Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 128
Filtrar
1.
J Ethnopharmacol ; 328: 118005, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38508433

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Reyanning (RYN) mixture is a traditional Chinese medicine composed of Taraxacum, Polygonum cuspidatum, Scutellariae Barbatae and Patrinia villosa and is used for the treatment of acute respiratory system diseases with significant clinical efficacy. AIM OF THE STUDY: Acute lung injury (ALI) is a common clinical disease characterized by acute respiratory failure. This study was conducted to evaluate the therapeutic effects of RYN on ALI and to explore its mechanism of action. MATERIALS AND METHODS: Ultra-high-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was used to analyze the chemical components of RYN. 7.5 mg/kg LPS was administered to induce ALI in rats. RYN was administered by gavage at doses of 2 ml/kg, 4 ml/kg or 8 ml/kg every 8 h for a total of 6 doses. Observations included lung histomorphology, lung wet/dry (W/D) weight ratio, lung permeability index (LPI), HE staining, Wright-Giemsa staining. ELISA was performed to detect the levels of TNF-α, IL-6, IL-10, Arg-1,UDPG. Immunohistochemical staining detected IL-6, F4/80 expression. ROS, MDA, SOD, GSH/GSSG were detected in liver tissues. Multiple omics techniques were used to predict the potential mechanism of action of RYN, which was verified by in vivo closure experiments. Immunofluorescence staining detected the co-expression of CD86 and CD206, CD86 and P2Y14, CD86 and UGP2 in liver tissues. qRT-PCR detected the mRNA levels of UGP2, P2Y14 and STAT1, and immunoblotting detected the protein expression of UGP2, P2Y14, STAT1, p-STAT1. RESULTS: RYN was detected to contain 1366 metabolites, some of the metabolites with high levels have anti-inflammatory, antibacterial, antiviral and antioxidant properties. RYN (2, 4, and 8 ml/kg) exerted dose-dependent therapeutic effects on the ALI rats, by reducing inflammatory cell infiltration and oxidative stress damage, inhibiting CD86 expression, decreasing TNF-α and IL-6 levels, and increasing IL-10 and Arg-1 levels. Transcriptomics and proteomics showed that glucose metabolism provided the pathway for the anti-ALI properties of RYN and that RYN inhibited lung glycogen production and distribution. Immunofluorescence co-staining showed that RYN inhibited CD86 and UGP2 expressions. In vivo blocking experiments revealed that blocking glycogen synthesis reduced UDPG content, inhibited P2Y14 and CD86 expressions, decreased P2Y14 and STAT1 mRNA and protein expressions, reduced STAT1 protein phosphorylation expression, and had the same therapeutic effect as RYN. CONCLUSION: RYN inhibits M1 macrophage polarization to alleviate ALI. Blocking glycogen synthesis and inhibiting the UDPG/P2Y14/STAT1 signaling pathway may be its molecular mechanism.


Assuntos
Lesão Pulmonar Aguda , Lipopolissacarídeos , Ratos , Animais , Lipopolissacarídeos/toxicidade , Lipopolissacarídeos/metabolismo , Interleucina-10/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Cromatografia Líquida , Interleucina-6/metabolismo , Uridina Difosfato Glucose/metabolismo , Uridina Difosfato Glucose/farmacologia , Uridina Difosfato Glucose/uso terapêutico , Espectrometria de Massas em Tandem , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , Pulmão , Macrófagos/metabolismo , RNA Mensageiro/metabolismo
2.
Int Immunol ; 36(4): 155-166, 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38108401

RESUMO

Ulcerative colitis (UC) is a chronic disorder of the large intestine with inflammation and ulceration. The incidence and prevalence of UC have been rapidly increasing worldwide, but its etiology remains unknown. In patients with UC, the accumulation of eosinophils in the large intestinal mucosa is associated with increased disease activity. However, the molecular mechanism underlying the promotion of intestinal eosinophilia in patients with UC remains poorly understood. Here, we show that uridine diphosphate (UDP)-glucose mediates the eosinophil-dependent promotion of colonic inflammation via the purinergic receptor P2Y14. The expression of P2RY14 mRNA was upregulated in the large intestinal mucosa of patients with UC. The P2Y14 receptor ligand UDP-glucose was increased in the large intestinal tissue of mice administered dextran sodium sulfate (DSS). In addition, P2ry14 deficiency and P2Y14 receptor blockade mitigated DSS-induced colitis. Among the large intestinal immune cells and epithelial cells, eosinophils highly expressed P2ry14 mRNA. P2ry14-/- mice transplanted with wild-type bone marrow eosinophils developed more severe DSS-induced colitis compared with P2ry14-/- mice that received P2ry14-deficient eosinophils. UDP-glucose prolonged the lifespan of eosinophils and promoted gene transcription in the cells through P2Y14 receptor-mediated activation of ERK1/2 signaling. Thus, the UDP-glucose/P2Y14 receptor axis aggravates large intestinal inflammation by accelerating the accumulation and activation of eosinophils.


Assuntos
Colite Ulcerativa , Eosinofilia , Humanos , Camundongos , Animais , Uridina Difosfato Glucose/farmacologia , Eosinófilos , Inflamação , Mucosa Intestinal , RNA Mensageiro , Glucose/efeitos adversos , Sulfato de Dextrana , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
3.
Neuropharmacology ; 238: 109655, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37423482

RESUMO

Uridine 5'-diphosphoglucose (UDP-G) as a preferential agonist, but also other UDP-sugars, such as UDP galactose, function as extracellular signaling molecules under conditions of cell injury and apoptosis. Consequently, UDP-G is regarded to function as a damage-associated molecular pattern (DAMP), regulating immune responses. UDP-G promotes neutrophil recruitment, leading to the release of pro-inflammatory chemokines. As a potent endogenous agonist with the highest affinity for the P2Y14 receptor (R), it accomplishes an exclusive relationship between P2Y14Rs in regulating inflammation via cyclic adenosine monophosphate (cAMP), nod-like receptor protein 3 (NLRP3) inflammasome, mitogen-activated protein kinases (MAPKs), and signal transducer and activator of transcription 1 (STAT1) pathways. In this review, we initially present a brief introduction into the expression and function of P2Y14Rs in combination with UDP-G. Subsequently, we summarize emerging roles of UDP-G/P2Y14R signaling pathways that modulate inflammatory responses in diverse systems, and discuss the underlying mechanisms of P2Y14R activation in inflammation-related diseases. Moreover, we also refer to the applications as well as effects of novel agonists/antagonists of P2Y14Rs in inflammatory conditions. In conclusion, due to the role of the P2Y14R in the immune system and inflammatory pathways, it may represent a novel target for anti-inflammatory therapy.


Assuntos
Receptores Purinérgicos P2 , Humanos , Receptores Purinérgicos P2/metabolismo , Uridina Difosfato Glucose/metabolismo , Uridina Difosfato Glucose/farmacologia , Açúcares de Uridina Difosfato/farmacologia , Inflamação/tratamento farmacológico , Glucose
4.
Life Sci ; 326: 121805, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37236604

RESUMO

BACKGROUND: P2Y14 receptor is expressed in neutrophils and is involved in activation of inflammatory signaling. However, the expression and function of P2Y14 receptor in neutrophils after myocardial infarction/reperfusion (MIR) injury remain to be elucidated. METHODS: In this research, rodent and cellular models of MIR were used to detect the involvement and function of P2Y14 receptor, as well as the regulation of inflammatory signaling via P2Y14 receptor in neutrophils post-MIR. RESULTS: In the early stage post MIR, the expression of P2Y14 receptor was upregulated in CD4+Ly-6G+ neutrophils. Additionally, the expression of P2Y14 receptor was highly induced in neutrophils subjected to uridine 5'-diphosphoglucose (UDP-Glu), which is proven to be secreted by cardiomyocytes during ischemia and reperfusion. Our results also showed the beneficial role of P2Y14 receptor antagonist PPTN in counteracting inflammation via promoting polarization of neutrophils to N2 phenotype in the infarct area of the heart tissue after MIR. CONCLUSION: These findings prove that the P2Y14 receptor is involved in the regulation of inflammation in the infarct area after MIR, and establish a novel signaling pathway concerning the interplay between cardiomyocytes and neutrophils in the heart tissue.


Assuntos
Infarto do Miocárdio , Traumatismo por Reperfusão Miocárdica , Humanos , Regulação para Cima , Neutrófilos/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Inflamação/metabolismo , Uridina Difosfato Glucose/metabolismo , Uridina Difosfato Glucose/farmacologia , Infarto do Miocárdio/metabolismo
5.
Am J Chin Med ; 50(5): 1331-1348, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35729506

RESUMO

The pathological mechanism of cholestatic hepatic injury is associated with oxidative stress, hepatocyte inflammation, and dysregulation of hepatocyte transporters. Paeonia lactiflora Pall. and its compound can improve hepatic microcirculation, dilate bile duct, and promote bile flow, which is advantageous to ameliorate liver damage. Paeoniflorin (PEA), as the main efficacy component of Paeonia lactiflora Pall., has multiple pharmacological effects. PEA improves liver injury, but it remains obscure whether the protective action on [Formula: see text]-naphthalene isothiocyanate (ANIT)-induced cholestatic liver injury is dependent on the NF-E2 p45-related Factor 2 (Nrf2) signaling pathway. In this study, C57BL/6 mice were administrated with 80 mg⋅kg[Formula: see text]⋅d[Formula: see text] ANIT followed by PEA (75, 150, and 300 mg⋅kg[Formula: see text]⋅d[Formula: see text]) orally for 10 days, respectively. Tissue histology and liver function were detected, including serum enzymes, gallbladder (GB) weight, phenobarbital-induced sleeping time (PEN-induced ST), hepatic uridine di-phosphoglucuronosyltransferase (UDPG-T), malondialdehyde (MDA), and glutathione (GSH). The expressions of protein Nrf2, sodium taurocholate cotransporting polypeptide (Ntcp), and NADPH oxidase 4 (Nox4) were evaluated. Nrf2 plasmid or siRNA-Nrf2 transfection on LO2 cells and Nrf2-/- mice were used to explore the liver protective mechanism of PEA. Compared to ANIT-treated mice, PEA decreased serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), total bilirubin (TBIL), direct bilirubin (DBIL), total bile acid (TBA), and phenobarbital-induced sleeping time. The bile secretion, hepatic UDPG-T, MDA, GSH, and liver histology were improved. The expressions of protein Nrf2 and Ntcp in liver tissues increased, but Nox4 decreased. After Nrf2 plasmid or small interfering RNA (siRNA)-Nrf2 transfection, the protective effects of PEA on LO2 cells were, respectively, strengthened or weakened. Moreover, PEA had no significant effects on ANIT-treated Nrf2-/- mice. Our results suggest that Nrf2 is essential for PEA protective effects on ANIT-induced liver injury.


Assuntos
Colestase , Paeonia , 1-Naftilisotiocianato/toxicidade , Animais , Bilirrubina/metabolismo , Colestase/metabolismo , Glucosídeos , Glutationa/metabolismo , Isotiocianatos/farmacologia , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Monoterpenos , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Fenobarbital/efeitos adversos , RNA Interferente Pequeno/metabolismo , Uridina Difosfato Glucose/metabolismo , Uridina Difosfato Glucose/farmacologia , Uridina Difosfato Glucose/uso terapêutico
6.
Int J Mol Sci ; 21(8)2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32326617

RESUMO

The purinergic (P2) receptor P2Y14 is the only P2 receptor that is stimulated by uridine diphosphate (UDP)-sugars and its role in bone formation is unknown. We confirmed P2Y14 expression in primary murine osteoblasts (CB-Ob) and the C2C12-BMP2 osteoblastic cell line (C2-Ob). UDP-glucose (UDPG) had undiscernible effects on cAMP levels, however, induced dose-dependent elevations in the cytosolic free calcium concentration ([Ca2+]i) in CB-Ob, but not C2-Ob cells. To antagonize the P2Y14 function, we used the P2Y14 inhibitor PPTN or generated CRISPR-Cas9-mediated P2Y14 knockout C2-Ob clones (Y14KO). P2Y14 inhibition facilitated calcium signalling and altered basal cAMP levels in both models of osteoblasts. Importantly, P2Y14 inhibition augmented Ca2+ signalling in response to ATP, ADP and mechanical stimulation. P2Y14 knockout or inhibition reduced osteoblast proliferation and decreased ERK1/2 phosphorylation and increased AMPKα phosphorylation. During in vitro osteogenic differentiation, P2Y14 inhibition modulated the timing of osteogenic gene expression, collagen deposition, and mineralization, but did not significantly affect differentiation status by day 28. Of interest, while P2ry14-/- mice from the International Mouse Phenotyping Consortium were similar to wild-type controls in bone mineral density, their tibia length was significantly increased. We conclude that P2Y14 in osteoblasts reduces cell responsiveness to mechanical stimulation and mechanotransductive signalling and modulates osteoblast differentiation.


Assuntos
Proliferação de Células/genética , Osteoblastos/metabolismo , Osteogênese/genética , Antagonistas Purinérgicos/farmacologia , Receptores Purinérgicos P2Y/metabolismo , Transdução de Sinais/genética , Açúcares de Uridina Difosfato/metabolismo , Difosfato de Adenosina/farmacologia , Trifosfato de Adenosina/farmacologia , Animais , Densidade Óssea/genética , Sistemas CRISPR-Cas , Cálcio/metabolismo , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , AMP Cíclico/metabolismo , Técnicas de Inativação de Genes , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Osteogênese/efeitos dos fármacos , Fosforilação , Antagonistas Purinérgicos/metabolismo , Receptores Purinérgicos P2Y/genética , Transdução de Sinais/efeitos dos fármacos , Uridina Difosfato Glucose/metabolismo , Uridina Difosfato Glucose/farmacologia , Açúcares de Uridina Difosfato/farmacologia
7.
Vascul Pharmacol ; 103-105: 36-46, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29253618

RESUMO

AIMS: UDP-sugars can act as extracellular signalling molecules, but relatively little is known about their cardiovascular actions. The P2Y14 receptor is a Gi/o-coupled receptor which is activated by UDP-glucose and related sugar nucleotides. In this study we sought to investigate whether P2Y14 receptors are functionally expressed in the porcine coronary artery using a selective P2Y14 receptor agonist, MRS2690, and a novel selective P2Y14 receptor antagonist, PPTN (4,7-disubstituted naphthoic acid derivative). METHODS AND RESULTS: Isometric tension recordings were used to evaluate the effects of UDP-sugars in porcine isolated coronary artery segments. The effects of the P2 receptor antagonists suramin and PPADS, the P2Y14 receptor antagonist PPTN, and the P2Y6 receptor antagonist MRS2578, were investigated. Measurement of vasodilator-stimulated phosphoprotein (VASP) phosphorylation using flow cytometry was used to assess changes in cAMP levels. UDP-glucose, UDP-glucuronic acid UDP-N-acetylglucosamine (P2Y14 receptor agonists), elicited concentration-dependent contractions of the porcine coronary artery. MRS2690 was a more potent vasoconstrictor than the UDP-sugars. Concentration dependent contractile responses to MRS2690 and UDP-sugars were enhanced in the presence of forskolin (activator of cAMP), where the level of basal tone was maintained by addition of U46619, a thromboxane A2 mimetic. Contractile responses to MRS2690 were blocked by PPTN, but not by MRS2578. Contractile responses to UDP-glucose were also attenuated by PPTN and suramin, but not by MRS2578. Forskolin-induced VASP-phosphorylation was reduced in porcine coronary arteries exposed to UDP-glucose and MRS2690, consistent with P2Y14 receptor coupling to Gi/o proteins and inhibition of adenylyl cyclase activity. CONCLUSIONS: Our data support a role of UDP-sugars as extracellular signalling molecules and show for the first time that they mediate contraction of porcine coronary arteries via P2Y14 receptors.


Assuntos
Vasos Coronários/metabolismo , Receptores Purinérgicos P2/metabolismo , Açúcares de Uridina Difosfato/metabolismo , Vasoconstrição/fisiologia , Adulto , Animais , Colforsina/farmacologia , Feminino , Humanos , Isotiocianatos/farmacologia , Masculino , Receptores Purinérgicos P2/efeitos dos fármacos , Transdução de Sinais/fisiologia , Suínos , Tioureia/análogos & derivados , Tioureia/farmacologia , Uridina Difosfato Glucose/administração & dosagem , Uridina Difosfato Glucose/análogos & derivados , Uridina Difosfato Glucose/metabolismo , Uridina Difosfato Glucose/farmacologia , Vasoconstritores/farmacologia
8.
Oncotarget ; 7(43): 69358-69370, 2016 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-27732965

RESUMO

Mast cells (MCs) are long-lived resident cells known for their substantial role in antigen-induced anaphylaxis and other immunoglobulin E-mediated allergic reactions as well as tumor promotion. MCs' activation results in the release of pro-inflammatory factors such as histamine, tryptase, tumor necrosis factor or carboxypeptidase A stored in secretory granules. IgE-dependent hypersensitivity has been thought to be the major pathway mediating degranulation of mast cells, but the P2Y14 nucleotide receptor activated by UDP-glucose (UDPG) may also enhance this process. In this study we identified thymidine 5'-O-monophosphorothioate (TMPS) as a molecule inhibiting UDPG-induced degranulation in a rat mast cell line (RBL-2H3). Additionally, TMPS diminished UDPG-evoked intracellular calcium mobilization in a stable HEK293T cell line overexpressing the P2Y14 receptor. Therefore, we demonstrate that the use of thymidine 5'-O-monophosphorothioate might be a novel anti-inflammatory approach based on preventingmast cell activation.


Assuntos
Degranulação Celular/efeitos dos fármacos , Mastócitos/efeitos dos fármacos , Receptores Purinérgicos P2/metabolismo , Tionucleotídeos/farmacologia , Animais , Cálcio/metabolismo , Linhagem Celular Tumoral , Células HEK293 , Humanos , Mastócitos/metabolismo , Mastócitos/fisiologia , Ratos , Receptores Purinérgicos P2/genética , Transdução de Sinais/efeitos dos fármacos , Tionucleotídeos/química , Timidina/química , Timidina/farmacologia , Uridina Difosfato Glucose/farmacologia , beta-N-Acetil-Hexosaminidases/metabolismo
9.
Purinergic Signal ; 12(4): 627-635, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27421735

RESUMO

In addition to their role in glycosylation reactions, UDP-sugars are released from cells and activate widely distributed cell surface P2Y14 receptors (P2Y14R). However, the physiological/pathophysiological consequences of UDP-sugar release are incompletely defined. Here, we report that UDP-glucose levels are abnormally elevated in lung secretions from patients with cystic fibrosis (CF) as well as in a mouse model of CF-like disease, the ßENaC transgenic (Tg) mouse. Instillation of UDP-glucose into wild-type mouse tracheas resulted in enhanced neutrophil lung recruitment, and this effect was nearly abolished when UDP-glucose was co-instilled with the P2Y14R antagonist PPTN [4-(piperidin-4-yl)-phenyl)-7-(4-(trifluoromethyl)-phenyl-2-naphthoic acid]. Importantly, administration of PPTN to ßENaC-Tg mice reduced neutrophil lung inflammation. These results suggest that UDP-glucose released into the airways acts as a local mediator of neutrophil inflammation.


Assuntos
Fibrose Cística/metabolismo , Pulmão/efeitos dos fármacos , Infiltração de Neutrófilos/efeitos dos fármacos , Neutrófilos/efeitos dos fármacos , Uridina Difosfato Glucose/farmacologia , Trifosfato de Adenosina/metabolismo , Adulto , Animais , Fibrose Cística/imunologia , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Pulmão/imunologia , Pulmão/metabolismo , Masculino , Camundongos , Neutrófilos/imunologia , Neutrófilos/metabolismo , Escarro/imunologia , Escarro/metabolismo , Traqueia/efeitos dos fármacos , Traqueia/imunologia , Uridina Difosfato Glucose/metabolismo , Adulto Jovem
10.
Biosci Biotechnol Biochem ; 80(1): 67-73, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26264414

RESUMO

Stevioside and rebaudioside A are the chief diterpene glycosides present in the leaves of Stevia rebaudiana. Rebaudioside A imparts a desirable sweet taste, while stevioside produces a residual bitter aftertaste. Enzymatic synthesis of rebaudioside A from stevioside can increase the ratio of rebaudioside A to stevioside in steviol glycoside products, providing a conceivable strategy to improve the organoleptic properties of steviol glycoside products. Here, we demonstrate the efficient conversion of stevioside to rebaudioside A by coupling the activities of recombinant UDP-glucosyltransferase UGT76G1 from S. rebaudiana and sucrose synthase AtSUS1 from Arabidopsis thaliana. The conversion occurred via regeneration of UDP-glucose by AtSUS1. UDP was applicable as the initial material instead of UDP-glucose for UDP-glucose recycling. The amount of UDP could be greatly reduced in the reaction mixture. Rebaudioside A yield in 30 h with 2.4 mM stevioside, 7.2 mM sucrose, and 0.006 mM UDP was 78%.


Assuntos
Diterpenos do Tipo Caurano/biossíntese , Glucosídeos/biossíntese , Glucosiltransferases/genética , Stevia/química , Edulcorantes/metabolismo , Clonagem Molecular , Diterpenos do Tipo Caurano/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Tecnologia de Alimentos/métodos , Expressão Gênica , Glucosídeos/genética , Glucosiltransferases/metabolismo , Humanos , Folhas de Planta/química , Folhas de Planta/enzimologia , Plasmídeos/química , Plasmídeos/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Stevia/enzimologia , Sacarose/metabolismo , Sacarose/farmacologia , Percepção Gustatória/fisiologia , Difosfato de Uridina/metabolismo , Difosfato de Uridina/farmacologia , Uridina Difosfato Glucose/metabolismo , Uridina Difosfato Glucose/farmacologia
11.
PLoS One ; 10(3): e0121419, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25799465

RESUMO

Uncontrolled inflammation is one of the leading causes of kidney failure. Pro-inflammatory responses can occur in the absence of infection, a process called sterile inflammation. Here we show that the purinergic receptor P2Y14 (GPR105) is specifically and highly expressed in collecting duct intercalated cells (ICs) and mediates sterile inflammation in the kidney. P2Y14 is activated by UDP-glucose, a damage-associated molecular pattern molecule (DAMP) released by injured cells. We found that UDP-glucose increases pro-inflammatory chemokine expression in ICs as well as MDCK-C11 cells, and UDP-glucose activates the MEK1/2-ERK1/2 pathway in MDCK-C11 cells. These effects were prevented following inhibition of P2Y14 with the small molecule PPTN. Tail vein injection of mice with UDP-glucose induced the recruitment of neutrophils to the renal medulla. This study identifies ICs as novel sensors, mediators and effectors of inflammation in the kidney via P2Y14.


Assuntos
Inflamação/metabolismo , Túbulos Renais Coletores/patologia , Receptores Purinérgicos P2Y/metabolismo , Uridina Difosfato Glucose/farmacologia , Animais , Células Cultivadas , Cães , Inflamação/imunologia , Inflamação/patologia , Túbulos Renais Coletores/citologia , Túbulos Renais Coletores/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Células Madin Darby de Rim Canino , Masculino , Camundongos , Neutrófilos/metabolismo
12.
J Am Chem Soc ; 137(3): 1230-44, 2015 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-25562380

RESUMO

UDP-Galactopyranose mutase (UGM) is a flavin-containing enzyme that catalyzes the reversible conversion of UDP-galactopyranose (UDP-Galp) to UDP-galactofuranose (UDP-Galf) and plays a key role in the biosynthesis of the mycobacterial cell wall galactofuran. A soluble, active form of UGM from Mycobacterium tuberculosis (MtUGM) was obtained from a dual His6-MBP-tagged MtUGM construct. We present the first complex structures of MtUGM with bound substrate UDP-Galp (both oxidized flavin and reduced flavin). In addition, we have determined the complex structures of MtUGM with inhibitors (UDP and the dideoxy-tetrafluorinated analogues of both UDP-Galp (UDP-F4-Galp) and UDP-Galf (UDP-F4-Galf)), which represent the first complex structures of UGM with an analogue in the furanose form, as well as the first structures of dideoxy-tetrafluorinated sugar analogues bound to a protein. These structures provide detailed insight into ligand recognition by MtUGM and show an overall binding mode similar to those reported for other prokaryotic UGMs. The binding of the ligand induces conformational changes in the enzyme, allowing ligand binding and active-site closure. In addition, the complex structure of MtUGM with UDP-F4-Galf reveals the first detailed insight into how the furanose moiety binds to UGM. In particular, this study confirmed that the furanoside adopts a high-energy conformation ((4)E) within the catalytic pocket. Moreover, these investigations provide structural insights into the enhanced binding of the dideoxy-tetrafluorinated sugars compared to unmodified analogues. These results will help in the design of carbohydrate mimetics and drug development, and show the enormous possibilities for the use of polyfluorination in the design of carbohydrate mimetics.


Assuntos
Inibidores Enzimáticos/farmacologia , Hidrocarbonetos Fluorados/farmacologia , Transferases Intramoleculares/antagonistas & inibidores , Mycobacterium tuberculosis/enzimologia , Uridina Difosfato Glucose/farmacologia , Sítios de Ligação/efeitos dos fármacos , Inibidores Enzimáticos/química , Hidrocarbonetos Fluorados/química , Transferases Intramoleculares/genética , Transferases Intramoleculares/metabolismo , Ligantes , Estrutura Molecular , Especificidade por Substrato/efeitos dos fármacos , Uridina Difosfato Glucose/química
13.
J Cell Mol Med ; 18(9): 1785-96, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24909956

RESUMO

GPR17 is a G(i) -coupled dual receptor activated by uracil-nucleotides and cysteinyl-leukotrienes. These mediators are massively released into hypoxic tissues. In the normal heart, GPR17 expression has been reported. By contrast, its role in myocardial ischaemia has not yet been assessed. In the present report, the expression of GPR17 was investigated in mice before and at early stages after myocardial infarction by using immunofluorescence, flow cytometry and RT-PCR. Before induction of ischaemia, results indicated the presence of the receptor in a population of stromal cells expressing the stem-cell antigen-1 (Sca-1). At early stages after ligation of the coronary artery, the receptor was expressed in Sca-1(+) cells, and cells stained with Isolectin-B4 and anti-CD45 antibody. GPR17(+) cells also expressed mesenchymal marker CD44. GPR17 function was investigated in vitro in a Sca-1(+)/CD31(-) cell line derived from normal hearts. These experiments showed a migratory function of the receptor by treatment with UDP-glucose and leukotriene LTD4, two GPR17 pharmacological agonists. The GPR17 function was finally assessed in vivo by treating infarcted mice with Cangrelor, a pharmacological receptor antagonist, which, at least in part, inhibited early recruitment of GPR17(+) and CD45(+) cells. These findings suggest a regulation of heart-resident mesenchymal cells and blood-borne cellular species recruitment following myocardial infarction, orchestrated by GPR17.


Assuntos
Células-Tronco Mesenquimais/fisiologia , Infarto do Miocárdio/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/farmacologia , Animais , Antígenos Ly/metabolismo , Movimento Celular , Receptores de Hialuronatos , Antígenos Comuns de Leucócito/metabolismo , Leucotrieno D4/farmacologia , Leucotrieno D4/fisiologia , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/patologia , Proteínas do Tecido Nervoso/agonistas , Antagonistas do Receptor Purinérgico P2Y/farmacologia , Receptores Acoplados a Proteínas G/agonistas , Uridina Difosfato Glucose/farmacologia , Uridina Difosfato Glucose/fisiologia
14.
FEBS Lett ; 588(17): 2936-43, 2014 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-24911208

RESUMO

Extracellular UDP-glucose can activate the purinergic P2Y14 receptor. The aim of the present study was to examine the physiological importance of P2Y14 receptors in the vasculature. The data presented herein show that UDP-glucose causes contraction in mouse coronary and basilar arteries. The EC50 values and immunohistochemistry illustrated the strongest P2Y14 receptor expression in the basilar artery. In the presence of pertussis toxin, UDP-glucose inhibited contraction in coronary arteries and in the basilar artery it surprisingly caused relaxation. After organ culture of the coronary artery, the EC50 value decreased and an increased staining for the P2Y14 receptor was observed, showing receptor plasticity.


Assuntos
Artérias Cerebrais/fisiologia , Vasos Coronários/fisiologia , Contração Muscular , Receptores Purinérgicos P2Y/metabolismo , Animais , Artérias Cerebrais/efeitos dos fármacos , Artérias Cerebrais/metabolismo , Vasos Coronários/efeitos dos fármacos , Vasos Coronários/metabolismo , Feminino , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Contração Muscular/efeitos dos fármacos , Toxina Pertussis/toxicidade , Regulação para Cima/efeitos dos fármacos , Uridina Difosfato Glucose/farmacologia
15.
Br J Pharmacol ; 171(3): 701-13, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24138077

RESUMO

BACKGROUND AND PURPOSE: The P2Y14 receptor is the newest member of the P2Y receptor family; it is G(i/o) protein-coupled and is activated by UDP and selectively by UDP-glucose and MRS2690 (2-thiouridine-5'-diphosphoglucose) (7-10-fold more potent than UDP-glucose). This study investigated whether P2Y14 receptors were functionally expressed in porcine isolated pancreatic arteries. EXPERIMENTAL APPROACH: Pancreatic arteries were prepared for isometric tension recording and UDP-glucose, UDP and MRS2690 were applied cumulatively after preconstriction with U46619, a TxA2 mimetic. Levels of phosphorylated myosin light chain 2 (MLC2) were assessed with Western blotting. cAMP concentrations were assessed using a competitive enzyme immunoassay kit. KEY RESULTS: Concentration-dependent contractions with a rank order of potency of MRS2690 (10-fold) > UDP-glucose ≥ UDP were recorded. These contractions were reduced by PPTN {4-[4-(piperidin-4-yl)phenyl]-7-[4-(trifluoromethyl)phenyl]-2-naphthoic acid}, a selective antagonist of P2Y14 receptors, which did not affect responses to UTP. Contraction to UDP-glucose was not affected by MRS2578, a P2Y6 receptor selective antagonist. Raising cAMP levels and forskolin, in the presence of U46619, enhanced contractions to UDP-glucose. In addition, UDP-glucose and MRS2690 inhibited forskolin-stimulated cAMP levels. Removal of the endothelium and inhibition of endothelium-derived contractile agents (TxA2, PGF(2α) and endothelin-1) inhibited contractions to UDP glucose. Y-27632, nifedipine and thapsigargin also reduced contractions to the agonists. UDP-glucose and MRS2690 increased MLC2 phosphorylation, which was blocked by PPTN. CONCLUSIONS AND IMPLICATIONS: P2Y14 receptors play a novel vasocontractile role in porcine pancreatic arteries, mediating contraction via cAMP-dependent mechanisms, elevation of intracellular Ca²âº levels, activation of RhoA/ROCK signalling and MLC2, along with release of TxA2, PGF(2α) and endothelin-1.


Assuntos
Artérias/inervação , Músculo Liso Vascular/inervação , Pâncreas/irrigação sanguínea , Receptores Purinérgicos P2Y/metabolismo , Sistemas do Segundo Mensageiro , Vasoconstrição , Sistema Vasomotor/metabolismo , Animais , Artérias/efeitos dos fármacos , Artérias/metabolismo , Bloqueadores dos Canais de Cálcio/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , AMP Cíclico/agonistas , AMP Cíclico/antagonistas & inibidores , AMP Cíclico/metabolismo , Endotélio Vascular/fisiologia , Feminino , Técnicas In Vitro , Masculino , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Proteínas do Tecido Nervoso/agonistas , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Pâncreas/efeitos dos fármacos , Pâncreas/metabolismo , Isoformas de Proteínas/agonistas , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Agonistas do Receptor Purinérgico P2Y/química , Agonistas do Receptor Purinérgico P2Y/farmacologia , Receptores Purinérgicos P2Y/química , Receptores Purinérgicos P2Y/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Sistemas do Segundo Mensageiro/efeitos dos fármacos , Sus scrofa , Uridina Difosfato Glucose/agonistas , Uridina Difosfato Glucose/análogos & derivados , Uridina Difosfato Glucose/antagonistas & inibidores , Uridina Difosfato Glucose/metabolismo , Uridina Difosfato Glucose/farmacologia , Vasoconstrição/efeitos dos fármacos , Vasoconstritores/antagonistas & inibidores , Vasoconstritores/farmacologia , Sistema Vasomotor/efeitos dos fármacos
16.
J Pharmacol Exp Ther ; 347(1): 38-46, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23908386

RESUMO

The orphan receptor GPR17 has been reported to be activated by UDP, UDP-sugars, and cysteinyl leukotrienes, and coupled to intracellular Ca(2+) mobilization and inhibition of cAMP accumulation, but other studies have reported either a different agonist profile or lack of agonist activity altogether. To determine if GPR17 is activated by uracil nucleotides and leukotrienes, the hemagglutinin-tagged receptor was expressed in five different cell lines and the signaling properties of the receptor were investigated. In C6, 1321N1, or Chinese hamster ovary (CHO) cells stably expressing GPR17, UDP, UDP-glucose, UDP-galactose, and cysteinyl leukotriene C4 (LTC4) all failed to promote inhibition of forskolin-stimulated cAMP accumulation, whereas both UDP and UDP-glucose promoted marked inhibition (>80%) of forskolin-stimulated cAMP accumulation in C6 and CHO cells expressing the P2Y14 receptor. Likewise, none of these compounds promoted accumulation of inositol phosphates in COS-7 or human embryonic kidney 293 cells transiently transfected with GPR17 alone or cotransfected with Gαq/i5, which links Gi-coupled receptors to the Gq-regulated phospholipase C (PLC) signaling pathway, or PLCε, which is activated by the Gα12/13 signaling pathway. Moreover, none of these compounds promoted internalization of GPR17 in 1321N1-GPR17 cells. Consistent with previous reports, coexpression experiments of GPR17 with cysteinyl leukotriene receptor 1 (CysLTR1) suggested that GPR17 acts as a negative regulator of CysLTR1. Taken together, these data suggest that UDP, UDP-glucose, UDP-galactose, and LTC4 are not the cognate ligands of GPR17.


Assuntos
Cisteína/metabolismo , Leucotrienos/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/metabolismo , Receptores Purinérgicos P2Y/metabolismo , Nucleotídeos de Uracila/metabolismo , Animais , Células CHO , Células COS , Chlorocebus aethiops , Cricetinae , Cricetulus , Cisteína/farmacologia , Células HEK293 , Humanos , Leucotrienos/farmacologia , Nucleotídeos de Uracila/farmacologia , Uridina Difosfato Glucose/metabolismo , Uridina Difosfato Glucose/farmacologia
17.
Cell Death Dis ; 4: e703, 2013 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-23828566

RESUMO

In utero exposure of the embryo and fetus to radiation has been implicated in malformations or fetal death, and often produces lifelong health consequences such as cancers and mental retardation. Here we demonstrate that deletion of a G-protein-coupled purinergic receptor, P2Y14, confers potent resistance to in utero radiation. Intriguingly, a putative P2Y14 receptor ligand, UDP-glucose, phenocopies the effect of P2Y14 deficiency. These data indicate that P2Y14 is a receptor governing in utero tolerance to genotoxic stress that may be pharmacologically targeted to mitigate radiation toxicity in pregnancy.


Assuntos
Hidrocefalia/prevenção & controle , Efeitos Tardios da Exposição Pré-Natal/prevenção & controle , Lesões Experimentais por Radiação/prevenção & controle , Receptores Purinérgicos P2/genética , Uridina Difosfato Glucose/farmacologia , Animais , Atrofia/prevenção & controle , Peso Corporal/efeitos dos fármacos , Dano ao DNA , Feminino , Hidrocefalia/metabolismo , Masculino , Exposição Materna , Camundongos , Camundongos Knockout , Gravidez , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Lesões Experimentais por Radiação/metabolismo , Tolerância a Radiação , Receptores Purinérgicos P2/deficiência , Receptores Purinérgicos P2Y , Baço/efeitos dos fármacos , Baço/patologia , Uridina Difosfato Glucose/uso terapêutico , Irradiação Corporal Total
18.
Biophys J ; 105(2): 494-501, 2013 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-23870270

RESUMO

Clostridium difficile (C. diff) is one of the most common and most severe hospital-acquired infections; its consequences range from lengthened hospital stay to outright lethality. C. diff causes cellular damage through the action of two large toxins TcdA and TcdB. Recently, there has been increased effort toward developing antitoxin therapies, rather than antibacterial treatments, in hopes of mitigating the acquisition of drug resistance. To date, no analysis of the recognition mechanism of TcdA or TcdB has been attempted. Here, we use small molecule flexible docking followed by unbiased molecular dynamics to obtain a more detailed perspective on how inhibitory peptides, exemplified by two species HQSPWHH and EGWHAHT function. Using principal component analysis and generalized masked Delaunay analysis, an examination of the conformational space of TcdB in its apo form as well as forms bound to the peptides and UDP-Glucose was performed. Although both species inhibit by binding in the active site, they do so in two very different ways. The simulations show that the conformational space occupied by TcdB bound to the two peptides are quite different and provide valuable insight for the future design of toxin inhibitors and other enzymes that interact with their substrates through conformational capture mechanisms and thus work by the disruption of the protein's intrinsic motions.


Assuntos
Proteínas de Bactérias/química , Toxinas Bacterianas/química , Enterotoxinas/química , Inibidores Enzimáticos/farmacologia , Simulação de Dinâmica Molecular , Sequência de Aminoácidos , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/antagonistas & inibidores , Toxinas Bacterianas/metabolismo , Domínio Catalítico , Enterotoxinas/antagonistas & inibidores , Enterotoxinas/metabolismo , Inibidores Enzimáticos/química , Simulação de Acoplamento Molecular , Dados de Sequência Molecular , Oligopeptídeos/química , Oligopeptídeos/farmacologia , Uridina Difosfato Glucose/química , Uridina Difosfato Glucose/farmacologia
19.
J Clin Invest ; 123(8): 3420-35, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23863713

RESUMO

Hematopoietic stem progenitor cells (HSPCs) are present in very small numbers in the circulating blood in steady-state conditions. In response to stress or injury, HSPCs are primed to migrate out of their niche to peripheral blood. Mobilized HSPCs are now commonly used as stem cell sources due to faster engraftment and reduced risk of posttransplant infection. In this study, we demonstrated that a nucleotide sugar, UDP-glucose, which is released into extracellular fluids in response to stress, mediates HSPC mobilization. UDP-glucose-mobilized cells possessed the capacity to achieve long-term repopulation in lethally irradiated animals and the ability to differentiate into multi-lineage blood cells. Compared with G-CSF-mobilized cells, UDP-glucose-mobilized cells preferentially supported long-term repopulation and exhibited lymphoid-biased differentiation, suggesting that UDP-glucose triggers the mobilization of functionally distinct subsets of HSPCs. Furthermore, co-administration of UDP-glucose and G-CSF led to greater HSPC mobilization than G-CSF alone. Administration of the antioxidant agent NAC significantly reduced UDP-glucose-induced mobilization, coinciding with a reduction in RANKL and osteoclastogenesis. These findings provide direct evidence demonstrating a potential role for UDP-glucose in HSPC mobilization and may provide an attractive strategy to improve the yield of stem cells in poor-mobilizing allogeneic or autologous donors.


Assuntos
Mobilização de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/efeitos dos fármacos , Uridina Difosfato Glucose/farmacologia , Animais , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Quimiotaxia , Fator Estimulador de Colônias de Granulócitos/farmacologia , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/fisiologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Osteoclastos/fisiologia , Superóxidos/metabolismo
20.
Glia ; 61(7): 1155-71, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23640798

RESUMO

In the developing and mature central nervous system, NG2 expressing cells comprise a population of cycling oligodendrocyte progenitor cells (OPCs) that differentiate into mature, myelinating oligodendrocytes (OLGs). OPCs are also characterized by high motility and respond to injury by migrating into the lesioned area to support remyelination. K(+) currents in OPCs are developmentally regulated during differentiation. However, the mechanisms regulating these currents at different stages of oligodendrocyte lineage are poorly understood. Here we show that, in cultured primary OPCs, the purinergic G-protein coupled receptor GPR17, that has recently emerged as a key player in oligodendrogliogenesis, crucially regulates K(+) currents. Specifically, receptor stimulation by its agonist UDP-glucose enhances delayed rectifier K(+) currents without affecting transient K(+) conductances. This effect was observed in a subpopulation of OPCs and immature pre-OLGs whereas it was absent in mature OLGs, in line with GPR17 expression, that peaks at intermediate phases of oligodendrocyte differentiation and is thereafter downregulated to allow terminal maturation. The effect of UDP-glucose on K(+) currents is concentration-dependent, blocked by the GPR17 antagonists MRS2179 and cangrelor, and sensitive to the K(+) channel blocker tetraethyl-ammonium, which also inhibits oligodendrocyte maturation. We propose that stimulation of K(+) currents is responsible for GPR17-induced oligodendrocyte differentiation. Moreover, we demonstrate, for the first time, that GPR17 activation stimulates OPC migration, suggesting an important role for this receptor after brain injury. Our data indicate that modulation of GPR17 may represent a strategy to potentiate the post-traumatic response of OPCs under demyelinating conditions, such as multiple sclerosis, stroke, and brain trauma.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Oligodendroglia/efeitos dos fármacos , Oligodendroglia/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Uridina Difosfato Glucose/farmacologia , Difosfato de Adenosina/análogos & derivados , Difosfato de Adenosina/farmacologia , Animais , Animais Recém-Nascidos , Antígenos/metabolismo , Encéfalo/citologia , Cálcio/metabolismo , Células Cultivadas , Proteína Glial Fibrilar Ácida/metabolismo , Potenciais da Membrana/efeitos dos fármacos , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio/metabolismo , Proteoglicanas/metabolismo , Antagonistas do Receptor Purinérgico P2Y/farmacologia , Ratos , Ratos Wistar , Bloqueadores dos Canais de Sódio/farmacologia , Células-Tronco , Tetraetilamônio/farmacologia , Tetrodotoxina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...