Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genes (Basel) ; 11(8)2020 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-32824303

RESUMO

Undaria pinnatifida is an annual brown kelp growing naturally in coastal areas as a major primary producer in temperate regions and is cultivated on an industrial scale. Kelps have a heteromorphic life cycle characterized by a macroscopic sporophyte and microscopic sexual gametophytes. The sex-dependent effects of different environmental factors on the growth and maturation characteristics of the gametophyte stage were investigated using response surface methodology. Gametophytes were taken from three sites in Japan: Iwate Prefecture, Tokushima Prefecture, and Kagoshima Prefecture in order to confirm the sexual differences in three independent lines. Optimum temperature and light intensity were higher for males (20.7-20.9 °C and 28.6-33.7 µmol m-2 s-1, respectively) than females (16.5-19.8 °C and 26.9-32.5 µmol m-2 s-1), and maturity progressed more quickly in males than females. Optimum wavelengths of light for growth and maturation of the gametophytes were observed for both blue (400-500 nm, λmax 453 nm) and green (500-600 nm; λmax 525 nm) lights and were sex-independent. These characteristics were consistent among the three regional lines. Slower growth optima and progress of maturation could be important for female gametophytes to restrict fertilization and sporophyte germination to the lower water temperatures of autumn and winter, and suggest that the female gametophyte may be more sensitive to temperature than the male. The sexual differences in sensitivity to environmental factors improved the synchronicity of sporeling production.


Assuntos
Meio Ambiente , Células Germinativas Vegetais/fisiologia , Desenvolvimento Vegetal , Undaria/fisiologia , Geografia , Fenótipo , Temperatura
2.
Ecotoxicology ; 29(5): 559-570, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32333251

RESUMO

Biocides of antifouling agents can cause problems in marine ecosystems by damaging to non-target algal species. Aquatic bioassays are important means of assessing the quality of water containing mixtures of contaminants and of providing a safety standard for water management in an ecological context. In this study, a rapid, sensitive and inexpensive test method was developed using free-living male and female gametophytes of the brown macroalga Undaria pinnatifida. A conventional fluorometer was employed to evaluate the acute (48 h) toxic effects of six antifouling biocides: 4,5-Dichloro-2-octyl-isothiazolone (DCOIT), diuron, irgarol, medetomidine, tolylfluanid, zinc pyrithione (ZnPT). The decreasing toxicity in male and female gametophytes as estimated by EC50 (effective concentration at which 50% inhibition occurs) values was: diuron (0.037 and 0.128 mg l-1, respectively) > irgarol (0.096 and 0.172 mg l-1, respectively) > tolylfluanid (0.238 and 1.028 mg l-1, respectively) > DCOIT (1.015 and 0.890 mg l-1, respectively) > medetomidine (12.032 and 12.763 mg l-1, respectively). For ZnPT, 50% fluorescence inhibition of U. pinnatifida gametophytes occurred at concentrations above 0.4 mg l-1. The Undaria method is rapid, simple, practical, and cost-effective for the detection of photosynthesis-inhibiting biocides, thus making a useful tool for testing the toxicity of antifouling agents in marine environments.


Assuntos
Desinfetantes/toxicidade , Testes de Toxicidade/métodos , Undaria/fisiologia , Clorofila , Diurona/toxicidade , Ecossistema , Fluorescência , Células Germinativas Vegetais/efeitos dos fármacos , Triazinas/toxicidade , Poluentes Químicos da Água/toxicidade
3.
Mar Pollut Bull ; 142: 315-320, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31232310

RESUMO

Ocean acidification and warming represent major environmental threats to kelp mariculture. In this study, sporophytic photochemical efficiency and gametophytic growth of Saccharina japonica and Undaria pinnatifida were evaluated under different pCO2 levels (360, 720, and 980 ppmv) and temperatures (5, 10, 15, and 20 °C for sporophytes; 15 and 20 °C for gametophytes). Sporophytic photochemical efficiencies of both kelps were significantly greater at 720 ppmv than at 360 and 980 ppmv. Female gametophytes of both kelps grew significantly better at 360 ppmv than at higher pCO2 levels. The growth of U. pinnatifida gametophytes was significantly greater at 20 °C than at 15 °C, while no significant difference was observed for the growth of S. japonica. These results indicate that increased pCO2 stimulated sporophytic photochemical efficiency while inhibited gametophytic growth of these kelps, which might negatively affect their seedling cultivation. U. pinnatifida exhibited higher productivity in warmer ocean than S. japonica.


Assuntos
Phaeophyceae/fisiologia , Água do Mar/química , Células Germinativas Vegetais/crescimento & desenvolvimento , Aquecimento Global , Kelp/crescimento & desenvolvimento , Kelp/fisiologia , Phaeophyceae/crescimento & desenvolvimento , Fotossíntese , Especificidade da Espécie , Temperatura , Undaria/crescimento & desenvolvimento , Undaria/fisiologia
4.
Sci Rep ; 9(1): 8816, 2019 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-31217462

RESUMO

Contemporary coexistence theory provides a framework for predicting invasiveness and impact of Invasive Non-Native Species (INNS) by incorporating differences in niche and fitness between INNS and co-occurring native species. The widespread invasive kelp Undaria pinnatifida is considered a high-risk INNS, although a robust evidence base regarding its invasiveness and impact is lacking in many regions. Invaded macroalgal canopies at nine coastal sites in the southwest UK were studied over three years to discern whether Undaria is coexisting or competing with native canopy-forming species across different habitat types. Spatial, temporal and depth-related trends in species distributions and abundance were recorded within intertidal and subtidal rocky reef as well as on marina pontoons. A primary succession experiment also examined competitive interactions between species. In rocky reef habitats, Undaria had lower fitness compared to long-lived native perennials, but was able to coexist due to niche dissimilarity between species. In contrast, Undaria was likely to be competing with short-lived native annuals on rocky reef due to large niche overlap and similar fitness. In marina habitats, Undaria dominated over all other canopy formers due to low niche diversification and higher fitness. Generalisations on INNS impact cannot be made across habitats or species, without considering many abiotic factors and biotic interactions.


Assuntos
Organismos Aquáticos/fisiologia , Ecossistema , Espécies Introduzidas , Alga Marinha/fisiologia , Biomassa , Recifes de Corais , Geografia , Modelos Lineares , Simbiose , Undaria/fisiologia , Reino Unido
5.
Bull Environ Contam Toxicol ; 102(6): 784-788, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30989278

RESUMO

With rapid development of the construction of nuclear power plants along the coast, the concern of negative effects of potentially unexpected release of nuclides on marine organisms has increased. Cobalt (Co) is one of the crucial nuclides in nuclear polluted seawater. The effect of its presence in seawater on life cycle of macroalgae has seldom been studied. In this investigation, a series of Co concentrations including 1, 10, 100 µg L-1, and 1, 10 mg L-1 (the background concentration of Co in culture seawater was determined to be at the level of 0.75 ± 0.11 µg L-1) were used to test the effects of their presence on spore germination, gametophyte growth and gametogenesis of the important brown macroalga Undaria pinnatifida. It was found that the spore germination rate of 10 mg L-1 group was significantly lower than that of the control group after 1- and 2 days exposure. The gametophyte sizes of 1 and 10 mg L-1 groups were much smaller than that of the control group after 6- and 12-days exposure. Oogonia and juvenile sporophytes were observed to appear in 1, 10 µg L-1 and the control groups after 12 and 15 days, respectively, but not in the higher concentration groups. In the recovery test, sporophytes appeared in the 100 µg L-1 group on the 5th day, but not in 1 and 10 mg L-1 groups. These results demonstrate that presence of Co at high concentrations in seawater disturbs the life cycle by suppressing both the gametophyte growth and gametogenesis in U. pinnatifida.


Assuntos
Cobalto/toxicidade , Undaria/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Adolescente , Gametogênese/efeitos dos fármacos , Células Germinativas Vegetais , Humanos , Phaeophyceae , Água do Mar , Alga Marinha , Esporos , Undaria/fisiologia
6.
Mar Pollut Bull ; 137: 488-500, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30503460

RESUMO

Understanding population dynamics of established invasive species is important for designing effective management measures and predicting factors such as invasiveness and ecological impact. The kelp Undaria pinnatifida has spread to most temperate regions of the world, however a basic understanding of population dynamics is lacking for many regions. Here, Undaria was monitored for 2 years, at 9 sites, across 3 habitats to investigate habitat-related variation in population structure, reproductive capacity and morphology. Populations on marina pontoons were distinct from those in reef habitats, with extended recruitment periods and higher abundance, biomass, maturation rates and fecundity; potentially driven by lower inter-specific and higher intra-specific competition within marinas. This suggests that artificial habitats are likely to facilitate the spread, proliferation and reproductive fitness of Undaria across its non-native range. More broadly, generalising population dynamics of invasive species across habitat types is problematic, thus adding high complexity to management options.


Assuntos
Espécies Introduzidas , Kelp/fisiologia , Undaria/fisiologia , Biomassa , Conservação dos Recursos Hídricos/métodos , Ecossistema , Monitoramento Ambiental , Análise Espaço-Temporal , Reino Unido
7.
Sci Rep ; 8(1): 14763, 2018 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-30283041

RESUMO

Ocean warming (OW), ocean acidification (OA) and their interaction with local drivers, e.g., copper pollution, may negatively affect macroalgae and their microscopic life stages. We evaluated meiospore development of the kelps Macrocystis pyrifera and Undaria pinnatifida exposed to a factorial combination of current and 2100-predicted temperature (12 and 16 °C, respectively), pH (8.16 and 7.65, respectively), and two copper levels (no-added-copper and species-specific germination Cu-EC50). Meiospore germination for both species declined by 5-18% under OA and ambient temperature/OA conditions, irrespective of copper exposure. Germling growth rate declined by >40%·day-1, and gametophyte development was inhibited under Cu-EC50 exposure, compared to the no-added-copper treatment, irrespective of pH and temperature. Following the removal of copper and 9-day recovery under respective pH and temperature treatments, germling growth rates increased by 8-18%·day-1. The exception was U. pinnatifida under OW/OA, where growth rate remained at 10%·day-1 before and after copper exposure. Copper-binding ligand concentrations were higher in copper-exposed cultures of both species, suggesting that ligands may act as a defence mechanism of kelp early life stages against copper toxicity. Our study demonstrated that copper pollution is more important than global climate drivers in controlling meiospore development in kelps as it disrupts the completion of their life cycle.


Assuntos
Cobre/toxicidade , Células Germinativas Vegetais/efeitos dos fármacos , Germinação/efeitos dos fármacos , Macrocystis/efeitos dos fármacos , Undaria/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Mudança Climática , Células Germinativas Vegetais/fisiologia , Germinação/fisiologia , Temperatura Alta , Concentração de Íons de Hidrogênio , Macrocystis/fisiologia , Oceanos e Mares , Água do Mar/química , Undaria/fisiologia
8.
Mar Environ Res ; 131: 243-257, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28958575

RESUMO

Marine invasive macroalgae can have severe local-scale impacts on ecological communities. The kelp Undaria pinnatifida is one of the most successful marine invasive species worldwide, and is widely regarded as one of the worst. Here, we review research on Undaria in Australasia, where the kelp is established throughout much of New Zealand and south-eastern Australia. The presence of Undaria for at least three decades in these locations makes Australasia one of the longest-invaded bioregions globally, and a valuable case study for considering Undaria's invasion success and associated impacts. In Australasia, Undaria has primarily invaded open spaces, turf communities, and gaps in native canopies within a relatively narrow elevation band on rocky shores. Despite its high biomass, Undaria has relatively few direct impacts on native species, and can increase community-wide attributes such as primary productivity and the provision of biogenic habitat. Therefore, Australasian Undaria research provides an example of a decoupling between the success and impact of an invasive species. Undaria will most likely continue to spread along thousands of kilometres of rocky coastline in temperate Australasia, due to its tolerance to large variations in temperature, ability to exploit disturbances to local communities, and the continued transfer among regions via vessel movements and aquaculture activities. However, the spread of Undaria remains difficult to manage as eradication is challenging and seldom successful. Therefore, understanding potential invasion pathways, maintaining native canopy-forming species that limit Undaria success, and effectively managing anthropogenic vectors of Undaria spread, should be key management priorities.


Assuntos
Monitoramento Ambiental , Espécies Introduzidas , Undaria/fisiologia , Australásia
9.
Bioresour Technol ; 102(3): 2925-30, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21145233

RESUMO

Composting of the Undaria pinnatifida (wakame) seaweed was conducted after inoculation with 6×10(8) CFU g(-1)Halomonas sp. AW4 and the alginate-degrading bacterium Gracilibacillus sp. A7. Inoculation with strains A7 and AW4 resulted in 27.8% and 24.7% degradation of U. pinnatifida dry mass after 168 h, whereas only 17.5% degradation occurred in the uninoculated control. The C/N ratio decreased in the A7 and AW4 inoculated compost by 7.0% and 9.2% after 72 h, but increased by 11.5% in the control. Inoculation with A7 resulted in 2.8 times faster degradation of alginate and 1.2 and 1.6 times higher levels of reducing sugars and unsaturated sugars than inoculation with AW4. The compost produced from the inoculation with A7 had low plant toxicity as measured by germination experiment. The results suggest that inoculation of wakame with alginate-degrading bacteria not only shortened the length of composting but also created seaweed compost with good fertilizer qualities.


Assuntos
Bacillus/fisiologia , Halomonas/fisiologia , Microbiologia do Solo , Undaria/fisiologia , Técnicas de Cocultura/métodos , Biologia Marinha
10.
J Soc Biol ; 201(3): 259-66, 2007.
Artigo em Francês | MEDLINE | ID: mdl-18157078

RESUMO

The number of biological introductions has increased since the 1970's and is now considered as the second major cause of the biodiversity erosion, after fragmentation or disappearance of habitat. Beyond the threat they represent for the ecosystem equilibrium, introduced species are interesting models to study fundamental issues in ecology and evolution like the processes of dispersal and adaptation to novel environments. In this context, species introduced over a large geographic range and spectrum of habitats provide an excellent opportunity for comparing the mechanisms that promote introduction and settlement between different environments. In this paper, based on a case study, the worldwide introduction of the brown alga Undaria pinnatifida, and on the use of molecular tools, we aim at examining several processes promoting or occurring during biological introductions. Our results showed that i) multiple processes can account for the success of the pandemic introduction of this alga, highlighting the necessity to study introduced species in relation with the ecosystem they invaded, ii) the recurrence of introductions is a critical component in the dynamics of settlement and iii) human activities can play a major role not only during the primary introduction but also for the sustainable settlement of introduced species in natural environments by providing reservoir of migrants. Taken together, these results demonstrate that the complexity of mechanisms occurring in biological invasion require spatial but also long-term analysis.


Assuntos
Kelp/fisiologia , Undaria/fisiologia , Ecossistema , Geografia , Japão , Kelp/classificação , Undaria/classificação
11.
Biotechnol Lett ; 27(19): 1467-75, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16231218

RESUMO

Through an acclimation period of 10 days, compared to white light, the maximal net photosynthetic rates were significantly higher for gametophytes of Undaria pinnatifida cultivated under blue light (400-500 nm), and were lower under red light (600-700 nm). Chlorophyll c and the carotenoid content of gametophytes were similar under blue light and red light but were much lower under white light. The growth rate of female gametophytes under blue light was higher than that under other lights, and the growth rate of male gametophytes showed little variation with respect to blue and white light. Male and female gametophytes were mixed together to form sporophytes under white, blue and red light. After approximately 5 days, 50% gametophytes became fertile under blue and white light, but remained vegetative under red light after 10 days.


Assuntos
Células Germinativas/crescimento & desenvolvimento , Luz , Fotossíntese/efeitos da radiação , Undaria/efeitos da radiação , Carotenoides/análise , Técnicas de Cultura de Células , Clorofila/análise , Relação Dose-Resposta à Radiação , Células Germinativas/efeitos da radiação , Doses de Radiação , Undaria/fisiologia
12.
Biomol Eng ; 20(4-6): 281-4, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12919809

RESUMO

An on-line controlled 7 l sterilizable photobioreactor was used for the optimisation of a culture of gametophytes of Undaria pinnatifida. The gametophytes, which had been stored for three years in a culture cabinet at 16 degrees C, could rapidly grow in the photobioreactor under controlled conditions. The rate of increase of dissolved oxygen and pH were used to monitor the photosynthetic activity. Optimal gametophytes density changed varying the light intensity. The optimal cell densities were 3.24 and 3.45 g FW l(-1) when the cultures were exposed to 61.7 and 82.3 microE m(-2) s(-1), respectively. The optimal cell density was higher under a high photon flux density (PFD) than under low PFD. On the other hand, the optimal light intensities were different for different cell density cultures. The light saturation point was higher at high cell density cultures than at low cell density cultures. The optimal rotational speed was 150 rpm for high cell density culture in the photobioreactor.


Assuntos
Reatores Biológicos/microbiologia , Técnicas de Cultura de Células/métodos , Células Germinativas/fisiologia , Células Germinativas/efeitos da radiação , Oxigênio/metabolismo , Undaria/fisiologia , Undaria/efeitos da radiação , Contagem de Células , Centrifugação/métodos , Relação Dose-Resposta à Radiação , Concentração de Íons de Hidrogênio , Luz , Sistemas On-Line , Fotossíntese/fisiologia , Controle de Qualidade , Doses de Radiação , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...