Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Plant Pathol ; 24(7): 768-787, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37171083

RESUMO

Plant-pathogenic fungi are causative agents of the majority of plant diseases and can lead to severe crop loss in infected populations. Fungal colonization is achieved by combining different strategies, such as avoiding and counteracting the plant immune system and manipulating the host metabolome. Of major importance are virulence factors secreted by fungi, which fulfil diverse functions to support the infection process. Most of these proteins are highly specialized, with structural and biochemical information often absent. Here, we present the atomic structures of the cerato-platanin-like protein Cpl1 from Ustilago maydis and its homologue Uvi2 from Ustilago hordei. Both proteins adopt a double-Ψß-barrel architecture reminiscent of cerato-platanin proteins, a class so far not described in smut fungi. Our structure-function analysis shows that Cpl1 binds to soluble chitin fragments via two extended grooves at the dimer interface of the two monomer molecules. This carbohydrate-binding mode has not been observed previously and expands the repertoire of chitin-binding proteins. Cpl1 localizes to the cell wall of U. maydis and might synergize with cell wall-degrading and decorating proteins during maize infection. The architecture of Cpl1 harbouring four surface-exposed loop regions supports the idea that it might play a role in the spatial coordination of these proteins. While deletion of cpl1 has only mild effects on the virulence of U. maydis, a recent study showed that deletion of uvi2 strongly impairs U. hordei virulence. Our structural comparison between Cpl1 and Uvi2 reveals sequence variations in the loop regions that might explain a diverging function.


Assuntos
Plumbaginaceae , Ustilaginales , Ustilago , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Ustilaginales/metabolismo , Doenças das Plantas/microbiologia , Fungos/metabolismo , Zea mays/microbiologia
2.
Plant Physiol Biochem ; 200: 107760, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37207494

RESUMO

Sugarcane is an important sugar and energy crop and smut disease caused by Sporisorium scitamineum is a major fungal disease which can seriously reduce the yield and quality of sugarcane. In plants, TGACG motif binding (TGA) transcription factors are involved in the regulation of salicylic acid (SA) and methyl jasmonate (MeJA) signaling pathways, as well as in response to various biotic and abiotic stresses. However, no TGA-related transcription factor has been reported in Saccharum. In the present study, 44 SsTGA genes were identified from Saccharum spontaneum, and were assorted into three clades (I, II, III). Cis-regulatory elements (CREs) analysis revealed that SsTGA genes may be involved in hormone and stress response. RNA-seq data and RT-qPCR analysis indicated that SsTGAs were constitutively expressed in different tissues and induced by S. scitamineum stress. In addition, a ScTGA1 gene (GenBank accession number ON416997) was cloned from the sugarcane cultivar ROC22, which was homologous to SsTGA1e in S. spontaneum and encoded a nucleus protein. It was constitutively expressed in sugarcane tissues and up-regulated by SA, MeJA and S. scitamineum stresses. Furthermore, transient overexpression of ScTGA1 in Nicotiana benthamiana could enhance its resistance to the infection of Ralstonia solanacearum and Fusarium solani var. coeruleum, by regulating the expression of immune genes related to hypersensitive response (HR), ethylene (ET), SA and jasmonic acid (JA) pathways. This study should contribute to our understanding on the evolution and function of the SsTGA gene family in Saccharum, and provide a basis for the functional identification of ScTGA1 under biotic stresses.


Assuntos
Saccharum , Ustilaginales , Saccharum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética , Ustilaginales/metabolismo , Núcleo Celular/metabolismo , Regulação da Expressão Gênica de Plantas
3.
Ying Yong Sheng Tai Xue Bao ; 34(3): 846-852, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37087669

RESUMO

Sugarcane is the most important sugar crop. Sugarcane smut is one of the major diseases, which could reduce sugarcane yield and quality and seriously threaten the sustainable and healthy development of sugar industry. Microbial control of sugarcane smut is a rapidly emerging green biocontrol technology, with advantage to increase environmental compatibility and soil fertility. In this review, we briefly described the characteristics of Sporisorium scitamineum which causes sugarcane smut, synthesized the the mechanisms underlying the infection of sugarcane by S. scitamineum, and presented the research status of microbial controls of sugarcane smut via the application of bio-organic fertilizers and biopesticides. We then reviewed the mechanisms underlying the suppression of sugarcane smut by microorganisms through competition with pathogens for nutrients and ecological niches, secreting antagonistic substances, and improving plant resistance. It is notable that there are still some problems in the application of microbial control technologies, including poor colonization ability and unstable biocontrol efficiency. Finally, the major directions of future research on the biocontrol of sugarcane smut were proposed from the perspective of improving the biocontrol efficiency. This review would benefit the microbial control of sugarcane smut and the healthy development of sugar industry.


Assuntos
Saccharum , Ustilaginales , Saccharum/metabolismo , Proteínas de Plantas/genética , Doenças das Plantas/prevenção & controle , Regulação da Expressão Gênica de Plantas , Ustilaginales/metabolismo , Açúcares
4.
Int J Biol Macromol ; 224: 1-19, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36481328

RESUMO

Wall-associated kinase (WAK) is widely involved in signal transduction, reproductive growth, responses to pathogen infection and metal ion stress in plants. In this study, 19, 12, and 37 SsWAK genes were identified in Saccharum spontaneum, Saccharum hybrid and Sorghum bicolor, respectively. Phylogenetic tree showed that they could be divided into three groups. These WAK genes contained multiple cis-acting elements related to stress, growth and hormone response. RNA-seq analysis demonstrated that SsWAK genes were constitutively expressed in different sugarcane tissues and involved in response to smut pathogen (Sporisorium scitamineum) stress. Additionally, ScWAK1 (GenBank Accession No. OP479864), was then isolated from sugarcane cultivar ROC22. It was highly expressed in leaves and roots and its expression could be induced under SA and MeJA stress. Besides, ScWAK1 was significantly downregulated in both smut-resistant and susceptible sugarcane cultivars in response to S. scitamineum infection. ScWAK1 was a membrane protein without self-activating activity. Furthermore, transient expression of ScWAK1 in Nicotiana benthamiana enhanced the susceptibility of tobacco to the inoculation of Ralstonia solanacearum and Fusarium solani var. coeruleum, suggesting its negative role in disease resistance. The present study reveals the origin, distribution and evolution of WAK gene family and provides potential gene resources for sugarcane molecular breeding.


Assuntos
Saccharum , Ustilaginales , Saccharum/metabolismo , Filogenia , Resistência à Doença/genética , Ustilaginales/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Doenças das Plantas/genética
5.
mBio ; 13(5): e0212322, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36069442

RESUMO

Upon nitrogen starvation, the basidiomycete Ustilago maydis, which causes smut disease on corn, secretes amphipathic glycolipids, including mannosylerythritol lipids (MELs). MELs consist of a carbohydrate core whose mannosyl moiety is both acylated with fatty acids of different lengths and acetylated. Here, we report the transport of MELs into and out of the cell depending on the transport protein Mmf1, which belongs to the major facilitator superfamily. Analysis of mmf1 mutants and mutants lacking the acetyltransferase Mat1 revealed that Mmf1 is necessary for the export of acetylated MELs, while MELs without an acetyl group are secreted independently of this transporter. Upon deletion of mmf1, we detected novel MEL species lacking the acyl side chain at C-3'. With the help of feeding experiments, we demonstrate that MELs are taken up by U. maydis in an mmf1-independent manner. This leads to catabolism or rearrangement of acetyl and acyl side groups and subsequent secretion. The catabolism of MELs involves the presence of Mac2, an enzyme required for MEL biosynthesis. In cocultivation experiments, mutual exchange of MELs between different mutants was observed. Thus, we propose a novel function for fungal glycolipids as an external carbon storage. IMPORTANCE Fungi produce and secrete various secondary metabolites that can act as weapons against competitors, help in accessing nutrients, or assist in development and communication. One group of secondary metabolites are surface-active glycolipids, which have significant biotechnological potential as biodegradable detergents. While the biosynthesis of several fungal biosurfactants is well characterized, their biological functions and transport routes are less understood. We developed a cocultivation assay to show that a class of glycolipids from Ustilago maydis called mannosylerythritol lipids (MELs) can be exchanged between cells and modified or even degraded by recipient cells. Feeding assays with purified MELs led to similar results. These data provide insight into the surprising biological role of MELs as putative external carbon sources. Applying feeding and cocultivation experiments on MEL biosynthesis mutants turned out to be a valuable strategy for systematically studying the import routes and degradation pathways of glycolipids. By using these assays, we demonstrate the function of the transport protein Mmf1 as a specific exporter of acetylated MELs. We propose that these assays may be applied more generally, thereby opening novel areas of research.


Assuntos
Detergentes , Ustilaginales , Detergentes/metabolismo , Glicolipídeos/metabolismo , Ustilaginales/genética , Ustilaginales/metabolismo , Acetiltransferases/metabolismo , Ácidos Graxos/metabolismo , Nitrogênio/metabolismo , Carbono/metabolismo , Proteínas de Transporte/metabolismo , Tensoativos/química , Tensoativos/metabolismo
6.
Molecules ; 27(14)2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35889520

RESUMO

Mannosylerythritol lipids (MELs) may prevent skin barrier damage, although their protective mechanisms and active monomeric constituents remain unclear. Here, three MELs were extracted from Candida antarctica cultures containing fermented olive oil then purified using silica gel-based column chromatography and semipreparative HPLC. All three compounds (MEL-A, MEL-B, MEL-C) were well separated and stable, and reliable materials were used for NMR and HRESIMS chemical structure determinations and for assessing MELs' protective effects against skin damage. Notably, MEL-B and MEL-C effectively protected HaCaT cells from UVB-induced damage by upregulating the contents of filaggrin (FLG) and transglutaminase-1 (TGM1), as determined via ELISA. Moreover, MEL-B treatment (20 µg/mL) of UVB-irradiated HaCaT cells led to the upregulation of both the expression of mRNA genes and the key proteins FLG, LOR, and TGM1, which are known to be decreased in damaged skin cells. Additionally, histopathological analysis results revealed a markedly reduced intracellular vacuolation and cell damage, reflecting improved skin function after MEL-B treatment. Furthermore, immunofluorescence results revealed that MEL-B protected EpiKutis® three-dimensional cultured human skin cells from sodium dodecyl sulfate-induced damage by up-regulating FLG, LOR, and TGM1 expression. Accordingly, MELs' protection against skin barrier damage depended on MEL-B monomeric constituent activities, thus highlighting their promise as beneficial ingredients for use in skin-care products.


Assuntos
Ustilaginales , Células Cultivadas , Glicolipídeos/química , Humanos , Pele , Dodecilsulfato de Sódio/farmacologia , Tensoativos/química , Ustilaginales/química , Ustilaginales/genética , Ustilaginales/metabolismo
7.
Mol Omics ; 18(8): 699-715, 2022 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-35866667

RESUMO

The production of mannosylerythritol lipids (MELs) has been reported on different smut fungi. These biomolecules possess four typical conformations to which key commercially interesting properties have been attributed. In vivo, MEL production could only be explained by the chain-shortening pathway, a new route, unlike the main three fatty acid synthesis pathways described. The production of MELs requires nitrogen starvation and a carbon source, usually a fatty acid, the principals. The first MEL biosynthetic gene cluster was elucidated in U. maydis by the combination of different methodologies, which resulted in a reference genome, on which five genes comprising the MEL cluster were annotated. Subsequently, the evolution of DNA sequencing technologies advanced genome and transcriptome assembly, allowing the annotation of more MEL producers' genomes. These, in combination with different experimental techniques, coupled to bioinformatic methods offer a plethora of genomic resources for further manipulation and commercial exploitation. In this review, we present the main findings, which unraveled MEL production and multi-omics studies, leading to molecular tools for further genomic manipulation and exploitation in smut fungi.


Assuntos
Ustilaginales , Carbono/metabolismo , Ácidos Graxos/metabolismo , Família Multigênica , Nitrogênio/metabolismo , Ustilaginales/genética , Ustilaginales/metabolismo
8.
PLoS One ; 17(5): e0268781, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35604908

RESUMO

Whip smut disease of sugarcane, caused by Sporisorium scitamineum, is considered one of the main constraints in the successful cultivation of sugarcane. The pathogen infection can decrease the quantity and quality of the produce. Cultivation of resistant varieties is the most feasible strategy to combat the harms of this devastating disease. Development of varieties having disease-resistance together with improved important traits such as brix, pol, purity, CSS, and low fiber contents are desirable. Therefore, we documented the variances in quality traits of 104 sugarcane cultivars under disease pressure in split-plot design with 6 replications. The split ANOVA revealed a highly significant impact (p<0.0001) between treatments (inoculated and uninoculated), within cultivars as well as interaction 'Cultivars x Treatments' effect on brix, pol, fiber, purity, and CSS contents. In inoculated plots, the infection of S. scitamineum brought a highly significant reduction (t>4.032) in brix, pol, purity, and CSS of more than 40% of the cultivars used, as compared to the uninoculated ones. On the other hand, the smut infection caused a highly significant (t>4.032) increase in fiber percentage of 41 cultivars. We found significant positive correlations between smut rating and reduction of brix, pol, purity, and CSS contents. The cultivars that were caught with greater disease severity, compromised a higher reduction of their useful contents. Similarly, a significant positive correlation was found between increased fiber percent and smut rating. Remarkably, cultivars that showed immune reactions to whip smut disease were not statistically different from uninoculated ones in brix, pol, purity, CSS, and fiber contents. Variable effects of whip smut infection to quality parameters of different cultivars depict the importance of further improvement through breeding programs.


Assuntos
Saccharum , Ustilaginales , Basidiomycota , Grão Comestível/metabolismo , Regulação da Expressão Gênica de Plantas , Melhoramento Vegetal , Doenças das Plantas , Proteínas de Plantas/genética , Saccharum/metabolismo , Ustilaginales/metabolismo
9.
Phytopathology ; 112(7): 1513-1523, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35050679

RESUMO

The facultative biotrophic basidiomycete Sporisorium scitamineum causes smut disease in sugarcane. This study applied an assay to identify S. scitamineum candidate effectors (CEs) with plant immunity suppression activities by delivering them into Nicotiana benthamiana cells via the type-three secretion system of Pseudomonas fluorescens EtHAn. Six CEs were individually cloned into the pEDV6 vector and expressed by P. fluorescens EtHAn for translocation into the plant cells. Three CEs (g1052, g3890, and g5159) could suppress pattern-triggered immunity (PTI) responses with high reproducibility in different coinfiltration experiments with P. syringae pv. tomato DC3000. In addition, three CEs (g1052, g4549, and g5159) were also found to be AvrB-induced suppressors of effector-triggered immunity (ETI), demonstrating for the first time that S. scitamineum can defeat both PTI and ETI responses. A transcriptomic analysis at different stages of infection by the smut fungus of three sugarcane cultivars with contrasting responses to the pathogen revealed that suppressors g1052, g3890, g4549, and g5159 were induced at the early stage of infection. By contrast, the two CEs (g2666 and g6610) that did not exhibit suppression activities expressed only at the late stage of infection. Moreover, genomic structures of the CEs and searches for orthologs in other smut species suggested duplication events and further divergence in CEs evolution of S. scitamineum. Thus, the transient assay applied here demonstrated the potential of pEDV6 and P. fluorescens EtHAn as biological tools for identifying plant immune suppressors from S. scitamineum.


Assuntos
Basidiomycota , Saccharum , Ustilaginales , Proteínas de Bactérias/genética , Sistemas de Secreção Bacterianos/metabolismo , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Reprodutibilidade dos Testes , Saccharum/genética , Ustilaginales/metabolismo
10.
Microb Cell Fact ; 19(1): 24, 2020 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-32024522

RESUMO

BACKGROUND: Rhodosporidium toruloides has emerged as a promising host for the production of bioproducts from lignocellulose, in part due to its ability to grow on lignocellulosic feedstocks, tolerate growth inhibitors, and co-utilize sugars and lignin-derived monomers. Ent-kaurene derivatives have a diverse range of potential applications from therapeutics to novel resin-based materials. RESULTS: The Design, Build, Test, and Learn (DBTL) approach was employed to engineer production of the non-native diterpene ent-kaurene in R. toruloides. Following expression of kaurene synthase (KS) in R. toruloides in the first DBTL cycle, a key limitation appeared to be the availability of the diterpene precursor, geranylgeranyl diphosphate (GGPP). Further DBTL cycles were carried out to select an optimal GGPP synthase and to balance its expression with KS, requiring two of the strongest promoters in R. toruloides, ANT (adenine nucleotide translocase) and TEF1 (translational elongation factor 1) to drive expression of the KS from Gibberella fujikuroi and a mutant version of an FPP synthase from Gallus gallus that produces GGPP. Scale-up of cultivation in a 2 L bioreactor using a corn stover hydrolysate resulted in an ent-kaurene titer of 1.4 g/L. CONCLUSION: This study builds upon previous work demonstrating the potential of R. toruloides as a robust and versatile host for the production of both mono- and sesquiterpenes, and is the first demonstration of the production of a non-native diterpene in this organism.


Assuntos
Diterpenos do Tipo Caurano/metabolismo , Lignina/metabolismo , Engenharia Metabólica , Ustilaginales/metabolismo , Animais , Proteínas de Plantas/metabolismo
11.
J Ind Microbiol Biotechnol ; 46(8): 1191-1204, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31175524

RESUMO

Mannosylerythritol lipids (MEL) are microbial glycolipid biosurfactants with great potential for application in cosmetics and household detergents. In current biotechnological processes, they are produced by basidiomycetous fungi, the Ustilaginaceae, as a complex mixture of different chemical structures. It was the aim of this paper to study the influence of producer organisms and substrates on the resulting MEL structures with a novel high-resolution HPTLC-MALDI-TOF method. Given the seven different microbes and four plant oils, our analysis revealed that the product concentrations varied strongly between organisms, while they were similar for the different substrates. Coconut oil presented an exception, since only one organism was able to synthesize MEL from this substrate in considerable yields. Analysis by GC-FID further showed that the chain length pattern of hydrophobic fatty acid side-chains was very specific for individual organisms, while substrates had only a minor influence on the chain length. Our novel HPTLC-MALDI-TOF combination method finally demonstrated the presence of multiple MEL sub-variants with differing acetylation and fatty acid chain lengths. It also revealed the production of a more hydrophilic biosurfactant mannosylmannitol lipid (MML) as a side-product in certain fungi. Overall, it was concluded that the pattern of produced biosurfactant structures are mainly governed by producer organisms rather than substrates.


Assuntos
Cromatografia em Camada Fina/métodos , Glicolipídeos/química , Glicolipídeos/metabolismo , Óleos de Plantas/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Ustilaginales/metabolismo , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Óleos de Plantas/química , Tensoativos/química , Tensoativos/metabolismo , Ustilaginales/genética
12.
Fungal Genet Biol ; 130: 91-97, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31103599

RESUMO

Mannosylerythritol lipids (MELs) are surface active molecules produced by many basidiomycetous fungi. MELs consist of a mannosylerythritol disaccharide, which is acylated with short and medium chain fatty acids at the mannosyl moiety. A gene cluster composed of five genes is required for MEL biosynthesis. Here we show that the plant pathogenic fungus Ustilago hordei secretes these glycolipids under nitrogen starvation conditions. In contrast to MELs produced by the closely related fungus Ustilago maydis those secreted by U. hordei are mostly mono-acetylated and contain a different mixture of acyl groups. Cross-species complementation between these fungi revealed that these differences result from different catalytic activities of the acetyltransferase Mat1 and the acyltransferases Mac1 and Mac2. U. maydis mat1 mutants expressing the homologous mat1 gene from U. hordei produced mostly mono-acetylated variants and lack di-acetylated MELs normally produced by U. maydis. Furthermore, we determined that the acyltransferase Mac1 acylates the mannosylerythritol moiety at position C2 while Mac2 acylates C3. The identification of decorating enzymes with different substrate specificities will allow the tailor-made production of novel subsets of MELs.


Assuntos
Glicolipídeos/biossíntese , Ustilaginales/enzimologia , Ustilaginales/metabolismo , Acetilação , Acetiltransferases/genética , Acetiltransferases/metabolismo , Aciltransferases/genética , Aciltransferases/metabolismo , Ácidos Graxos/metabolismo , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Família Multigênica , Nitrogênio/metabolismo , Especificidade por Substrato , Transcriptoma , Ustilaginales/genética
13.
Microb Cell Fact ; 18(1): 54, 2019 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-30885220

RESUMO

BACKGROUND: Due to their high energy density and compatible physical properties, several monoterpenes have been investigated as potential renewable transportation fuels, either as blendstocks with petroleum or as drop-in replacements for use in vehicles (both heavy and light-weight) or in aviation. Sustainable microbial production of these biofuels requires the ability to utilize cheap and readily available feedstocks such as lignocellulosic biomass, which can be depolymerized into fermentable carbon sources such as glucose and xylose. However, common microbial production platforms such as the yeast Saccharomyces cerevisiae are not naturally capable of utilizing xylose, hence requiring extensive strain engineering and optimization to efficiently utilize lignocellulosic feedstocks. In contrast, the oleaginous red yeast Rhodosporidium toruloides is capable of efficiently metabolizing both xylose and glucose, suggesting that it may be a suitable host for the production of lignocellulosic bioproducts. In addition, R. toruloides naturally produces several carotenoids (C40 terpenoids), indicating that it may have a naturally high carbon flux through its mevalonate (MVA) pathway, providing pools of intermediates for the production of a wide range of heterologous terpene-based biofuels and bioproducts from lignocellulose. RESULTS: Sixteen terpene synthases (TS) originating from plants, bacteria and fungi were evaluated for their ability to produce a total of nine different monoterpenes in R. toruloides. Eight of these TS were functional and produced several different monoterpenes, either as individual compounds or as mixtures, with 1,8-cineole, sabinene, ocimene, pinene, limonene, and carene being produced at the highest levels. The 1,8-cineole synthase HYP3 from Hypoxylon sp. E74060B produced the highest titer of 14.94 ± 1.84 mg/L 1,8-cineole in YPD medium and was selected for further optimization and fuel properties study. Production of 1,8-cineole from lignocellulose was also demonstrated in a 2L batch fermentation, and cineole production titers reached 34.6 mg/L in DMR-EH (Deacetylated, Mechanically Refined, Enzymatically Hydorlized) hydrolysate. Finally, the fuel properties of 1,8-cineole were examined, and indicate that it may be a suitable petroleum blend stock or drop-in replacement fuel for spark ignition engines. CONCLUSION: Our results demonstrate that Rhodosporidium toruloides is a suitable microbial platform for the production of non-native monoterpenes with biofuel applications from lignocellulosic biomass.


Assuntos
Biocombustíveis/microbiologia , Lignina/metabolismo , Monoterpenos/metabolismo , Ustilaginales/metabolismo , Biomassa , Carotenoides/metabolismo , Fermentação
14.
J Plant Res ; 132(3): 405-417, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30864048

RESUMO

Previous studies have already highlighted the correlation between Sporisorium scitamineum pathogenicity and sugarcane polyamine accumulation. It was shown that high infectivity correlates with an increase in the amount of spermidine, spermine and cadaverine conjugated to phenols in the sensitive cultivars whereas resistant plants mainly produce free putrescine. However, these previous studies did not clarify the role of these polyamides in the disorders caused to the plant. Therefore, the purpose of this research is to clarify the effect of polyamines on the development of smut disease. In this paper, commercial polyamines were firstly assayed on smut teliospores germination. Secondly, effects were correlated to changes in endogenous polyamines after contact with defense sugarcane glycoproteins. Low concentrations of spermidine significantly activated teliospore germination, while putrescine had no activating effect on germination. Interestingly, it was observed that the diamine caused nuclear decondensation and breakage of the teliospore cell wall whereas the treatment of teliospores with spermidine did not induce nuclear decondensation or cell wall breakdown. Moreover, the number of polymerized microtubules increased in the presence of 7.5 mM spermidine but it decreased with putrescine which indicates that polyamines effects on Sporisorium scitamineum teliospore germination could be mediated through microtubules interaction. An increased production of polyamines in smut teliospores has been related to sugarcane resistance to the disease. Teliospores incubation with high molecular mass glycoproteins (HMMG) from the uninoculated resistant variety of sugarcane, Mayari 55-14, caused an increase of the insoluble fraction of putrescine, spermidine and spermine inside the teliospore cells. Moreover, the level of the soluble fraction of spermidine (S fraction) increased inside teliospores and the excess was released to the medium. The HMMG glycoproteins purified from Mayarí 55-14 plants previously inoculated with the pathogen significantly increased the levels of both retained and secreted soluble putrescine and spermidine. Polyamines levels did not increase in teliospores after incubation with HMMG produced by non resistant variety Barbados 42231 which could be related to the incapacity of these plants to defend themselves against smut disease. Thus, a hypothesis about the role of polyamines in sugarcane-smut interaction is explained.


Assuntos
Poliaminas Biogênicas/metabolismo , Glicoproteínas/metabolismo , Imunidade Vegetal , Saccharum/microbiologia , Esporos Fúngicos/metabolismo , Ustilaginales/metabolismo , Poliaminas Biogênicas/fisiologia , Glicoproteínas/fisiologia , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Putrescina/metabolismo , Putrescina/fisiologia , Saccharum/metabolismo , Espermidina/metabolismo , Espermidina/fisiologia , Espermina/metabolismo , Espermina/fisiologia , Ustilaginales/fisiologia
15.
J Biosci Bioeng ; 127(1): 93-98, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30054060

RESUMO

The yeast Pseudozyma antarctica secretes a concentrated biodegradable plastic (BP)-degrading enzyme when cultivated with xylose. Treatment with the culture filtrate reduced the puncture strength of commercial BP mulch films. After burying the film in soil, the residual amount of solid film was reduced significantly, and none was recovered after 5 weeks. The dynamics of soil fungal communities were analyzed weekly after burying the film using 18S rDNA polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) profiling of soil DNA. In the soil containing enzyme-treated film, the native community essentially recovered within 24 weeks. In comparison, the untreated solid film remained in the soil for 12 weeks and the response of the soil-fungal community was relatively slow; it had not recovered within 24 weeks.


Assuntos
Plásticos Biodegradáveis/farmacocinética , Esterases/metabolismo , Microbiologia do Solo , Solo/química , Ustilaginales , Biodegradação Ambiental , DNA Ribossômico/genética , Eletroforese em Gel de Gradiente Desnaturante , Esterases/genética , Membranas Artificiais , Microbiota/genética , Reação em Cadeia da Polimerase/métodos , Ustilaginales/enzimologia , Ustilaginales/genética , Ustilaginales/metabolismo , Xilose/metabolismo
16.
Nat Microbiol ; 4(2): 251-257, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30510169

RESUMO

Plant-pathogenic fungi hijack their hosts by secreting effector proteins. Effectors serve to suppress plant immune responses and modulate the host metabolism to benefit the pathogen. Smut fungi are biotrophic pathogens that also parasitize important cereals, including maize1. Symptom development is usually restricted to the plant inflorescences. Ustilago maydis is an exception in its ability to cause tumours in both inflorescences and leaves of maize, and in inducing anthocyanin biosynthesis through the secreted Tin2 effector2,3. How the unique lifestyle of U. maydis has evolved remains to be elucidated. Here we show that Tin2 in U. maydis has been neofunctionalized. We functionally compared Tin2 effectors of U. maydis and the related smut Sporisorium reilianum, which results in symptoms only in the inflorescences of maize and fails to induce anthocyanin. We show that Tin2 effectors from both fungi target distinct paralogues of a maize protein kinase, leading to stabilization and inhibition, respectively. An ancestral Tin2 effector functionally replaced the virulence function of S. reilianum Tin2 but failed to induce anthocyanin, and was unable to substitute for Tin2 in U. maydis. This shows that Tin2 in U. maydis has acquired a specialized function, probably connected to the distinct pathogenic lifestyle of this fungus.


Assuntos
Proteínas Fúngicas/metabolismo , Doenças das Plantas/microbiologia , Ustilago/patogenicidade , Fatores de Virulência/metabolismo , Antocianinas/biossíntese , Flores/metabolismo , Flores/microbiologia , Proteínas Fúngicas/genética , Inativação Gênica , Interações Hospedeiro-Patógeno , Mutação , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ligação Proteica , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Ustilaginales/genética , Ustilaginales/metabolismo , Ustilaginales/patogenicidade , Ustilaginales/fisiologia , Ustilago/genética , Ustilago/metabolismo , Ustilago/fisiologia , Virulência , Fatores de Virulência/genética , Zea mays
17.
Mol Plant Pathol ; 20(1): 124-136, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30136754

RESUMO

The biotrophic maize head smut fungus Sporisorium reilianum is a close relative of the tumour-inducing maize smut fungus Ustilago maydis with a distinct disease aetiology. Maize infection with S. reilianum occurs at the seedling stage, but spores first form in inflorescences after a long endophytic growth phase. To identify S. reilianum-specific virulence effectors, we defined two gene sets by genome comparison with U. maydis and with the barley smut fungus Ustilago hordei. We tested virulence function by individual and cluster deletion analysis of 66 genes and by using a sensitive assay for virulence evaluation that considers both disease incidence (number of plants with a particular symptom) and disease severity (number and strength of symptoms displayed on any individual plant). Multiple deletion strains of S. reilianum lacking genes of either of the two sets (sr10057, sr10059, sr10079, sr10703, sr11815, sr14797 and clusters uni5-1, uni6-1, A1A2, A1, A2) were affected in virulence on the maize cultivar 'Gaspe Flint', but each of the individual gene deletions had only a modest impact on virulence. This indicates that the virulence of S. reilianum is determined by a complex repertoire of different effectors which each contribute incrementally to the aggressiveness of the pathogen.


Assuntos
Proteínas Fúngicas/metabolismo , Doenças das Plantas/microbiologia , Ustilaginales/metabolismo , Ustilaginales/patogenicidade , Zea mays/microbiologia , Genoma Fúngico , Inflorescência/microbiologia , Fenótipo , Ustilaginales/genética , Virulência , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
18.
Antonie Van Leeuwenhoek ; 112(4): 599-614, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30368689

RESUMO

The basidiomycetous yeast Moesziomyces antarcticus (often cited as Pseudozyma antarctica), originally isolated from a sediment sample obtained from Lake Vanda in Antarctica, was asexually typified but closely related to the smut fungus Moesziomyces bullatus (Ustilaginales). We found a smut fungus on an ovary of barnyardgrass (Echinochloa crus-galli) in Japan, which had been identified as M. bullatus. The teliospores germinated and formed yeast-like colonies. Physiological and phylogenetic studies revealed that the characteristics of the yeast-like isolates coincided with those of "P. antarctica." We thus recognised the smut fungus as the teleomorph of M. antarcticus, and then emended the description of M. antarcticus based on the holomorph. The identified fungus could degrade certain biodegradable plastics and produce mannosylerythritol lipids (MELs) in similar qualities as the "P. antarctica" type strain. This discovery provides a significant bioresource, as genetically diverse M. antarcticus isolates could be obtained from the smut fungus.


Assuntos
Plásticos Biodegradáveis/metabolismo , Echinochloa/microbiologia , Ustilaginales/metabolismo , Biodegradação Ambiental , Sedimentos Geológicos/microbiologia , Glicolipídeos/metabolismo , Japão , Filogenia , Ustilaginales/classificação , Ustilaginales/genética , Ustilaginales/isolamento & purificação
19.
PLoS One ; 13(8): e0201903, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30089169

RESUMO

Remediation of former uranium mining sites represents one of the biggest challenges worldwide that have to be solved in this century. During the last years, the search of alternative strategies involving environmentally sustainable treatments has started. Bioremediation, the use of microorganisms to clean up polluted sites in the environment, is considered one the best alternative. By means of culture-dependent methods, we isolated an indigenous yeast strain, KS5 (Rhodosporidium toruloides), directly from the flooding water of a former uranium mining site and investigated its interactions with uranium. Our results highlight distinct adaptive mechanisms towards high uranium concentrations on the one hand, and complex interaction mechanisms on the other. The cells of the strain KS5 exhibit high a uranium tolerance, being able to grow at 6 mM, and also a high ability to accumulate this radionuclide (350 mg uranium/g dry biomass, 48 h). The removal of uranium by KS5 displays a temperature- and cell viability-dependent process, indicating that metabolic activity could be involved. By STEM (scanning transmission electron microscopy) investigations, we observed that uranium was removed by two mechanisms, active bioaccumulation and inactive biosorption. This study highlights the potential of KS5 as a representative of indigenous species within the flooding water of a former uranium mine, which may play a key role in bioremediation of uranium contaminated sites.


Assuntos
Biodegradação Ambiental , Urânio/metabolismo , Ustilaginales/metabolismo , Poluentes Radioativos da Água/metabolismo , Inundações , Mineração , Tolerância a Radiação , Temperatura , Ustilaginales/crescimento & desenvolvimento , Ustilaginales/isolamento & purificação , Ustilaginales/ultraestrutura , Água/metabolismo
20.
J Biosci Bioeng ; 126(6): 676-681, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30037643

RESUMO

Mannosylerythritol lipids (MELs) are biosurfactants produced from feedstocks by basidiomycetous yeasts. MELs exhibit different properties depending on their structures, such as the degree of acetylation or acylation and the chirality of the mannosylerythritol moiety. Pseudozyma tsukubaensis produces a diastereomer type of MEL-B (mono-acetylated MEL); therefore, deletion of an acetyltransferase could yield a diastereomer type of MEL-D (deacetylated MEL), which has only been produced in in vitro reactions of lipase using MEL-B as a substrate. Here, we deleted the gene PtMAT1 in P. tsukubaensis 1E5 encoding an acetyltransferase related to MEL biosynthesis via targeted gene deletion and generated a producer of the diastereomer type of MEL-D. The uracil auxotrophic mutant of P. tsukubaensis 1E5 (PtURA5-mutant) was used as a host strain for gene deletion. The gene PtMAT1 was replaced with a PtURA5 cassette by homologous recombination using uracil auxotrophy as a selectable marker. According to thin-layer chromatography and nuclear magnetic resonation spectroscopy, we identified the strain ΔPtMAT1 as a producer of the diastereomer type of MEL-D instead of MEL-B.


Assuntos
Acetiltransferases/genética , Glicolipídeos/biossíntese , Ustilaginales/genética , Ustilaginales/metabolismo , Acetiltransferases/isolamento & purificação , Acilação , Cromatografia em Camada Fina , Clonagem Molecular , Genes Fúngicos , Glicolipídeos/química , Glicolipídeos/metabolismo , Espectroscopia de Ressonância Magnética , Estereoisomerismo , Tensoativos/química , Tensoativos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...