical precipitation method might not be suitable in terms of extracting GASF-derived exosomes for inflammation and immunity studies.


Assuntos
Artrite Gotosa , Exossomos , Humanos , Citocinas/metabolismo , Exossomos/metabolismo , Líquido Sinovial , Ultracentrifugação/métodos
17.
Methods Mol Biol ; 2666: 299-315, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37166673

RESUMO

Extracellular vesicles (EV) are small (100-1000 nm) particles that cells release into the extracellular space that have become increasingly famous for their potential in regenerative medicine and for their alterations in diseases such as cancer to promote disease progression, in particular for their potential for intercellular communication. However, studying EV can be challenging due to the broad diversity of both the EV themselves as well as the methods used to study them. This chapter aims to help investigators new to the EV field by describing challenges with studying EV, methods for enriching EV, and a simple EV enrichment protocol using differential ultracentrifugation.


Assuntos
Vesículas Extracelulares , Meios de Cultivo Condicionados , Ultracentrifugação/métodos , Espaço Extracelular
18.
Eur Biophys J ; 52(4-5): 321-332, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37160443

RESUMO

The biotech industry has great interest in investigating therapeutic proteins in high concentration environments like human serum. The fluorescence detection system (Aviv-FDS) allows the performance of analytical ultracentrifuge (AUC) sedimentation velocity (SV) experiments in tracer or BOLTS protocols. Here, we compare six pooled human serum samples by AUC SV techniques and demonstrate the potential of this technology for characterizing therapeutic antibodies in serum. Control FDS SV experiments on serum alone reveal a bilirubin-HSA complex whose sedimentation is slowed by solution nonideality and exhibits a Johnston-Ogston (JO) effect due to the presence of high concentrations of IgG. Absorbance SV experiments on diluted serum samples verify the HSA-IgG composition as well as a significant IgM pentamer boundary at 19 s. Alexa-488 labeled Simponi (Golimumab) is used as a tracer to investigate the behavior of a therapeutic monoclonal antibody (mAb) in serum, and the sedimentation behavior of total IgG in serum. Serum dilution experiments allow extrapolation to zero concentration to extract so, while global direct boundary fitting with SEDANAL verifies the utility of a matrix of self- and cross-term phenomenological nonideality coefficients (ks and BM1) and the source of the JO effect. The best fits include weak reversible association (~ 4 × 103 M-1) between Simponi and total human IgG. Secondary mAbs to human IgG and IgM verify the formation of a 10.2 s 1:1 complex with human IgG and a 19 s complex with human IgM pentamers. These results demonstrate that FDS AUC allows a range of approaches for investigating therapeutic antibodies in human serum.


Assuntos
Imunoglobulina G , Humanos , Fluorescência , Imunoglobulina M , Ultracentrifugação/métodos
19.
Eur Biophys J ; 52(4-5): 401-413, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37245172

RESUMO

Due to the rise of adeno-associated viruses (AAVs) as gene therapy delivery vectors, boundary sedimentation velocity analytical ultracentrifugation (boundary SV-AUC) has been developed into a widely used quality control assay even for release analytics. It can be considered as the "gold standard" for the determination of the loading status of empty, partially filled, and full capsids especially when conducted in multiwavelength (MWL) mode. It can be considered to provide the most accurate determination of the loading status, and it also provides information on the capsid titer, aggregates, and potential contaminants such as free DNA. MWL boundary SV-AUC can be regarded as a multi-attribute (MAM) method for the characterization of AAVs. One major drawback of the method is the high sample consumption both in terms of concentration and volume. Here, we compare two alternative AUC techniques, band SV-AUC and analytical CsCl density gradient sedimentation equilibrium AUC (CsCl SE-AUC) with the boundary SV-AUC and the MWL-SV-AUC experiment. Our data show a high consistency of the determined full/empty ratios between these techniques if the appropriate wavelengths and extinction coefficients are used.


Assuntos
Capsídeo , Dependovirus , Área Sob a Curva , Dependovirus/genética , Ultracentrifugação/métodos
20.
Eur Biophys J ; 52(4-5): 387-392, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37130969

RESUMO

Viral vector-based gene therapies and vaccines require accurate characterization of capsid species. The current gold standard for assessing capsid loading of adeno-associated virus (AAV) is sedimentation velocity analytical ultracentrifugation (SV-AUC). However, routine SV-AUC analysis is often size-limited, especially without the use of advanced techniques (e.g., gravitational-sweep) or when acquiring the multiwavelength data needed for assessing the loading fraction of viral vectors, and requires analysis by specialized software packages. Density gradient equilibrium AUC (DGE-AUC) is a highly simplified analytical method that provides high-resolution separation of biologics of different densities (e.g., empty and full viral capsids). The analysis required is significantly simpler than SV-AUC, and larger viral particles such as adenovirus (AdV) are amenable to characterization by DGE-AUC using cesium chloride gradients. This method provides high-resolution data with significantly less sample (estimated 56-fold improvement in sensitivity compared to SV-AUC). Multiwavelength analysis can also be used without compromising data quality. Finally, DGE-AUC is serotype-agnostic and amenable to intuitive interpretation and analysis (not requiring specialized AUC software). Here, we present suggestions for optimizing DGE-AUC methods and demonstrate a high-throughput AdV packaging analysis with the AUC, running as many as 21 samples in 80 min.


Assuntos
Ultracentrifugação , Ultracentrifugação/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...