Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Liver Int ; 44(8): 1842-1855, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38717058

RESUMO

Congenital erythropoietic porphyria (CEP) is a rare autosomal recessive disease due to the deficient, but not absent, activity of uroporphyrinogen III synthase (UROS), the fourth enzyme in the heme biosynthesis pathway. Biallelic variants in the UROS gene result in decreased UROS enzymatic activity and the accumulation of non-physiologic Type I porphyrins in cells and fluids. Overproduced uroporphyrins in haematopoietic cells are released into the circulation and distributed to tissues, inducing primarily hematologic and dermatologic symptoms. The clinical manifestations vary in severity ranging from non-immune hydrops fetalis in utero to mild dermatologic manifestations in adults. Here, the biochemical, molecular and clinical features of CEP as well as current and new treatment options, including the rescue of UROS enzyme activity by chaperones, are presented.


Assuntos
Porfiria Eritropoética , Uroporfirinogênio III Sintetase , Humanos , Porfiria Eritropoética/genética , Porfiria Eritropoética/diagnóstico , Porfiria Eritropoética/terapia , Uroporfirinogênio III Sintetase/genética , Uroporfirinogênio III Sintetase/metabolismo , Uroporfirinas/genética
2.
Microbiology (Reading) ; 167(10)2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34661520

RESUMO

Uroporphyrinogen III, the universal progenitor of macrocyclic, modified tetrapyrroles, is produced from aminolaevulinic acid (ALA) by a conserved pathway involving three enzymes: porphobilinogen synthase (PBGS), hydroxymethylbilane synthase (HmbS) and uroporphyrinogen III synthase (UroS). The gene encoding uroporphyrinogen III synthase has not yet been identified in Plasmodium falciparum, but it has been suggested that this activity is housed inside a bifunctional hybroxymethylbilane synthase (HmbS). Additionally, an unknown protein encoded by PF3D7_1247600 has also been predicted to possess UroS activity. In this study it is demonstrated that neither of these proteins possess UroS activity and the real UroS remains to be identified. This was demonstrated by the failure of codon-optimized genes to complement a defined Escherichia coli hemD- mutant (SASZ31) deficient in UroS activity. Furthermore, HPLC analysis of the oxidized reaction product from recombinant, purified P. falciparum HmbS showed that only uroporphyrin I could be detected (corresponding to hydroxymethylbilane production). No uroporphyrin III was detected, showing that P. falciparum HmbS does not have UroS activity and can only catalyze the formation of hydroxymethylbilane from porphobilinogen.


Assuntos
Heme/biossíntese , Hidroximetilbilano Sintase/metabolismo , Plasmodium falciparum/enzimologia , Vias Biossintéticas , Escherichia coli/genética , Teste de Complementação Genética , Hidroximetilbilano Sintase/genética , Mutação , Plasmodium falciparum/genética , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Uroporfirinogênio III Sintetase/genética , Uroporfirinogênio III Sintetase/metabolismo , Uroporfirinogênios/metabolismo
3.
Nat Commun ; 10(1): 1136, 2019 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-30850590

RESUMO

CRISPR-Cas9 is a promising technology for genome editing. Here we use Cas9 nuclease-induced double-strand break DNA (DSB) at the UROS locus to model and correct congenital erythropoietic porphyria. We demonstrate that homology-directed repair is rare compared with NHEJ pathway leading to on-target indels and causing unwanted dysfunctional protein. Moreover, we describe unexpected chromosomal truncations resulting from only one Cas9 nuclease-induced DSB in cell lines and primary cells by a p53-dependent mechanism. Altogether, these side effects may limit the promising perspectives of the CRISPR-Cas9 nuclease system for disease modeling and gene therapy. We show that the single nickase approach could be safer since it prevents on- and off-target indels and chromosomal truncations. These results demonstrate that the single nickase and not the nuclease approach is preferable, not only for modeling disease but also and more importantly for the safe management of future CRISPR-Cas9-mediated gene therapies.


Assuntos
Sistemas CRISPR-Cas , Cromossomos Humanos Par 10 , Quebras de DNA de Cadeia Dupla , Desoxirribonuclease I/genética , Edição de Genes/métodos , Terapia Genética/métodos , Uroporfirinogênio III Sintetase/genética , Proteína 9 Associada à CRISPR/genética , Proteína 9 Associada à CRISPR/metabolismo , Deleção Cromossômica , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , DNA/genética , DNA/metabolismo , Desoxirribonuclease I/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Genoma Humano , Células HEK293 , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Células K562 , Modelos Biológicos , Porfiria Eritropoética/genética , Porfiria Eritropoética/metabolismo , Porfiria Eritropoética/patologia , Porfiria Eritropoética/terapia , Cultura Primária de Células , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/metabolismo , Reparo de DNA por Recombinação , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Uroporfirinogênio III Sintetase/metabolismo
4.
Sci Transl Med ; 10(459)2018 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-30232228

RESUMO

Congenital erythropoietic porphyria is a rare autosomal recessive disease produced by deficient activity of uroporphyrinogen III synthase, the fourth enzyme in the heme biosynthetic pathway. The disease affects many organs, can be life-threatening, and currently lacks curative treatments. Inherited mutations most commonly reduce the enzyme's stability, altering its homeostasis and ultimately blunting intracellular heme production. This results in uroporphyrin by-product accumulation in the body, aggravating associated pathological symptoms such as skin photosensitivity and disfiguring phototoxic cutaneous lesions. We demonstrated that the synthetic marketed antifungal ciclopirox binds to the enzyme, stabilizing it. Ciclopirox targeted the enzyme at an allosteric site distant from the active center and did not affect the enzyme's catalytic role. The drug restored enzymatic activity in vitro and ex vivo and was able to alleviate most clinical symptoms of congenital erythropoietic porphyria in a genetic mouse model of the disease at subtoxic concentrations. Our findings establish a possible line of therapeutic intervention against congenital erythropoietic porphyria, which is potentially applicable to most of deleterious missense mutations causing this devastating disease.


Assuntos
Ciclopirox/uso terapêutico , Reposicionamento de Medicamentos , Porfiria Eritropoética/tratamento farmacológico , Sítio Alostérico , Animais , Fenômenos Biofísicos , Linhagem Celular , Ciclopirox/farmacocinética , Modelos Animais de Doenças , Homeostase , Camundongos , Fenótipo , Porfiria Eritropoética/enzimologia , Porfiria Eritropoética/patologia , Uroporfirinogênio III Sintetase/antagonistas & inibidores , Uroporfirinogênio III Sintetase/química , Uroporfirinogênio III Sintetase/metabolismo
5.
Structure ; 26(4): 565-571.e3, 2018 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-29551288

RESUMO

There are numerous applications that use the structures of protein-ligand complexes from the PDB, such as 3D pharmacophore identification, virtual screening, and fragment-based drug design. The structures underlying these applications are potentially much more informative if they contain biologically relevant bound ligands, with high similarity to the cognate ligands. We present a study of ligand-enzyme complexes that compares the similarity of bound and cognate ligands, enabling the best matches to be identified. We calculate the molecular similarity scores using a method called PARITY (proportion of atoms residing in identical topology), which can conveniently be combined to give a similarity score for all cognate reactants or products in the reaction. Thus, we generate a rank-ordered list of related PDB structures, according to the biological similarity of the ligands bound in the structures.


Assuntos
Acetilcolina/química , Acetilcolinesterase/química , Medicamentos Biossimilares/química , Uroporfirinogênio III Sintetase/química , Uroporfirinogênios/química , Acetilcolina/metabolismo , Acetilcolinesterase/metabolismo , Sítios de Ligação , Medicamentos Biossimilares/metabolismo , Humanos , Ligantes , Simulação de Acoplamento Molecular , Ligação Proteica , Especificidade por Substrato , Uroporfirinogênio III Sintetase/metabolismo , Uroporfirinogênios/metabolismo
6.
Environ Sci Pollut Res Int ; 22(8): 5877-86, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25352395

RESUMO

Bisphenol A (BPA), as an emerging environmental pollutant, is potentially harmful to plant growth. Chlorophyll (Chl) is critical in photosynthesis that provides matter and energy for plant growth. How BPA affects the chlorophyll content remains largely unknown. Here, the effects of BPA on Chl synthesis in soybean seedlings were investigated. Exposure to 1.5 mg/L BPA decreased the 5-aminolevulinic acid (ALA) content and increased protoporphyrin IX (Proto IX), magnesium protoporphyrin, and protochlorophyll contents and 5-aminolaevulinic acid dehydratase, porphobilinogen deaminase, uroporphyrinogen III synthase, uroporphyrinogen III decarboxylase, and protoporphyrinogen oxidase activities. Exposure to 17.2 and 50.0 mg/L BPA exerted the opposite effects on these four intermediates and five enzymes. Following the withdrawal of BPA exposure, the aforementioned parameters gradually recovered, except magnesium protoporphyrin content in exposure to 50.0 mg/L BPA. Our findings revealed that exposure to low-concentration BPA increased the Chl content in soybean seedlings through improving Chl synthesis, especially the conversion from ALA to Proto IX, whereas exposure to high-concentration BPA decreased the Chl content through inhibiting Chl synthesis, especially the conversion from ALA to Proto IX. The dual effects of BPA were largely reversed following the withdrawal of BPA exposure.


Assuntos
Compostos Benzidrílicos/toxicidade , Vias Biossintéticas/efeitos dos fármacos , Poluentes Ambientais/toxicidade , Glycine max/efeitos dos fármacos , Fenóis/toxicidade , Fotossíntese/efeitos dos fármacos , Plântula/efeitos dos fármacos , Ácido Aminolevulínico/metabolismo , Análise de Variância , Clorofila/análogos & derivados , Clorofila/metabolismo , Hidroximetilbilano Sintase/metabolismo , Folhas de Planta/química , Sintase do Porfobilinogênio/metabolismo , Protoporfirinogênio Oxidase/metabolismo , Protoporfirinas/metabolismo , Plântula/metabolismo , Glycine max/metabolismo , Espectrometria de Fluorescência , Uroporfirinogênio Descarboxilase/metabolismo , Uroporfirinogênio III Sintetase/metabolismo
7.
Hum Mol Genet ; 23(21): 5805-13, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24925316

RESUMO

Congenital erythropoietic porphyria (CEP) results from a deficiency in uroporphyrinogen III synthase enzyme (UROIIIS) activity that ultimately stems from deleterious mutations in the uroS gene. C73 is a hotspot for these mutations and a C73R substitution, which drastically reduces the enzyme activity and stability, is found in almost one-third of all reported CEP cases. Here, we have studied the structural basis, by which mutations in this hotspot lead to UROIIIS destabilization. First, a strong interdependency is observed between the volume of the side chain at position 73 and the folded protein. Moreover, there is a correlation between the in vitro half-life of the mutated proteins and their expression levels in eukaryotic cell lines. Molecular modelling was used to rationalize the results, showing that the mutation site is coupled to the hinge region separating the two domains. Namely, mutations at position 73 modulate the inter-domain closure and ultimately affect protein stability. By incorporating residues capable of interacting with R73 to stabilize the hinge region, catalytic activity was fully restored and a moderate increase in the kinetic stability of the enzyme was observed. These results provide an unprecedented rationale for a destabilizing missense mutation and pave the way for the effective design of molecular chaperones as a therapy against CEP.


Assuntos
Homeostase , Porfiria Eritropoética/metabolismo , Engenharia de Proteínas , Uroporfirinogênio III Sintetase/metabolismo , Substituição de Aminoácidos , Catálise , Ativação Enzimática , Estabilidade Enzimática , Humanos , Espaço Intracelular/metabolismo , Cinética , Modelos Moleculares , Mutação , Porfiria Eritropoética/enzimologia , Porfiria Eritropoética/genética , Conformação Proteica , Uroporfirinogênio III Sintetase/química , Uroporfirinogênio III Sintetase/genética
8.
Proc Natl Acad Sci U S A ; 110(45): 18238-43, 2013 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-24145442

RESUMO

Congenital erythropoietic porphyria (CEP) is a rare autosomal recessive disorder characterized by uroporphyrinogen III synthase (UROS) deficiency resulting in massive porphyrin accumulation in blood cells, which is responsible for hemolytic anemia and skin photosensitivity. Among the missense mutations actually described up to now in CEP patients, the C73R and the P248Q mutations lead to a profound UROS deficiency and are usually associated with a severe clinical phenotype. We previously demonstrated that the UROS(C73R) mutant protein conserves intrinsic enzymatic activity but triggers premature degradation in cellular systems that could be prevented by proteasome inhibitors. We show evidence that the reduced kinetic stability of the UROS(P248Q) mutant is also responsible for increased protein turnover in human erythroid cells. Through the analysis of EGFP-tagged versions of UROS enzyme, we demonstrate that both UROS(C73R) and UROS(P248Q) are equally destabilized in mammalian cells and targeted to the proteasomal pathway for degradation. We show that a treatment with proteasomal inhibitors, but not with lysosomal inhibitors, could rescue the expression of both EGFP-UROS mutants. Finally, in CEP mice (Uros(P248Q/P248Q)) treated with bortezomib (Velcade), a clinically approved proteasome inhibitor, we observed reduced porphyrin accumulation in circulating RBCs and urine, as well as reversion of skin photosensitivity on bortezomib treatment. These results of medical importance pave the way for pharmacologic treatment of CEP disease by preventing certain enzymatically active UROS mutants from early degradation by using proteasome inhibitors or chemical chaperones.


Assuntos
Modelos Moleculares , Porfiria Eritropoética/tratamento farmacológico , Inibidores de Proteassoma/uso terapêutico , Uroporfirinogênio III Sintetase/genética , Uroporfirinogênio III Sintetase/metabolismo , Animais , Western Blotting , Ácidos Borônicos/farmacologia , Ácidos Borônicos/uso terapêutico , Bortezomib , Dicroísmo Circular , Primers do DNA/genética , Células Eritroides/metabolismo , Humanos , Camundongos , Mutação de Sentido Incorreto/genética , Porfiria Eritropoética/genética , Porfirinas/sangue , Porfirinas/urina , Dobramento de Proteína , Pirazinas/farmacologia , Pirazinas/uso terapêutico , Reação em Cadeia da Polimerase em Tempo Real , Espectrometria de Fluorescência , Uroporfirinogênio III Sintetase/química
9.
J Microbiol Biotechnol ; 23(5): 668-73, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23648857

RESUMO

A recombinant E. coli co-expressing ALA synthase (hemA), NADP-dependent malic enzyme (maeB), and dicarboxylic acid transporter (dctA) was reported to synthesize porphyrin derivatives including iron-containing heme. To enhance the synthesis of bacterial heme, five genes of the porphyrin biosynthetic pathway [pantothenate kinase (coaA), ALA dehydratase (hemB), 1-hydroxymethylbilane synthase (hemC), uroporphyrinogen III synthase (hemD), and uroporphyrinogen III decarboxylase (hemE)] were amplified in the recombinant E. coli co-expressing hemA-maeB-dctA. Pantothenate kinase expression enabled the recombinant E. coli to accumulate intracellular CoA. Intracellular ALA was the most enhanced by uroporphyrinogen III synthase expression, porphobilinogen by ALA dehydratase expression, and uroporphyrin and coproporphyrin by 1- hydroxymethylbilane synthase expression. The strain coexpressing coaA, hemA, maeB, and dctA produced heme of 0.49 micromol/g-DCW, which was twice as much from the strain without coaA expression. Further strain improvement for the porphyrin derivatives is discussed based on the results.


Assuntos
Proteínas de Escherichia coli/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Amplificação de Genes , Heme/biossíntese , Porfirinas/metabolismo , Vias Biossintéticas , Escherichia coli/enzimologia , Proteínas de Escherichia coli/metabolismo , Hidroximetilbilano Sintase/genética , Hidroximetilbilano Sintase/metabolismo , Malato Desidrogenase/genética , Malato Desidrogenase/metabolismo , Uroporfirinogênio III Sintetase/genética , Uroporfirinogênio III Sintetase/metabolismo
10.
Cell Mol Biol (Noisy-le-grand) ; 59 Suppl: OL1855-60, 2013 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-23522335

RESUMO

AIP is an acute liver disorder caused by a deficiency of porphobilinogen deaminase (PBGD) characterized by neuroabdominal symptoms. It is an autosomal dominant disease. However, homozygous dominant AIP (HD-AIP) have been described. In some cases erythrodontia was observed. CEP is an autosomal recessive disease produced by mutations in the uroporphyrinogen III synthase gene (UROS), characterized by severe cutaneous lesions and erythrodontia. The aim of the work was to establish the differential diagnosis of porphyria in a patient with abdominal pain, neurological attacks, skin symptoms and erythrodontia. The PBGD activity was reduced 50% and the genetic analysis indicated the presence of two genetic variants in the PBGD gene, p.G111R and p.E258G, a new genetic variant, revealing a case of heteroallelic HD-AIP. The patient, first diagnosed as a carrier of a dual porphyria: AIP / CEP based on the excretion profile of porphyrins, precursors and her clinical symptoms, would be an atypical case of human HD-AIP. These results would also suggest the presence of a phenocopy of the CEP, induced by an endogenous or exogenous factor. Our findings highlight the importance of genetic studies for a proper diagnosis of porphyria, prevention of its manifestation and its treatment.


Assuntos
Variação Genética , Hidroximetilbilano Sintase/genética , Fígado/patologia , Porfiria Aguda Intermitente/diagnóstico , Porfiria Aguda Intermitente/genética , Doença Aguda , Adulto , Sequência de Bases , Análise Mutacional de DNA , Feminino , Heterozigoto , Humanos , Hidroximetilbilano Sintase/metabolismo , Fígado/metabolismo , Dados de Sequência Molecular , Mutação , Porfiria Aguda Intermitente/sangue , Porfiria Aguda Intermitente/urina , Porfirinas/sangue , Porfirinas/urina , Uroporfirinogênio III Sintetase/genética , Uroporfirinogênio III Sintetase/metabolismo
11.
J Coll Physicians Surg Pak ; 21(9): 564-6, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21914417

RESUMO

Congenital erythropoietic porphyria (CEP) or Gunther's disease is inherited disorder of porphyrin heme synthetic pathway that usually presents early in life. A very rare form of this disease has its onset in later years of life, called late onset erythropoietic porphyria (late onset EP). Fourteen cases of late onset EP have been reported to-date. We report another case of this rare entity in a 40 years old male with associated findings of haemolysis and thrombocytopenia.


Assuntos
Porfiria Eritropoética/diagnóstico , Adulto , Diagnóstico Diferencial , Hemólise , Humanos , Masculino , Porfiria Eritropoética/enzimologia , Trombocitopenia , Fatores de Tempo , Uroporfirinogênio III Sintetase/metabolismo
12.
Eukaryot Cell ; 10(11): 1536-44, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21908598

RESUMO

The azaoxoaporphine alkaloid sampangine exhibits strong antiproliferation activity in various organisms. Previous studies suggested that it somehow affects heme metabolism and stimulates production of reactive oxygen species (ROS). In this study, we show that inhibition of heme biosynthesis is the primary mechanism of action by sampangine and that increases in the levels of reactive oxygen species are secondary to heme deficiency. We directly demonstrate that sampangine inhibits heme synthesis in the yeast Saccharomyces cerevisiae. It also causes accumulation of uroporphyrinogen and its decarboxylated derivatives, intermediate products of the heme biosynthesis pathway. Our results also suggest that sampangine likely works through an unusual mechanism-by hyperactivating uroporhyrinogen III synthase-to inhibit heme biosynthesis. We also show that the inhibitory effect of sampangine on heme synthesis is conserved in human cells. This study also reveals a surprising essential role for the interaction between the mitochondrial ATP synthase and the electron transport chain.


Assuntos
Alcaloides/farmacologia , Heme/biossíntese , Saccharomyces cerevisiae/efeitos dos fármacos , Proteases Dependentes de ATP/genética , Proteases Dependentes de ATP/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Humanos , Células Jurkat , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , ATPases Mitocondriais Próton-Translocadoras/genética , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Naftiridinas , Extratos Vegetais/farmacologia , Protoporfirinogênio Oxidase/genética , Protoporfirinogênio Oxidase/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Uroporfirinogênio III Sintetase/biossíntese , Uroporfirinogênio III Sintetase/metabolismo , Uroporfirinogênios/metabolismo
13.
Blood ; 118(6): 1443-51, 2011 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-21653323

RESUMO

Mutations in the uroporphyrinogen III synthase (UROS) gene cause congenital erythropoietic porphyria (CEP), an autosomal-recessive inborn error of erythroid heme biosynthesis. Clinical features of CEP include dermatologic and hematologic abnormalities of variable severity. The discovery of a new type of erythroid porphyria, X-linked dominant protoporphyria (XLDPP), which results from increased activity of 5-aminolevulinate synthase 2 (ALAS2), the rate-controlling enzyme of erythroid heme synthesis, led us to hypothesize that the CEP phenotype may be modulated by sequence variations in the ALAS2 gene. We genotyped ALAS2 in 4 unrelated CEP patients exhibiting the same C73R/P248Q UROS genotype. The most severe of the CEP patients, a young girl, proved to be heterozygous for a novel ALAS2 mutation: c.1757 A > T in exon 11. This mutation is predicted to affect the highly conserved and penultimate C-terminal amino acid of ALAS2 (Y586). The rate of 5-aminolevulinate release from Y586F was significantly increased over that of wild-type ALAS2. The contribution of the ALAS2 gain-of-function mutation to the CEP phenotype underscores the importance of modifier genes underlying CEP. We propose that ALAS2 gene mutations should be considered not only as causative of X-linked sideroblastic anemia (XLSA) and XLDPP but may also modulate gene function in other erythropoietic disorders.


Assuntos
5-Aminolevulinato Sintetase/genética , Mutação de Sentido Incorreto , Porfiria Eritropoética/genética , Uroporfirinogênio III Sintetase/genética , 5-Aminolevulinato Sintetase/metabolismo , Sequência de Aminoácidos , Anemia Sideroblástica/genética , Anemia Sideroblástica/metabolismo , Anemia Sideroblástica/patologia , Sequência de Bases , Pré-Escolar , Eletroforese em Gel de Poliacrilamida , Saúde da Família , Feminino , Doenças Genéticas Ligadas ao Cromossomo X/genética , Doenças Genéticas Ligadas ao Cromossomo X/metabolismo , Genótipo , Humanos , Lactente , Cinética , Masculino , Dados de Sequência Molecular , Linhagem , Porfiria Eritropoética/metabolismo , Porfiria Eritropoética/patologia , Protoporfiria Eritropoética/genética , Protoporfiria Eritropoética/metabolismo , Homologia de Sequência de Aminoácidos , Índice de Gravidade de Doença , Espectrofotometria , Uroporfirinogênio III Sintetase/metabolismo , Uroporfirinogênios/metabolismo
14.
Artigo em Inglês | MEDLINE | ID: mdl-21570665

RESUMO

Congenital erythropoietic porphyria (CEP) is a rare autosomal disease ultimately related to deleterious mutations in uroporphyrinogen III synthase (UROIIIS), the fourth enzyme of the biosynthetic route of the heme group. UROIIIS catalyzes the cyclization of the linear tetrapyrrol hydroxymethylbilane (HMB), inverting the configuration in one of the aromatic rings. In the absence of the enzyme (or when ill-functioning), HMB spontaneously degrades to the by-product uroporphyrinogen I, which cannot lead to the heme group and accumulates in the body, producing some of the symptoms observed in CEP patients. In the present chapter, clinical, biochemical, and biophysical information has been compiled to provide an integrative view on the molecular basis of CEP. The high-resolution structure of UROIIIS sheds light on the enzyme reaction mechanism while thermodynamic analysis revealed that the protein is thermolabile. Pathogenic missense mutations are found throughout the primary sequence of the enzyme. All but one of these is rarely found in patients, whereas C73R is responsible for more than one-third of the reported cases. Most of the mutant proteins (C73R included) retain partial catalytic activity but the mutations often reduce the enzyme's stability. The stabilization of the protein in vivo is discussed in the context of a new line of intervention to complement existing treatments such as bone marrow transplantation and gene therapy.


Assuntos
Porfiria Eritropoética/enzimologia , Uroporfirinogênio III Sintetase/química , Uroporfirinogênio III Sintetase/metabolismo , Animais , Biocatálise , Humanos , Porfiria Eritropoética/terapia , Conformação Proteica , Termodinâmica , Uroporfirinogênio III Sintetase/genética
15.
Mol Med ; 17(7-8): 748-56, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21365124

RESUMO

Congenital erythropoietic porphyria (CEP) is an autosomal recessive disorder due to the deficient activity of uroporphyrinogen III synthase (UROS). Knock-in mouse models were generated for the common, hematologically severe human genotype, C73R/C73R, and milder genotypes (C73R/V99L and V99L/V99L). The specific activities of the UROS enzyme in the livers and erythrocytes of these mice averaged approximately 1.2%, 11% and 19% of normal, respectively. C73R/C73R mice that survived fetal life to weaning age (~12%) had a severe microcytic hypochromic anemia (hemoglobin 7.9 g/dL, mean cellular volume 26.6 fL, mean cellular hemoglobin content 27.4 g/dL, red cell distribution width 37.7%, reticulocytes 19%) and massively accumulated isomer I porphyrins (95, 183 and 44 µmol/L in erythrocytes, spleen and liver, respectively), but a nearly normal lifespan. In adult C73R/C73R mice, spleen and liver weights were 8.2- and 1.5-fold increased, respectively. C73R/V99L mice were mildly anemic (hemoglobin was 14.0 g/dL and mean cellular hemoglobin was 13.3), with minimally accumulated porphyrins (0.10, 5.54 and 0.58 µmol/L in erythrocytes, spleen and liver, respectively), whereas adult V99L/V99L mice were normal. Of note, even the mildest genotype, V99L/V99L, exhibited porphyria in utero, which disappeared by 2 months of age. These severe and mild mouse models inform therapeutic interventions and permit further investigation of the porphyrin-induced hematopathology, which leads to photo-induced cutaneous lesions. Of significance for therapeutic intervention, these mouse models suggest that only 11% of wild-type activity might be needed to reverse the pathology in CEP patients.


Assuntos
Modelos Animais de Doenças , Porfiria Eritropoética/genética , Uroporfirinogênio III Sintetase/genética , Animais , Animais Recém-Nascidos , Eritrócitos/enzimologia , Eritrócitos/metabolismo , Eritrócitos/patologia , Feminino , Genótipo , Humanos , Rim/enzimologia , Rim/metabolismo , Rim/patologia , Fígado/enzimologia , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Tamanho do Órgão , Fenótipo , Porfiria Eritropoética/enzimologia , Porfirinas/metabolismo , Baço/enzimologia , Baço/metabolismo , Baço/patologia , Fatores de Tempo , Uroporfirinogênio III Sintetase/metabolismo
16.
J Biol Chem ; 286(15): 13127-33, 2011 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-21343304

RESUMO

A single mutation (C73R) in the enzyme uroporphyrinogen III synthase (UROIIIS) is responsible for more than one-third of all of the reported cases of the rare autosomal disease congenital erythropoietic porphyria (CEP). CEP patients carrying this hotspot mutation develop a severe phenotype of the disease, including reduced life expectancy. Here, we have investigated the molecular basis for the functional deficit in the mutant enzyme both in vitro and in cellular systems. We show that a Cys in position 73 is not essential for the catalytic activity of the enzyme but its mutation to Arg speeds up the process of irreversible unfolding and aggregation. In the mammalian cell milieu, the mutant protein levels decrease to below the detection limit, whereas wild type UROIIIS can be detected easily. The disparate response is not produced by differences at the level of transcription, and the results with cultured cells and in vitro are consistent with a model where the protein becomes very unstable upon mutation and triggers a degradation mechanism via the proteasome. Mutant protein levels can be restored upon cell treatment with the proteasome inhibitor MG132. The intracellularly recovered C73R-UROIIIS protein shows enzymatic activity, paving the way for a new line of therapeutic intervention in CEP patients.


Assuntos
Mutação de Sentido Incorreto , Porfiria Eritropoética/enzimologia , Uroporfirinogênio III Sintetase/metabolismo , Substituição de Aminoácidos , Catálise , Linhagem Celular , Cisteína/genética , Cisteína/metabolismo , Inibidores de Cisteína Proteinase/farmacologia , Estabilidade Enzimática/efeitos dos fármacos , Estabilidade Enzimática/genética , Humanos , Leupeptinas/farmacologia , Porfiria Eritropoética/tratamento farmacológico , Porfiria Eritropoética/genética , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma , Uroporfirinogênio III Sintetase/genética
17.
Intern Emerg Med ; 5 Suppl 1: S65-71, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20865477

RESUMO

Porphyrias are a group of inherited and acquired metabolic disorders due to a defect in haem biosynthesis. An enzymatic defect at different steps of haem synthesis leads to tissue accumulation and excessive excretion of porphyrins and/or their toxic precursors. The specific patterns of accumulation determine the variety of clinical manifestations, ranging from acute neurovisceral attacks to skin lesions and liver disease. Most enzyme defects represent partial deficiencies, while familial cases are linked to autosomal or recessive traits. The incomplete penetrance of the genetic defects often requires the triggering or aggravating effect of host-related or environmental factors. While genetics has a role in confirming clinical suspicion and in family screening, biochemical and clinical studies are still central in the diagnosis.


Assuntos
Heme/biossíntese , Porfirias/etiologia , Coproporfirinogênio Oxidase/genética , Coproporfirinogênio Oxidase/metabolismo , Ferroquelatase/genética , Ferroquelatase/metabolismo , Regulação Enzimológica da Expressão Gênica/fisiologia , Heme/genética , Humanos , Hidroximetilbilano Sintase/genética , Hidroximetilbilano Sintase/metabolismo , Sintase do Porfobilinogênio/deficiência , Sintase do Porfobilinogênio/genética , Porfirias/enzimologia , Porfirias/genética , Protoporfirinogênio Oxidase/genética , Protoporfirinogênio Oxidase/metabolismo , Uroporfirinogênio Descarboxilase/deficiência , Uroporfirinogênio Descarboxilase/genética , Uroporfirinogênio III Sintetase/genética , Uroporfirinogênio III Sintetase/metabolismo
18.
J Gene Med ; 12(8): 637-46, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20586119

RESUMO

BACKGROUND: Congenital erythropoietic porphyria (CEP) is a severe autosomal recessive disorder characterized by a deficiency in uroporphyrinogen III synthase (UROS), the fourth enzyme of the heme biosynthetic pathway. We recently demonstrated the definitive cure of a murine model of CEP by lentiviral vector-mediated hematopoietic stem cell (HSC) gene therapy. In the perspective of a gene therapy clinical trial, human cellular models are required to evaluate the therapeutic potential of lentiviral vectors in UROS-deficient cells. However, the rare incidence of the disease makes difficult the availability of HSCs derived from patients. METHODS: RNA interference (RNAi) has been used to develop a new human model of the disease from normal cord blood HSCs. Lentivectors were developed for this purpose. RESULTS: We were able to down-regulate the level of human UROS in human cell lines and primary hematopoietic cells. A 97% reduction of UROS activity led to spontaneous uroporphyrin accumulation in human erythroid bone marrow cells of transplanted immune-deficient mice, recapitulating the phenotype of cells derived from patients. A strong RNAi-induced UROS inhibition allowed us to test the efficiency of different lentiviral vectors with the aim of selecting a safer vector. Restoration of UROS activity in these small hairpin RNA-transduced CD34(+) cord blood cells by therapeutic lentivectors led to a partial correction of the phenotype in vivo. CONCLUSIONS: The RNAi strategy is an interesting new tool for preclinical gene therapy evaluation.


Assuntos
Terapia Genética/métodos , Porfiria Eritropoética/terapia , Interferência de RNA , Animais , Modelos Animais de Doenças , Células-Tronco Hematopoéticas/metabolismo , Humanos , Células K562 , Lentivirus/genética , Lentivirus/metabolismo , Camundongos , Porfiria Eritropoética/enzimologia , Porfiria Eritropoética/genética , Uroporfirinogênio III Sintetase/genética , Uroporfirinogênio III Sintetase/metabolismo
19.
Mol Med ; 16(9-10): 381-8, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20485863

RESUMO

The first feline model of human congenital erythropoietic porphyria (CEP) due to deficient uroporphyrinogen III synthase (URO-synthase) activity was identified by its characteristic clinical phenotype, and confirmed by biochemical and molecular genetic studies. The proband, an adult domestic shorthair cat, had dark-red urine and brownish discolored teeth with red fluorescence under ultraviolet light. Biochemical studies demonstrated markedly increased uroporphyrinogen I in urine and plasma (2,650- and 10,700-fold greater than wild type, respectively), whereas urinary 5-aminolevulinic acid and porphobilinogen were lower than normal. Erythrocytic URO-synthase activity was <1% of mean wild-type activity, confirming the diagnosis and distinguishing it from feline phenocopies having acute intermittent porphyria. Sequencing of the affected cat's UROS gene revealed two missense mutations, c.140C>T (p.S47F) in exon 3 and c.331G>A (p.G111S) in exon 6, both of which were homozygous, presumably owing to parental consanguinity. Neither was present in 100 normal cat alleles. Prokaryotic expression and thermostability studies of the purified monomeric wild-type, p.S47F, p.G111S, and p.S47F/G111S enzymes showed that the p.S47F enzyme had 100% of wild-type specific activity but ~50% decreased thermostability, whereas the p.G111S and p.S47F/G111S enzymes had about 60% and 20% of wild-type specific activity, respectively, and both were markedly thermolabile. Molecular modeling results indicated that the less active/less stable p.G111S enzyme was further functionally impaired by a structural interaction induced by the presence of the S47F substitution. Thus, the synergistic interaction of two rare amino acid substitutions in the URO-synthase polypeptide caused the feline model of human CEP.


Assuntos
Doenças do Gato/enzimologia , Doenças do Gato/genética , Homozigoto , Mutação de Sentido Incorreto/genética , Porfiria Eritropoética/veterinária , Porfirinas/metabolismo , Uroporfirinogênio III Sintetase/genética , Animais , Doenças do Gato/sangue , Doenças do Gato/urina , Gatos , Eritrócitos/metabolismo , Masculino , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Porfiria Eritropoética/sangue , Porfiria Eritropoética/enzimologia , Porfiria Eritropoética/urina , Porfirinas/sangue , Porfirinas/urina , Uroporfirinogênio III Sintetase/química , Uroporfirinogênio III Sintetase/metabolismo
20.
Proc Natl Acad Sci U S A ; 106(38): 16381-6, 2009 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-19805308

RESUMO

We used the muscle creatine kinase (MCK) conditional frataxin knockout mouse to elucidate how frataxin deficiency alters iron metabolism. This is of significance because frataxin deficiency leads to Friedreich's ataxia, a disease marked by neurologic and cardiologic degeneration. Using cardiac tissues, we demonstrate that frataxin deficiency leads to down-regulation of key molecules involved in 3 mitochondrial utilization pathways: iron-sulfur cluster (ISC) synthesis (iron-sulfur cluster scaffold protein1/2 and the cysteine desulferase Nfs1), mitochondrial iron storage (mitochondrial ferritin), and heme synthesis (5-aminolevulinate dehydratase, coproporphyrinogen oxidase, hydroxymethylbilane synthase, uroporphyrinogen III synthase, and ferrochelatase). This marked decrease in mitochondrial iron utilization and resultant reduced release of heme and ISC from the mitochondrion could contribute to the excessive mitochondrial iron observed. This effect is compounded by increased iron availability for mitochondrial uptake through (i) transferrin receptor1 up-regulation, increasing iron uptake from transferrin; (ii) decreased ferroportin1 expression, limiting iron export; (iii) increased expression of the heme catabolism enzyme heme oxygenase1 and down-regulation of ferritin-H and -L, both likely leading to increased "free iron" for mitochondrial uptake; and (iv) increased expression of the mammalian exocyst protein Sec15l1 and the mitochondrial iron importer mitoferrin-2 (Mfrn2), which facilitate cellular iron uptake and mitochondrial iron influx, respectively. Our results enable the construction of a model explaining the cytosolic iron deficiency and mitochondrial iron loading in the absence of frataxin, which is important for understanding the pathogenesis of Friedreich's ataxia.


Assuntos
Ataxia de Friedreich/genética , Proteínas de Ligação ao Ferro/genética , Ferro/metabolismo , Mitocôndrias/metabolismo , Animais , Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/metabolismo , Western Blotting , Liases de Carbono-Enxofre/genética , Liases de Carbono-Enxofre/metabolismo , Coproporfirinogênio Oxidase/genética , Coproporfirinogênio Oxidase/metabolismo , Modelos Animais de Doenças , Ferroquelatase/genética , Ferroquelatase/metabolismo , Ataxia de Friedreich/metabolismo , Ataxia de Friedreich/patologia , Perfilação da Expressão Gênica , Heme/metabolismo , Hepcidinas , Humanos , Proteínas de Ligação ao Ferro/metabolismo , Rim/metabolismo , Fígado/metabolismo , Camundongos , Camundongos Knockout , Miocárdio/citologia , Miocárdio/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Baço/metabolismo , Uroporfirinogênio III Sintetase/genética , Uroporfirinogênio III Sintetase/metabolismo , Frataxina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA